JP2004291039A - Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool - Google Patents

Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool Download PDF

Info

Publication number
JP2004291039A
JP2004291039A JP2003088132A JP2003088132A JP2004291039A JP 2004291039 A JP2004291039 A JP 2004291039A JP 2003088132 A JP2003088132 A JP 2003088132A JP 2003088132 A JP2003088132 A JP 2003088132A JP 2004291039 A JP2004291039 A JP 2004291039A
Authority
JP
Japan
Prior art keywords
cutting blade
diamond
cemented carbide
tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003088132A
Other languages
Japanese (ja)
Inventor
Kazuo Yamamoto
和男 山本
Chuichi Ohashi
忠一 大橋
Eko Wardoyo Akhmadi
アフマディ・エコ・ワルドヨ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003088132A priority Critical patent/JP2004291039A/en
Priority to US10/628,134 priority patent/US7261753B2/en
Priority to KR1020030051526A priority patent/KR101021461B1/en
Priority to CNB031584020A priority patent/CN100358670C/en
Priority to CN 200710165086 priority patent/CN101200998B/en
Priority to DE60334267T priority patent/DE60334267D1/en
Priority to EP03016598A priority patent/EP1384793B1/en
Priority to AT03016598T priority patent/ATE482297T1/en
Publication of JP2004291039A publication Critical patent/JP2004291039A/en
Priority to US11/691,846 priority patent/US7621974B2/en
Priority to US12/575,074 priority patent/US8147573B2/en
Priority to US13/370,135 priority patent/US8728184B2/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bonding method for bonding a member made of cemented carbide and a member made of diamond having an excellent heat resistance, a bonding structure, a cutting blade chip for drilling tool, a cutting blade member, and a drilling tool. <P>SOLUTION: The cutting blade chip used for the cutting blade of the drilling tool has a structure comprising a cutting blade body part 11 made of the cemented carbide (the cemented carbide member), the member 12 made of diamond supported by the cutting blade body part 11, and a metal layer 13 that is arranged between the cutting blade body part 11 and the diamond member 12 and diffusion-bonded with them respectively. The metal layer 13 is composed of one kind of metal among Mo, Cr and Hf, or an alloy made from two or more kinds among these metals. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超硬合金製部材とダイヤモンド製部材との接合方法、接合構造と、坑井の掘削に用いられる掘削工具の切刃片、切刃部材、及び掘削工具に関する。
【0002】
【従来の技術】
地下資源開発のための坑井や地下環境を調査するための調査井等の坑井の掘削に用いられる掘削工具としては、合金鋼製工具本体の先端面に、複数の炭化タングステン基超硬合金製ポスト(以下、超硬ポストという)が所定の配列でろう付けや焼きばめなどの手段で固着され、この超硬ポストの先方側面のそれぞれに、全体が超高圧焼結ダイヤモンド(以下、焼結ダイヤという)からなる切刃片が直接ろう付けされた構造の掘削工具が知られている。
この掘削工具は、工具本体をパイプの先端に取り付けて、工具本体に対してパイプを介して掘削方向への荷重を加えながら工具本体を回転させることで、工具本体に設けた切刃片によって掘削を行うものである。
【0003】
ここで、ダイヤモンドは濡れ性が悪く、通常のろう材によるろう付けが困難であるので、この掘削工具では、例えばCu(銅):20〜40質量%、Ti(チタン):0.5〜10質量%を含有し、残りがAu(金)と不可避不純物とからなる組成を有するAu合金ろう材(融点は940°C)を用いて超硬ポストに対する切刃片のろう付けを行っている(例えば特許文献1参照)。
【0004】
【特許文献1】
特開2000−000686号公報
【0005】
【発明が解決しようとする課題】
近年は、化石燃料や原子力発電以外のエネルギー源の確保のために、地熱発電等、地熱を利用したエネルギー源の開発需要が高まっている。しかし、地熱を利用するためには、高温の地層まで掘削を行う必要があるので、このような高温に耐えうる掘削工具が必要となる。
また、化石燃料は、容易に採掘できる地表近傍の領域ではあらかた取り尽くされてしまっており、新たに化石燃料の採掘を行う場合にはより大深度(例えば地下5000m)まで掘削を行う必要がある。このような大深度の地層は、マントルに近いために高温であり、このような高温の地層を掘削するためには、高温に耐えうる掘削工具が必要となる。
【0006】
しかし、従来の掘削工具では、超硬合金製の超硬ポストと焼結ダイヤからなる切刃片とは、上記のようにろう付けによって接合されており、ろう材の耐熱温度はあまり高くないので、このように高温の地層を掘削すると、切刃片をろう付けしているろう材が融けて切刃片が超硬ポストから剥がれてしまったり、接合部が変形してしまう可能性がある。
このため、従来は、あまり高温の地層については掘削を行うことができなかった。
【0007】
本発明は、このような事情を鑑みてなされたものであって、耐熱性に優れた超硬合金製部材とダイヤモンド製部材との接合方法、接合構造、掘削工具の切刃片、切刃部材、及び掘削工具を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明にかかる超硬合金製部材とダイヤモンド製部材との接合方法は、超硬合金製部材とダイヤモンド製部材との間に、Mo(モリブデン)、Cr(クロム)、Hf(ハフニウム)のうちのいずれか一種の金属と不可避不純物とからなる金属箔、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属箔を挟み込み、前記超硬合金製部材及び前記ダイヤモンド製部材を、それぞれ前記金属箔と拡散接合することを特徴としている。
【0009】
超硬合金製部材及びダイヤモンド製部材と金属箔との拡散接合は、超硬合金製部材とダイヤモンド製部材との間に金属箔を挟み込んだ状態で、例えば5〜6GPaの超高圧下で、1400〜1550°Cの超高温の熱処理を施すことで行われる。
ここで、金属箔を構成するMo、Cr、Hfは、いずれもダイヤモンドの焼結に用いられる触媒金属ではないので、上記の熱処理を行っても金属箔の一部のみが超硬合金製部材及びダイヤモンド製部材に拡散されることとなり、金属箔の大部分はそのまま超硬合金製部材とダイヤモンド製部材との間に残留して、これらの間に金属層を形成する。また、金属箔を構成する金属または合金は、前記のように触媒金属ではないため、ダイヤモンド製部材において金属箔との接合部分近傍にのみ拡散することとなり、ダイヤモンド製部材の物性に悪影響を与えない。
【0010】
このように拡散接合を行うことで、ダイヤモンド製部材において金属箔との接合部分近傍には、金属箔の成分が拡散された拡散層が形成されることとなり、ダイヤモンド製部材と金属箔とが強固に接合される。
また、超硬合金製部材においても、金属箔との接合部分近傍には、金属箔の成分が拡散された拡散層が形成されるので、超硬合金製部材と金属箔とが強固に接合される。
さらに、金属箔を構成する金属または合金は、いずれも従来用いられているろう材よりも融点が高く、耐熱強度も高いので、この接合方法によって得られる接合構造は、従来のろう付けによる接合構造よりも高い耐熱性を有している。
【0011】
ここで、超硬合金製部材とダイヤモンド製部材とは熱収縮率が異なるが、これらの間には金属層が形成されており、この金属層が応力緩衝材として作用するので、上記熱処理後に常温常圧下に戻す際に、超硬合金製部材及びダイヤモンド製部材内に蓄えられた応力が金属層によって吸収されることとなり、ダイヤモンド製部材に応力が集中しにくくなってダイヤモンド製部材にクラック等が生じにくく、また超硬合金製部材とダイヤモンド製部材との剥離が生じにくい。
【0012】
本発明にかかる超硬合金製部材とダイヤモンド製部材との接合構造は、超硬合金製部材とダイヤモンド製部材との間に、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属層、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属層が設けられ、前記超硬合金製部材及び前記ダイヤモンド製部材が、それぞれ前記金属層と拡散接合されていることを特徴としている。
この超硬合金製部材とダイヤモンド製部材との接合構造では、超硬合金製部材とダイヤモンド製部材とを接合する金属層が、従来用いられているろう材よりも融点が高く、耐熱強度の高い金属またはその合金によって構成されているので、従来の接合構造よりも高い耐熱性を有している。また、超硬合金製部材とダイヤモンド製部材との接合強度も高い。
【0013】
本発明にかかる掘削工具の切刃片は、掘削工具の工具本体の先端面に設けられるポストに対して装着されて前記掘削工具における切刃を構成する切刃片であって、前記ポストとの接合部を構成する超硬合金製の切刃基体と、該切刃基体に支持されるダイヤモンド製部材とを有し、前記切刃基体と前記ダイヤモンド製部材との間には、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属層、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属層が設けられ、前記切刃基体及び前記ダイヤモンド製部材が、それぞれ前記金属層と拡散接合されていることを特徴としている。
【0014】
このように構成される掘削工具の切刃片においては、切刃基体とダイヤモンド製部材との間に金属層が設けられ、切刃基体とダイヤモンド製部材とが金属層に対して拡散接合されているので、切刃基体に対するダイヤモンド製部材の接合強度が著しく高い。
さらに、この金属層を構成する金属またはその合金は、従来用いられているろう材よりも融点が高く、耐熱強度も高い金属であるので、この切刃片は、従来の切刃片よりも高い耐熱性を有している。
【0015】
この掘削工具の切刃片において、ダイヤモンド製部材を、結合材として炭酸マグネシウム(以下、MgCOで示す)を用いた高耐熱性焼結ダイヤモンドによって構成してもよい。
ここで、高耐熱性焼結ダイヤモンドとは、ダイヤモンド粉を、結合材として例えばMgCOを用いて7〜8GPaの超高圧下で、1800〜2400°Cの超高温の熱処理を施して焼結したものである。
この場合には、ダイヤモンド製部材がより耐熱性の優れた高耐熱性ダイヤモンドによって構成されるので、切刃片の耐熱性がより向上する。
【0016】
本発明にかかる切刃部材は、掘削工具の工具本体の先端面に設けられる切刃部材であって、前記工具本体に装着される超硬合金製のポストと、該ポストに対して装着されて前記掘削工具における切刃を構成するダイヤモンド製の切刃片とを有し、前記ポストと前記切刃片との間には、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属層、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属層が設けられ、前記ポスト及び前記切刃片が、それぞれ前記金属層と拡散接合されていることを特徴としている。
このように構成される掘削工具の切刃部材においては、超硬合金製のポストとダイヤモンド製の切刃片との接合構造の耐熱性が高く、またその接合強度も著しく高い。
【0017】
本発明にかかる切刃部材は、掘削工具の工具本体の先端面に設けられる切刃部材であって、前記工具本体に装着されるポストと、該ポストに対して装着されて前記掘削工具における切刃を構成する切刃片とを有しており、該切刃片が、請求項3または4に記載の切刃片とされていることを特徴としている。
このように構成される掘削工具の切刃部材においては、超硬合金製の切刃基体とダイヤモンド製部材との接合構造の耐熱性が高くまた接合強度も著しく高い切刃片が切刃として用いられる。
【0018】
本発明にかかる掘削工具は、工具本体の先端面に、切刃片をポストに装着してなる切刃部材が装着される掘削工具であって、前記切刃片として請求項3または4に記載の切刃片を用いるか、もしくは前記切刃部材として請求項5または6に記載の切刃部材を用いることを特徴としている。
このように構成される掘削工具においては、超硬合金製の切刃基体とダイヤモンド製部材との接合構造の耐熱性が高くまた接合強度も著しく高い切刃片、または超硬合金製のポストとダイヤモンド製の切刃片との接合構造の耐熱性が高くまた接合強度も著しく高い切刃部材を用いて掘削が行われる。
【0019】
【発明の実施の形態】
以下、本発明の一実施形態について、図を用いて説明する。本実施の形態では、本発明にかかる超硬合金製部材とダイヤモンド製部材との接合方法、接合構造を、掘削工具の切刃片に適用している。
ここで、図1は、本実施の形態にかかる掘削工具の構成を概略的に示す斜視図であり、図2は本実施の形態にかかる掘削工具を構成する切刃部材の構成を概略的に示す側面図、図3は本実施の形態にかかる切刃片の構成を概略的に示す斜視図、図4は本実施の形態にかかる切刃片の構造を示す断面図である。
【0020】
