JP2006266008A - Manufacturing method for excavating tool, and excavating tool - Google Patents

Manufacturing method for excavating tool, and excavating tool Download PDF

Info

Publication number
JP2006266008A
JP2006266008A JP2005088740A JP2005088740A JP2006266008A JP 2006266008 A JP2006266008 A JP 2006266008A JP 2005088740 A JP2005088740 A JP 2005088740A JP 2005088740 A JP2005088740 A JP 2005088740A JP 2006266008 A JP2006266008 A JP 2006266008A
Authority
JP
Japan
Prior art keywords
cutter
tool
cutting blade
blade base
brazing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005088740A
Other languages
Japanese (ja)
Other versions
JP4604182B2 (en
Inventor
Eko Wardoyo Akhmadi
アフマディ・エコ・ワルドヨ
Kazuo Yamamoto
和男 山本
Itsuro Tajima
逸郎 田嶋
Hirokazu Karasawa
廣和 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Materials Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Materials Corp
Priority to JP2005088740A priority Critical patent/JP4604182B2/en
Publication of JP2006266008A publication Critical patent/JP2006266008A/en
Application granted granted Critical
Publication of JP4604182B2 publication Critical patent/JP4604182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for an excavating tool, which enables a cutting-edge tip to be firmly fixed to a mounting part of a tool body, even if a cutter, constituted of a diamond-sintered body, is arranged in a part on the side of the outer periphery of the top surface of the cutting-edge tip, and to provide the excavating tool. <P>SOLUTION: In this manufacturing method for the excavating tool, wherein a plurality of cutting-edge tips 11 formed like a circular flat plate are mounted on the mounting part 3 provided on the leading end surface of the tool body, the cutting-edge tip 11 comprises a cutting-edge base body 12 and the cutter 14; the top-surface side of the cutter 14 serves as a cutter body 16 which comprises the diamond-sintered body; the undersurface side thereof serves as a seating part 15 which comprises cemented carbide; and the ratio of the outer periphery of the top surface of the cutting-edge tip 11 occupied by the cutter 14 is set in a range of ≥20% and <50%. The manufacturing method comprises a first jointing step of making the cutting-edge base body 12 and the mounting part 3 brazed to each other, and a second jointing step of making the cutter 14 and the cutting-edge base body 12 brazed to each other, after the first jointing step. The brazing temperature of the first jointing step is set higher than that of the second jointing step. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、坑井などの掘削に使用される掘削工具の製造方法及び掘削工具に関するものである。   The present invention relates to a method for manufacturing an excavation tool used for excavation of a well or the like and an excavation tool.

油井その他の坑井などの掘削の際に用いられる掘削工具として、合金鋼で構成され円柱状に形成された工具本体の先端側に、タングステンカーバイト基超硬合金で構成されたポスト(以下、超硬ポストという)が所定の配列でろう付けや焼き嵌めなどによって固定され、これら超硬ポストのそれぞれに、ダイヤモンド焼結体で構成されたカッタを有する切刃チップが装着されたものや、工具本体の先端に設けられたタングステンカーバイド合金製のマトリックス部に、上記切刃チップを直接装着したものが知られている。
上記の掘削工具は、掘削機械に取り付けられ、モーター等の回転駆動体に接続され、工具本体の回転軸回りに回転されるとともに、掘削工具先端側の被掘削材中に送り込まれることによって、工具本体先端に装着された切刃チップで被掘削材である岩盤等を掘削して穿孔加工するものである。
As a drilling tool used for drilling oil wells and other wells, a post made of tungsten carbide base cemented carbide (hereinafter referred to as a tungsten carbide based cemented carbide) Carbide posts) are fixed by brazing or shrink fitting in a predetermined arrangement, and each of these carbide posts is equipped with a cutting edge tip having a cutter composed of a diamond sintered body, or a tool It is known that the cutting edge tip is directly attached to a matrix part made of tungsten carbide alloy provided at the tip of the main body.
The above excavation tool is attached to an excavation machine, connected to a rotary drive body such as a motor, rotated around the rotation axis of the tool main body, and fed into the excavation material on the tip side of the excavation tool, whereby the tool Drilling is performed by excavating a rock or the like to be excavated with a cutting edge tip attached to the tip of the main body.

一般に、上記の掘削工具の先端部にろう付けされる切刃チップは、掘削する際の衝撃荷重に対応するために、略円形平板状に形成されており、切刃チップの上面外周がすべてPCD(多結晶ダイヤモンド)等のダイヤモンド焼結体で構成されているものが広く使用されている。このような切刃チップが超硬ポストやマトリックス部にろう付けされた掘削工具では、切刃チップの上面外周のうちの一部のみが掘削に使用され、ダイヤモンド焼結体の未使用部分が存在してしまう。   In general, the cutting edge tip brazed to the tip of the above-mentioned excavation tool is formed in a substantially circular flat plate shape in order to cope with an impact load when excavating, and the outer periphery of the upper surface of the cutting edge tip is entirely PCD. Those composed of a diamond sintered body such as (polycrystalline diamond) are widely used. In an excavation tool in which such a cutting edge tip is brazed to a carbide post or matrix part, only a part of the outer periphery of the upper surface of the cutting edge tip is used for excavation, and there is an unused portion of a sintered diamond body. Resulting in.

ダイヤモンド焼結体は、超高圧で焼結することにより製造されるためにコストが非常に高く、未使用部分のダイヤモンド焼結