本実施形態にかかる掘削工具1は、JIS・SCH415に規定される合金鋼等からなる略円盤形状の工具本体2と、工具本体2の先端面に所定の配列で複数設けられる切刃部材3とを有している。切刃部材3は、工具本体2に対して、ろう付けや焼きばめなどの手段で装着されるものである。
切刃部材3は、柱状をなす超硬合金製の超硬ポスト6と、この超硬ポスト6において掘削方向を向く側面にろう付け等によって装着される切刃片7とを有している。本実施の形態では、超硬ポスト6は、一般的な炭化タングステン基超硬合金によって構成されている。
【0021】
切刃片7は、超硬ポスト6との接合部を構成する超硬合金製の切刃基体11と、切刃基体11に支持されるダイヤモンド製部材12とを有しており、これら切刃基体11とダイヤモンド製部材12との間には金属層13が設けられており、切刃基体11及びダイヤモンド製部材12は、それぞれ金属層13に対して拡散接合されている。
【0022】
切刃基体11は、略円板形状に形成されており、その一面は超硬ポスト6にろう付けされるろう付け面とされ、またこの一面に対向する他面側(すなわち掘削方向を向く面側)には切り欠き状の凹部が形成されており、この凹部がダイヤモンド製部材12を装着するための取付座11aとされている。この取付座11aは、ダイヤモンド製部材12の外形と同形状とされており、切刃片7において掘削作業時に磨耗が生じやすい領域に設けられている。本実施の形態では、取付座11aは、平面視扇型とされている。
また、切刃基体11は、Co(コバルト)を結合材として用いた炭化タングステン基超硬合金、すなわち一般的な超硬合金によって構成されている。本実施の形態では、切刃基体11は、結合材であるCoを10質量%含有し、残りがWC(タングステンカーバイド)と不可避不純物とされた超硬合金によって構成している。超硬合金は高強度で高靭性を有しているので、超高合金製の切刃基体11は、切刃片7において掘削作業時に加わる熱的機械的衝撃を吸収する衝撃吸収体として作用する。
【0023】
ダイヤモンド製部材12は、切刃片7において掘削作業時に摩耗が生じやすい領域に設けられるものである。本実施の形態では、切刃片7の前面に占めるダイヤモンド製部材12の割合を、25〜60面積%としている。
ここで、ダイヤモンド製部材12は、通常の焼結ダイヤモンド単体や、より優れた耐熱性を有する高耐熱性焼結ダイヤモンド単体によって構成されるほか、通常の焼結ダイヤモンドと高耐熱性焼結ダイヤモンドとの複合体によって構成してもよい。本実施の形態では、ダイヤモンド製部材12は、扇型の耐熱性焼結ダイヤモンド単体によって構成されている。
【0024】
切刃基体11とダイヤモンド製部材12との間に設けられる金属層13は、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなるものである。本実施の形態では、金属層13をMoからなる箔によって構成しており、その厚さDは、0.02〜0.1mmとされている。
ここで、Mo、Cr、Hfはいずれも融点の非常に高い金属であり(Moの融点は2622°C、Crの融点は1905°C、Hfの融点は2207°C)、耐熱強度にも優れている。同様に、これらの合金も融点が非常に高く、耐熱強度にも優れている。
【0025】
このように構成される切刃片7は、次のようにして作成される。
まず、切刃基体11及びダイヤモンド製部材12をそれぞれ所望の形状で製造する。
切刃基体11は、通常の超硬合金製品と同様にして製造される。例えば、超硬合金の原料粉末を成形、焼結することによって円板型超硬合金チップを形成し、この超硬合金チップの一面側に切削加工等を施して取付座11aを形成するか、超硬合金の原料粉末を取付座11aを有する円板形状に成形して焼結することによって得られる。
【0026】
ダイヤモンド製部材12は、原料粉末として、平均粒径10μm、純度99.9%以上のダイヤモンド粉末と、平均粒径10μm、純度95%以上のMgCO粉末を用いて作製される。
まず、MgCO粉末を、100MPaの圧力でプレス成形して所望の形状の圧粉体とする。続いて、この圧粉体をTa(タンタル)製のカプセル内に装入し、ついでこのカプセル内の圧粉体上にダイヤモンド粉末を充填する。
この状態で、カプセルをベルト型超高圧焼結装置(通常の焼結ダイヤ製造に用いられる超硬圧焼結装置)に装填して超高圧焼結を行って、4.0重量%のMgCOを含有した焼結ダイヤモンドのブロックを得る。
本実施の形態では、上記の超高圧焼結は、7.7Gpaの圧力を加えた状態で2250°Cまで加熱して30分間保持することで行っている。
そして、この焼結ダイヤモンドのブロックにダイヤモンド砥石による研磨を施して粗整形したのちに、さらにレーザー加工によって所望の形状のダイヤモンド片を切り出すことで、ダイヤモンド製部材12を得る。
【0027】
続いて、上記のようにして得た切刃基体11とダイヤモンド製部材12との間に、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属箔、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属箔(厚さ0.02〜0.1mm)を挟みこんだ状態にして、切刃基体11の取付座11aにダイヤモンド製部材12を嵌め込む。
さらに、このように仮組みした切刃基体11、金属箔、ダイヤモンド製部材12とを、ベルト型超高圧焼結装置に装填し、超高温高圧の熱処理を行って、これらの部材を接合して一体化させ、本発明にかかる切刃片7を得る。本実施の形態では、上記の超高温高圧の熱処理は、5.5GPaの圧力を加えた状態で1500°Cまで加熱して30分間保持することで行っている。
【0028】
この熱処理により、金属箔の成分が切刃基体11及びダイヤモンド製部材12にそれぞれ拡散し、切刃基体11及びダイヤモンド製部材12において金属箔との界面近傍には、金属箔を構成する成分が拡散してなる超高圧加熱溶融拡散層S1、S2が形成される。
ここで、金属箔を構成するMo、Cr、Hfは、いずれもダイヤモンドの焼結に用いられる触媒金属ではないので、上記の熱処理を行っても金属箔の一部のみが切刃基体11及びダイヤモンド製部材12に拡散されることとなり、金属箔の大部分はそのまま切刃基体11とダイヤモンド製部材12との間に残留して、これらの間に金属層13を形成する。また、金属箔を構成する金属または合金は、前記のように触媒金属ではないため、ダイヤモンド製部材12において金属箔との接合部分近傍にのみ拡散することとなり、ダイヤモンド製部材12の物性に悪影響を与えない。
【0029】
超高圧加熱溶融拡散層S1、S2のうち、切刃基体11に形成される超高圧加熱溶融拡散層S1は、金属層13との接合面から0.1〜0.5mmの深さに亘って形成され、ダイヤモンド製部材12に形成される超高圧加熱溶融拡散層S2は、金属層13との接合面から0.01〜0.1mmの深さに亘って形成される。
この超高圧加熱溶融拡散層の存在によって、切刃基体11及びダイヤモンド製部材12は、それぞれ金属層13に対して著しく強固に接合される。
なお、この超高圧加熱溶融拡散層S1、S2の様子及びその形成範囲は、金属顕微鏡を用いて組織観察を行うことで調べることができる。
【0030】
ここで、切刃基体11とダイヤモンド製部材12とは熱収縮率が異なるが、これらの間には金属層13が形成されており、この金属層13が応力緩衝材として作用するので、上記熱処理後に常温常圧下に戻す際に、切刃基体11及びダイヤモンド製部材12内に蓄えられた応力が金属層13によって吸収されることとなり、ダイヤモンド製部材12に応力が集中しにくくなってダイヤモンド製部材12にクラック等が生じにくく、また切刃基体11とダイヤモンド製部材12との剥離が生じにくい。
【0031】
このようにして得られた切刃片7は、超硬ポスト6にろう付けされて切刃部材3とされる。そして、この切刃部材3を工具本体2に装着することで、掘削工具1を得る。
【0032】
このように構成される掘削工具1は、従来の掘削工具と同様にして掘削作業に用いられる。
この掘削工具1では、切刃片7において切刃基体11とダイヤモンド製部材12とが強固に接合されている。また、切刃基体11とダイヤモンド製部材12との間に設けられる金属層13を構成する金属または合金は、従来のろう材の融点に比べて融点及び耐熱強度が非常に高いので、切刃基体11とダイヤモンド製部材12との接合構造の耐熱性が従来に比べて非常に高く、従来の掘削工具ではろう材の耐熱性の問題のために不可能であった高温の地層の掘削を行うことができる。
【0033】
ここで、高速掘削を行うと、切刃片7に極めて高い熱的機械的衝撃が付加されるようになる。切刃片7として用いられるダイヤモンド製部材12自体は著しく硬質であるが、その反面、脆いものであるために、強い衝撃を受けると微小欠けが生じやすい。ダイヤモンド部材12では、微小欠けが生じることによって磨耗の進行が著しく促進されることとなり、この結果比較的短時間で使用寿命に至ることとなる。
【0034】
本発明者らの研究により、掘削工具1における切刃部材3の装着位置の関係から、切刃部材3を構成する切刃片7には、掘削による摩耗が切刃片前面全体に亘って進行するのではなく、切刃片前面の特定個所が局部的に摩耗し、残りの部分の摩耗はこの局部的な摩耗に追従する僅かなものに過ぎないこと、並びにこの局所的な摩耗が生じる領域の大きさが切刃片前面の25面積%以下であることが判明した。
そこで、本実施の形態では、耐磨耗性に優れるダイヤモンド製部材12を、切刃片7において局所的な摩耗が生じる領域に位置させて設け、他の部分は衝撃吸収性能を有する超高合金製の切刃基体11によって構成した。これにより、切刃片7の局所的な摩耗を生じにくくしつつ、掘削時に切刃片7に加わる熱的機械的衝撃を切刃基体11によって吸収させて衝撃によるダイヤモンド製部材12の微小欠けを生じにくくすることができ、切刃片7の寿命が向上した。
【0035】
ここで、切刃片前面に占めるダイヤモンド製部材12の割合が25面積%未満になると、超硬合金製の切刃基体11が直接掘削に関与するようになり、切刃基体11の摩耗が進行してしまう。一方、前記割合が60面積%を超えると、相対的に衝撃吸収部として作用する切刃基体11の占める割合が少なくなりすぎて、高速回転操業で発生するきわめて高い熱的機械的衝撃を十分に吸収することができず、この結果特にダイヤモンド製部材12における微小欠けの発生が急激に増加するようになる。このため、切刃片7の前面に占めるダイヤモンド製部材12の割合は、25〜60面積%とすることが好ましく、30〜45面積%とすることがより好ましい。
【0036】
なお、上記実施の形態では、切刃片7を、扇形の取付座11aを有する切刃基体11と、耐熱性焼結ダイヤモンドからなる扇形のダイヤモンド製部材12とを有する構成としたが、これに限られることなく、切刃片7を構成する部材は他の任意形状とすることができる。
例えば、図5(a)に示すように、切刃片7は、単に板状の切刃基体11と板状のダイヤモンド製部材12とを金属層13を介して接合した構成としてもよい。さらに、図5(b)に示すように、ダイヤモンド製部材12は、その一部を高耐熱焼結ダイヤモンドからなる高耐熱ダイヤ部12aとし、残りの部分を通常の焼結ダイヤモンドからなる焼結ダイヤ部12bとした構成としてもよく、図5(c)に示すように、焼結ダイヤ部12b中に高耐熱ダイヤ部12aを埋め込んだ構成としてもよい。
【0037】
また、上記実施の形態では、本発明にかかる超硬合金製部材とダイヤモンド製部材との接合方法及び接合構造を、掘削工具1の切刃片7に適用した例を示したが、これに限られることなく、例えば、図6に示すように、切刃片として全体が通常の焼結ダイヤモンドまたは高耐熱ダイヤモンドによって構成される切刃片7aを用いる場合には、本発明を、切刃部材3における超硬ポスト6と切刃片7aとの接合に適用してもよい。
【0038】
また、本発明にかかる超硬合金製部材とダイヤモンド製部材との接合方法及び接合構造は、上記の例にのみ適用範囲が限定されるものではなく、超硬合金製部材とダイヤモンド製部材とが接合されるものであれば、任意のものに適用することができる。
【0039】
【発明の効果】
本発明にかかる超硬合金製部材とダイヤモンド製部材との接合方法、接合構造によれば、超硬合金製部材及びダイヤモンド製部材とが、これらの間に設けられた高融点、高耐熱強度の金属層に拡散接合されているので、従来のろう付けによる接合構造に比べて、超硬合金製部材とダイヤモンド製部材との接合構造の耐熱性が著しく向上する。
【0040】
また、本発明にかかる掘削工具の切刃片によれば、切刃片を構成する切刃基体とダイヤモンド製部材との接合部の耐熱性が著しく高められているので、従来は不可能であった高温の地層の掘削を行うことができる。
【0041】
また、本発明にかかる切刃部材によれば、切刃片とポストとの接合部の耐熱性が著しく高められているので、従来は不可能であった高温の地層の掘削を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかる掘削工具の構成を概略的に示す斜視図である。
【図2】図1に示す掘削工具を構成する切刃部材の構成を概略的に示す側面図である。
【図3】図2に示す切刃片の構成を概略的に示す斜視図である。
【図4】図3に示す切刃片の構造を示す断面図である。
【図5】本発明にかかる切刃片の他の実施形態例を示す縦断面図である。
【図6】本発明にかかる切刃部材の他の実施形態例を示す側面図である。
【符号の説明】
1 掘削工具 2 工具本体
3 切刃部材 6 超硬ポスト(超硬合金製部材)
7 切刃片 11 切刃基体(超硬合金製部材)
12 ダイヤモンド製部材 13 金属層(金属箔)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a joining method and a joining structure of a cemented carbide member and a diamond member, and a cutting piece, a cutting member, and a cutting tool of a drilling tool used for excavating a well.
[0002]
[Prior art]
Drilling tools used for drilling wells for underground resource development and investigation wells for investigating the underground environment include a plurality of tungsten carbide-based cemented carbides on the tip surface of the alloy steel tool body. Posts made of carbide (hereinafter referred to as “carbide posts”) are fixed in a predetermined arrangement by means such as brazing or shrink-fitting. An excavation tool having a structure in which a cutting piece made of a knotted diamond is directly brazed is known.
In this excavation tool, the tool body is attached to the tip of the pipe, and the tool body is rotated while applying a load in the excavation direction to the tool body via the pipe, so that the excavation is performed by the cutting blade piece provided in the tool body. Is what you do.
[0003]
Here, diamond has poor wettability and is difficult to braze with a normal brazing material. Therefore, in this drilling tool, for example, Cu (copper): 20 to 40% by mass, Ti (titanium): 0.5 to 10 The cutting edge piece is brazed to the carbide post by using an Au alloy brazing material (melting point: 940 ° C.) having a composition containing Au (gold) and unavoidable impurities, the balance being Au (gold). See, for example, Patent Document 1.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-000686
[Problems to be solved by the invention]
In recent years, in order to secure energy sources other than fossil fuels and nuclear power generation, there is an increasing demand for the development of geothermal-based energy sources such as geothermal power generation. However, in order to utilize geothermal energy, it is necessary to excavate to a high-temperature geological formation, and therefore, an excavation tool that can withstand such high temperatures is required.
In addition, fossil fuels are almost completely exhausted in the area near the ground surface where they can be easily mined, and it is necessary to excavate to a greater depth (for example, 5000 m underground) when newly mining fossil fuels. . Such deep formations are hot because of their proximity to the mantle, and excavating such high-temperature formations requires excavating tools that can withstand high temperatures.
[0006]
However, in the conventional drilling tool, the cemented carbide post and the cutting piece made of sintered diamond are joined by brazing as described above, and the heat-resistant temperature of the brazing material is not so high. When such a high-temperature stratum is excavated, there is a possibility that the brazing material for brazing the cutting piece is melted, the cutting piece is peeled off from the carbide post, or the joint is deformed.
For this reason, conventionally, it has not been possible to excavate a stratum having a very high temperature.
[0007]
The present invention has been made in view of such circumstances, and has a method of joining a cemented carbide member and a diamond member having excellent heat resistance, a joining structure, a cutting piece of a drilling tool, and a cutting member. And drilling tools.
[0008]
[Means for Solving the Problems]
The method for joining a cemented carbide member and a diamond member according to the present invention is a method for joining a cemented carbide member and a diamond member between Mo (molybdenum), Cr (chromium), and Hf (hafnium). Any one kind of metal and metal foil composed of inevitable impurities, or a metal foil composed of an alloy of two or more of these metals and inevitable impurities, sandwiching the cemented carbide member and the diamond member, Each is characterized by being diffusion bonded to the metal foil.
[0009]
The diffusion bonding between the cemented carbide member and the diamond member and the metal foil is performed under the condition that the metal foil is sandwiched between the cemented carbide member and the diamond member under an ultra-high pressure of, for example, 5 to 6 GPa. It is performed by performing an ultra-high temperature heat treatment of 151550 ° C.
Here, since Mo, Cr, and Hf constituting the metal foil are not all catalytic metals used for sintering diamond, even if the above heat treatment is performed, only a part of the metal foil is made of a cemented carbide member. The metal foil is diffused into the diamond member, and most of the metal foil remains as it is between the cemented carbide member and the diamond member to form a metal layer therebetween. In addition, since the metal or alloy constituting the metal foil is not a catalytic metal as described above, the metal or alloy diffuses only in the vicinity of the joint with the metal foil in the diamond member, and does not adversely affect the physical properties of the diamond member. .
[0010]
By performing diffusion bonding in this manner, a diffusion layer in which the components of the metal foil are diffused is formed in the vicinity of the bonding portion between the diamond member and the metal foil, and the diamond member and the metal foil are firmly connected. Joined.
Also, in the cemented carbide member, a diffusion layer in which the components of the metal foil are diffused is formed near the joint with the metal foil, so that the cemented carbide member and the metal foil are firmly joined. You.
Furthermore, since the metal or alloy composing the metal foil has a higher melting point and higher heat resistance than conventionally used brazing materials, the joining structure obtained by this joining method is a conventional joining structure by brazing. It has higher heat resistance.
[0011]
Here, the heat-shrinkage rate differs between the cemented carbide member and the diamond member, but a metal layer is formed between them, and this metal layer acts as a stress buffer, so that after the above-mentioned heat treatment, it is at room temperature. When returning to normal pressure, the stress stored in the cemented carbide member and the diamond member will be absorbed by the metal layer, and it will be difficult for the stress to concentrate on the diamond member, and cracks and the like will occur in the diamond member. It hardly occurs, and the hard metal alloy member and the diamond member hardly peel off.
[0012]
The joining structure between the cemented carbide member and the diamond member according to the present invention is such that, between the cemented carbide member and the diamond member, any one of Mo, Cr, and Hf metal and inevitable impurities A metal layer composed of an alloy of two or more of these metals and inevitable impurities is provided, and the cemented carbide member and the diamond member are respectively diffusion bonded to the metal layer. It is characterized by having.
In the joining structure between the cemented carbide member and the diamond member, the metal layer for joining the cemented carbide member and the diamond member has a higher melting point and higher heat resistance than conventionally used brazing materials. Since it is made of a metal or an alloy thereof, it has higher heat resistance than a conventional joint structure. Also, the joining strength between the cemented carbide member and the diamond member is high.
[0013]
The cutting piece of the excavating tool according to the present invention is a cutting piece attached to a post provided on the tip end surface of the tool body of the excavating tool to constitute a cutting edge of the excavating tool, and A cemented carbide cutting blade base constituting a joint, and a diamond member supported by the cutting blade base, wherein Mo, Cr, A metal layer composed of any one of Hf metal and unavoidable impurities, or a metal layer composed of an alloy of two or more of these metals and unavoidable impurities is provided; Each member is diffusion-bonded to the metal layer.
[0014]
In the cutting blade piece of the drilling tool thus configured, a metal layer is provided between the cutting blade base and the diamond member, and the cutting base and the diamond member are diffusion-bonded to the metal layer. Therefore, the bonding strength of the diamond member to the cutting blade base is extremely high.
Furthermore, since the metal or its alloy constituting the metal layer has a higher melting point and higher heat resistance than conventionally used brazing materials, this cutting edge piece is higher than the conventional cutting edge piece. Has heat resistance.
[0015]
In the cutting piece of this excavation tool, the diamond member may be made of a high heat resistant sintered diamond using magnesium carbonate (hereinafter, referred to as MgCO 3 ) as a binder.
Here, the high heat resistant sintered diamond is obtained by sintering a diamond powder under an ultrahigh pressure of 7 to 8 GPa using, for example, MgCO 3 as a binder at an ultrahigh temperature of 1800 to 2400 ° C. Things.
In this case, since the diamond member is made of high heat resistant diamond having more excellent heat resistance, the heat resistance of the cutting piece is further improved.
[0016]
A cutting blade member according to the present invention is a cutting blade member provided on a tip end surface of a tool main body of an excavating tool, and a cemented carbide post mounted on the tool main body, and mounted on the post. The drilling tool has a diamond cutting edge piece constituting a cutting edge, and between the post and the cutting edge piece, any one of Mo, Cr, and Hf metal and inevitable impurities. A metal layer made of an alloy of two or more of these metals and unavoidable impurities is provided, and the post and the cutting edge piece are each diffusion bonded to the metal layer. Features.
In the cutting blade member of the drilling tool configured as described above, the joining structure between the cemented carbide post and the diamond cutting blade piece has high heat resistance, and the joining strength is remarkably high.
[0017]
A cutting blade member according to the present invention is a cutting blade member provided on a tip end surface of a tool body of an excavating tool, and includes a post mounted on the tool main body, and a cutting device mounted on the post and cutting on the excavating tool. And a cutting edge piece constituting a blade, wherein the cutting edge piece is the cutting edge piece according to claim 3 or 4.
In the cutting blade member of the drilling tool configured as described above, a cutting piece having a high heat resistance and a remarkably high bonding strength of a bonding structure between a cemented carbide cutting blade base and a diamond member is used as a cutting blade. Can be
[0018]
The excavating tool according to the present invention is an excavating tool in which a cutting blade member having a cutting blade piece mounted on a post is mounted on a tip end surface of a tool body, and the cutting blade piece is according to claim 3 or 4. Or a cutting blade member according to claim 5 or 6 is used as the cutting blade member.
In the drilling tool configured as described above, a cutting piece having a high heat resistance and a remarkably high joining strength of a joining structure between a cemented carbide cutting edge substrate and a diamond member, or a cemented carbide post is used. Excavation is performed using a cutting blade member having a high heat resistance of a bonding structure with a diamond cutting blade piece and a remarkably high bonding strength.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present embodiment, the joining method and joining structure between a cemented carbide member and a diamond member according to the present invention are applied to a cutting blade of a drilling tool.
Here, FIG. 1 is a perspective view schematically showing a configuration of the excavating tool according to the present embodiment, and FIG. 2 is a schematic diagram showing a configuration of a cutting blade member constituting the excavating tool according to the present embodiment. FIG. 3 is a perspective view schematically showing the configuration of the cutting blade according to the present embodiment, and FIG. 4 is a cross-sectional view showing the structure of the cutting blade according to the present embodiment.
[0020]
The excavating tool 1 according to the present embodiment includes a substantially disk-shaped tool body 2 made of alloy steel or the like specified in JIS SCH415, and a plurality of cutting blade members 3 provided in a predetermined arrangement on the tip end surface of the tool body 2. have. The cutting blade member 3 is attached to the tool body 2 by means such as brazing or shrink fitting.
The cutting blade member 3 includes a cemented carbide post 6 having a columnar shape and made of cemented carbide, and a cutting blade piece 7 attached to a side of the cemented carbide post 6 facing the excavation direction by brazing or the like. In the present embodiment, cemented carbide post 6 is made of a general tungsten carbide-based cemented carbide.
[0021]
The cutting blade piece 7 has a cutting blade base 11 made of a cemented carbide which forms a joint portion with the carbide post 6, and a diamond member 12 supported by the cutting blade base 11. A metal layer 13 is provided between the substrate 11 and the diamond member 12, and the cutting blade substrate 11 and the diamond member 12 are respectively diffusion bonded to the metal layer 13.
[0022]
The cutting blade base 11 is formed in a substantially disk shape, one surface of which is a brazing surface to be brazed to the carbide post 6, and the other surface facing the one surface (that is, the surface facing the excavation direction). A cutout-shaped concave portion is formed on the (side) side, and this concave portion serves as a mounting seat 11 a for mounting the diamond member 12. The mounting seat 11a has the same shape as the outer shape of the diamond member 12, and is provided in a region of the cutting blade piece 7 where wear is likely to occur during excavation work. In the present embodiment, the mounting seat 11a has a fan shape in plan view.
The cutting blade base 11 is made of a tungsten carbide-based cemented carbide using Co (cobalt) as a binder, that is, a common cemented carbide. In the present embodiment, the cutting edge substrate 11 is made of a cemented carbide containing 10% by mass of Co as a binder and the remainder being WC (tungsten carbide) and unavoidable impurities. Since the cemented carbide has high strength and high toughness, the cutting blade base 11 made of the ultra-high alloy acts as a shock absorber for absorbing the thermal and mechanical shock applied during the excavation work at the cutting blade piece 7. .
[0023]
The diamond member 12 is provided in an area of the cutting blade piece 7 where wear is likely to occur during excavation work. In the present embodiment, the ratio of the diamond member 12 to the front surface of the cutting blade 7 is set to 25 to 60 area%.
Here, the diamond member 12 is composed of a normal sintered diamond alone or a single highly heat-resistant sintered diamond having more excellent heat resistance. Or a composite of In the present embodiment, the diamond member 12 is composed of a single piece of heat-resistant sintered diamond alone.
[0024]
The metal layer 13 provided between the cutting edge substrate 11 and the diamond member 12 is made of any one of Mo, Cr, and Hf and inevitable impurities, or an alloy of two or more of these metals. It consists of unavoidable impurities. In the present embodiment, the metal layer 13 is made of a foil made of Mo, and the thickness D is set to 0.02 to 0.1 mm.
Here, Mo, Cr and Hf are all metals having extremely high melting points (Mo has a melting point of 2622 ° C., Cr has a melting point of 1905 ° C., and Hf has a melting point of 2207 ° C.), and has excellent heat resistance. ing. Similarly, these alloys also have a very high melting point and excellent heat resistance.
[0025]
The cutting blade piece 7 configured as described above is created as follows.
First, the cutting blade base 11 and the diamond member 12 are manufactured in desired shapes.
The cutting blade base 11 is manufactured in the same manner as a normal cemented carbide product. For example, by forming and sintering a raw material powder of a cemented carbide to form a disc-shaped cemented carbide chip, and performing cutting or the like on one surface side of the cemented carbide chip to form the mounting seat 11a, It is obtained by molding and sintering a raw material powder of a cemented carbide into a disk shape having a mounting seat 11a.
[0026]
The diamond member 12 is produced using, as raw material powders, diamond powder having an average particle diameter of 10 μm and a purity of 99.9% or more, and MgCO 3 powder having an average particle diameter of 10 μm and a purity of 95% or more.
First, MgCO 3 powder is press-molded at a pressure of 100 MPa to obtain a green compact having a desired shape. Subsequently, the green compact is charged into a Ta (tantalum) capsule, and then the diamond powder is filled on the green compact in the capsule.
In this state, by performing an ultra high pressure sintering was charged in a (carbide sintering device used in the conventional sintered diamond fabrication) capsule belt type super high pressure sintering apparatus, 4.0 wt% of MgCO 3 To obtain a block of sintered diamond.
In the present embodiment, the ultra-high pressure sintering is performed by heating to 2250 ° C. and maintaining the pressure for 30 minutes while applying a pressure of 7.7 Gpa.
Then, the block of the sintered diamond is polished with a diamond grindstone to be roughly shaped, and then a diamond piece having a desired shape is further cut out by laser processing to obtain the diamond member 12.
[0027]
Subsequently, a metal foil made of any one of Mo, Cr, and Hf and an unavoidable impurity, or a metal foil between them, between the cutting blade base 11 and the diamond member 12 obtained as described above. With a metal foil (having a thickness of 0.02 to 0.1 mm) made of an alloy of two or more metals and unavoidable impurities, the diamond member 12 is fitted to the mounting seat 11a of the cutting blade base 11. Put in.
Further, the cutting blade base body 11, the metal foil, and the diamond member 12 temporarily assembled as described above are loaded into a belt-type ultra-high pressure sintering apparatus, subjected to an ultra-high temperature and high pressure heat treatment, and these members are joined. The cutting blade piece 7 according to the present invention is obtained by being integrated. In the present embodiment, the heat treatment at the ultra-high temperature and high pressure is performed by heating to 1500 ° C. under a pressure of 5.5 GPa and holding for 30 minutes.
[0028]
By this heat treatment, the components of the metal foil diffuse into the cutting blade base 11 and the diamond member 12, respectively, and the components constituting the metal foil diffuse near the interface with the metal foil in the cutting blade base 11 and the diamond member 12. Thus, the super-high-pressure heat melting diffusion layers S1 and S2 are formed.
Here, since Mo, Cr, and Hf constituting the metal foil are not all catalytic metals used for sintering diamond, only a part of the metal foil is subjected to the cutting edge substrate 11 and the diamond even if the above heat treatment is performed. Most of the metal foil remains as it is between the cutting edge substrate 11 and the diamond member 12 to form the metal layer 13 therebetween. In addition, since the metal or alloy constituting the metal foil is not a catalytic metal as described above, the metal or alloy diffuses only in the vicinity of the joint with the metal foil in the diamond member 12, which adversely affects the physical properties of the diamond member 12. Do not give.
[0029]
Among the ultrahigh-pressure heat-fusion diffusion layers S1 and S2, the ultrahigh-pressure heat-fusion diffusion layer S1 formed on the cutting edge base 11 extends from the joint surface with the metal layer 13 to a depth of 0.1 to 0.5 mm. The ultra-high pressure heat melting diffusion layer S2 formed on the diamond member 12 is formed over a depth of 0.01 to 0.1 mm from a bonding surface with the metal layer 13.
Due to the presence of the ultrahigh-pressure heat-melting diffusion layer, the cutting edge substrate 11 and the diamond member 12 are respectively strongly bonded to the metal layer 13.
The state of the ultrahigh-pressure heat-melting diffusion layers S1 and S2 and the formation range thereof can be examined by observing the structure using a metallographic microscope.
[0030]
Here, the cutting blade base 11 and the diamond member 12 have different heat shrinkage rates, but a metal layer 13 is formed between them, and since the metal layer 13 acts as a stress buffer, When returning to normal temperature and normal pressure later, the stress stored in the cutting blade base 11 and the diamond member 12 is absorbed by the metal layer 13, so that stress is less likely to concentrate on the diamond member 12 and the diamond member Cracks and the like are not easily generated in the cutting blade base 12 and the diamond member 12 is hardly separated from the cutting blade base 11.
[0031]
The cutting blade piece 7 thus obtained is brazed to the carbide post 6 to form the cutting blade member 3. The cutting tool 3 is mounted on the tool body 2 to obtain the excavating tool 1.
[0032]
The excavating tool 1 thus configured is used for excavating work in the same manner as a conventional excavating tool.
In this excavating tool 1, the cutting blade base 11 and the diamond member 12 are firmly joined at the cutting blade piece 7. Further, the metal or alloy constituting the metal layer 13 provided between the cutting blade base 11 and the diamond member 12 has a very high melting point and heat resistance as compared with the melting point of the conventional brazing material. The heat resistance of the joint structure between the diamond member 11 and the diamond member 12 is much higher than in the past, and excavation of a high-temperature formation that was impossible with a conventional drilling tool due to the problem of the heat resistance of the brazing material. Can be.
[0033]
Here, when high-speed excavation is performed, an extremely high thermal mechanical impact is applied to the cutting blade piece 7. The diamond member 12 itself used as the cutting blade piece 7 is extremely hard, but on the other hand, is brittle, so that a minute chip is likely to be generated when it receives a strong impact. In the diamond member 12, the progress of abrasion is remarkably promoted due to the generation of a minute chip, and as a result, the service life is reached in a relatively short time.
[0034]
According to the study of the present inventors, in the cutting tool 7, the wear caused by excavation progresses over the entire front surface of the cutting tool from the relation of the mounting position of the cutting tool 3 in the cutting tool 1. Instead, certain areas of the front face of the cutting edge are worn locally, and the remaining wear is only a small amount that follows this localized wear and the area where this localized wear occurs. Was found to be 25% by area or less of the front surface of the cutting blade piece.
Therefore, in the present embodiment, the diamond member 12 having excellent wear resistance is provided in a region where local wear occurs in the cutting blade piece 7, and the other portion is made of an ultra-high alloy having shock absorbing performance. It is constituted by a cutting blade base 11 made of. Thereby, while making it difficult for local wear of the cutting blade 7 to occur, the thermal mechanical shock applied to the cutting blade 7 at the time of excavation is absorbed by the cutting blade base 11, and the minute chipping of the diamond member 12 due to the shock is prevented. As a result, the life of the cutting blade piece 7 was improved.
[0035]
Here, when the ratio of the diamond member 12 to the front surface of the cutting edge piece is less than 25% by area, the cutting edge substrate 11 made of cemented carbide directly participates in excavation, and wear of the cutting edge substrate 11 progresses. Resulting in. On the other hand, when the ratio exceeds 60 area%, the ratio occupied by the cutting blade base 11 acting as the shock absorbing portion becomes relatively small, and the extremely high thermal mechanical shock generated in the high-speed rotation operation is sufficiently reduced. It cannot be absorbed, and as a result, the occurrence of minute cracks particularly in the diamond member 12 rapidly increases. For this reason, the ratio of the diamond member 12 occupying the front surface of the cutting piece 7 is preferably 25 to 60 area%, and more preferably 30 to 45 area%.
[0036]
In the above-described embodiment, the cutting blade piece 7 includes the cutting blade base 11 having the fan-shaped mounting seat 11a and the fan-shaped diamond member 12 made of heat-resistant sintered diamond. Without being limited, the member constituting the cutting blade piece 7 can have another arbitrary shape.
For example, as shown in FIG. 5A, the cutting blade piece 7 may have a configuration in which a plate-shaped cutting blade base 11 and a plate-shaped diamond member 12 are simply joined via a metal layer 13. Further, as shown in FIG. 5 (b), a part of the diamond member 12 is a high heat resistant diamond part 12a made of high heat resistant sintered diamond, and the remaining part is a sintered diamond made of normal sintered diamond. The structure may be a part 12b, or a structure in which a high heat resistant diamond part 12a is embedded in a sintered diamond part 12b as shown in FIG.
[0037]
Further, in the above-described embodiment, an example in which the joining method and the joining structure of the cemented carbide member and the diamond member according to the present invention are applied to the cutting blade piece 7 of the excavating tool 1 has been described. For example, as shown in FIG. 6, when the cutting piece 7a entirely made of normal sintered diamond or high heat-resistant diamond is used as the cutting piece as shown in FIG. May be applied to the joining between the cemented carbide post 6 and the cutting blade piece 7a.
[0038]
Further, the joining method and the joining structure of the cemented carbide member and the diamond member according to the present invention are not limited only to the above examples, and the cemented carbide member and the diamond member are not limited to the above examples. Any object can be applied as long as it can be joined.
[0039]
【The invention's effect】
According to the joining method and the joining structure of the cemented carbide member and the diamond member according to the present invention, the cemented carbide member and the diamond member have a high melting point and a high heat resistance provided between them. Since it is diffusion bonded to the metal layer, the heat resistance of the bonding structure between the cemented carbide member and the diamond member is significantly improved as compared with the conventional bonding structure by brazing.
[0040]
Further, according to the cutting blade of the excavating tool according to the present invention, the heat resistance of the joining portion between the cutting blade base and the diamond member constituting the cutting blade is remarkably increased, so that it is impossible in the past. Excavation of hot geological formations.
[0041]
Further, according to the cutting blade member of the present invention, since the heat resistance of the joint between the cutting blade piece and the post is remarkably enhanced, it is possible to excavate a high-temperature stratum which was conventionally impossible. .
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing a configuration of a drilling tool according to an embodiment of the present invention.
FIG. 2 is a side view schematically showing a configuration of a cutting blade member constituting the excavating tool shown in FIG.
FIG. 3 is a perspective view schematically showing a configuration of a cutting blade piece shown in FIG. 2;
FIG. 4 is a sectional view showing a structure of a cutting blade piece shown in FIG. 3;
FIG. 5 is a longitudinal sectional view showing another embodiment of the cutting blade piece according to the present invention.
FIG. 6 is a side view showing another embodiment of the cutting blade member according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drilling tool 2 Tool main body 3 Cutting blade member 6 Carbide post (member made of cemented carbide)
7 Cutting edge piece 11 Cutting edge base (Carbide alloy member)
12 Diamond member 13 Metal layer (metal foil)

Claims (7)

超硬合金製部材とダイヤモンド製部材との間に、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属箔、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属箔を挟み込み、
前記超硬合金製部材及び前記ダイヤモンド製部材を、それぞれ前記金属箔と拡散接合することを特徴とする超硬合金製部材とダイヤモンド製部材との接合方法。
A metal foil made of any one of Mo, Cr, and Hf and an unavoidable impurity, or an alloy of two or more of these metals is inevitable between a cemented carbide member and a diamond member. Sandwich metal foil made of impurities,
A method for joining a cemented carbide member and a diamond member, wherein the cemented carbide member and the diamond member are each diffusion bonded to the metal foil.
超硬合金製部材とダイヤモンド製部材との間に、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属層、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属層が設けられ、
前記超硬合金製部材及び前記ダイヤモンド製部材が、それぞれ前記金属層と拡散接合されていることを特徴とする超硬合金製部材とダイヤモンド製部材との接合構造。
A metal layer made of any one of Mo, Cr, and Hf and an unavoidable impurity, or an alloy of an alloy of two or more of these metals, between a cemented carbide member and a diamond member. A metal layer made of impurities is provided,
A joining structure between a cemented carbide member and a diamond member, wherein the cemented carbide member and the diamond member are each diffusion bonded to the metal layer.
掘削工具の工具本体の先端面に設けられるポストに対して装着されて前記掘削工具における切刃を構成する切刃片であって、
前記ポストとの接合部を構成する超硬合金製の切刃基体と、
該切刃基体に支持されるダイヤモンド製部材とを有し、
前記切刃基体と前記ダイヤモンド製部材との間には、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属層、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属層が設けられ、
前記切刃基体及び前記ダイヤモンド製部材が、それぞれ前記金属層と拡散接合されていることを特徴とする掘削工具の切刃片。
A cutting blade piece that is mounted on a post provided on a tip end surface of a tool body of the drilling tool and constitutes a cutting blade in the drilling tool,
A cemented carbide cutting blade base constituting a joint with the post,
Having a diamond member supported by the cutting blade substrate,
A metal layer composed of any one of Mo, Cr, and Hf and an unavoidable impurity, or an alloy of two or more of these metals, between the cutting blade base and the diamond member. A metal layer made of unavoidable impurities is provided,
The cutting blade piece of a drilling tool, wherein the cutting blade base and the diamond member are each diffusion bonded to the metal layer.
前記ダイヤモンド製部材が、結合材として炭酸マグネシウムを用いた高耐熱性焼結ダイヤモンドによって構成されていることを特徴とする請求項3記載の掘削工具の切刃片。The cutting edge piece of a drilling tool according to claim 3, wherein the diamond member is made of a high heat resistant sintered diamond using magnesium carbonate as a binder. 掘削工具の工具本体の先端面に設けられる切刃部材であって、
前記工具本体に装着される超硬合金製のポストと、
該ポストに対して装着されて前記掘削工具における切刃を構成するダイヤモンド製の切刃片とを有し、
前記ポストと前記切刃片との間には、Mo、Cr、Hfのうちのいずれか一種の金属と不可避不純物とからなる金属層、もしくはこれらのうちの二種以上の金属の合金と不可避不純物とからなる金属層が設けられ、
前記ポスト及び前記切刃片が、それぞれ前記金属層と拡散接合されていることを特徴とする掘削工具の切刃部材。
A cutting blade member provided on a tip surface of a tool body of the excavating tool,
A cemented carbide post mounted on the tool body,
Having a diamond cutting blade piece mounted on the post and constituting a cutting blade in the excavating tool,
A metal layer composed of any one of Mo, Cr, and Hf and inevitable impurities, or an alloy of two or more of these metals and inevitable impurities is provided between the post and the cutting blade. A metal layer consisting of
The cutting member of a drilling tool, wherein the post and the cutting piece are respectively diffusion bonded to the metal layer.
掘削工具の工具本体の先端面に設けられる切刃部材であって、
前記工具本体に装着されるポストと、
該ポストに対して装着されて前記掘削工具における切刃を構成する切刃片とを有しており、
該切刃片が、請求項3または4に記載の切刃片とされていることを特徴とする掘削工具の切刃部材。
A cutting blade member provided on a tip surface of a tool body of the excavating tool,
A post attached to the tool body,
A cutting edge piece that is attached to the post and constitutes a cutting edge of the excavating tool,
A cutting blade member for an excavating tool, wherein the cutting blade piece is the cutting blade piece according to claim 3.
工具本体の先端面に、切刃片をポストに装着してなる切刃部材が装着される掘削工具であって、
前記切刃片として請求項3または4に記載の切刃片を用いるか、もしくは前記切刃部材として請求項5または6に記載の切刃部材を用いることを特徴とする掘削工具。
An excavation tool to which a cutting blade member formed by mounting a cutting blade piece to a post is mounted on a tip surface of a tool body,
An excavating tool, wherein the cutting edge piece according to claim 3 or 4 is used as the cutting edge piece, or the cutting edge member according to claim 5 or 6 is used as the cutting edge member.
JP2003088132A 2002-07-26 2003-03-27 Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool Pending JP2004291039A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2003088132A JP2004291039A (en) 2003-03-27 2003-03-27 Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
US10/628,134 US7261753B2 (en) 2002-07-26 2003-07-25 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
KR1020030051526A KR101021461B1 (en) 2002-07-26 2003-07-25 Bonding structure and bonding method for cemented carbide and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
CNB031584020A CN100358670C (en) 2002-07-26 2003-07-26 Fusion structure and method for hard alloy and diamond piece and drilling tool and cutting piece
CN 200710165086 CN101200998B (en) 2002-07-26 2003-07-26 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
DE60334267T DE60334267D1 (en) 2002-07-26 2003-07-28 Connection structure and connection method for cemented carbide body and diamond body, cutting tip and cutting body for drilling tool and the drilling tool produced
EP03016598A EP1384793B1 (en) 2002-07-26 2003-07-28 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
AT03016598T ATE482297T1 (en) 2002-07-26 2003-07-28 JOINING STRUCTURE AND JOINING METHOD FOR SINTERED CARBIDE BODY AND DIAMOND BODY, CUTTING TIP AND CUTTING BODY FOR DRILLING TOOL AND THE DRILLING TOOL PRODUCED
US11/691,846 US7621974B2 (en) 2002-07-26 2007-03-27 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US12/575,074 US8147573B2 (en) 2002-07-26 2009-10-07 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US13/370,135 US8728184B2 (en) 2002-07-26 2012-02-09 Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003088132A JP2004291039A (en) 2003-03-27 2003-03-27 Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool

Publications (1)

Publication Number Publication Date
JP2004291039A true JP2004291039A (en) 2004-10-21

Family

ID=33402340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003088132A Pending JP2004291039A (en) 2002-07-26 2003-03-27 Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool

Country Status (1)

Country Link
JP (1) JP2004291039A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152827A (en) * 2012-03-08 2012-08-16 National Institute Of Advanced Industrial Science & Technology Joined body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152827A (en) * 2012-03-08 2012-08-16 National Institute Of Advanced Industrial Science & Technology Joined body

Similar Documents

Publication Publication Date Title
KR101021461B1 (en) Bonding structure and bonding method for cemented carbide and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
US8056650B2 (en) Thermally stable ultra-hard material compact construction
US7350601B2 (en) Cutting elements formed from ultra hard materials having an enhanced construction
US8020643B2 (en) Ultra-hard constructions with enhanced second phase
JP2008127616A (en) Laminated cemented carbide tip and its manufacturing method
JP7335959B2 (en) DISC CUTTER FOR TUNNEL BORING MACHINE AND METHOD FOR MANUFACTURING THE SAME
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
JP2004291039A (en) Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
JP2004291040A (en) Bonding method between cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
JP2008144541A (en) Drilling bit
JP4851029B2 (en) Super abrasive tool with sintered super abrasive tip
JP2004291038A (en) Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
JP2004291037A (en) Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
US11933107B2 (en) Disc cutter for undercutting apparatus and a method of manufacture thereof
JP4552493B2 (en) Method for manufacturing cutting edge insert
JP4466177B2 (en) Method for manufacturing cutting edge insert
JP2006266008A (en) Manufacturing method for excavating tool, and excavating tool
JP2001241285A (en) Excavation tool having cutting blade piece with excellent high-temperature joint strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070815

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20071009

Free format text: JAPANESE INTERMEDIATE CODE: A02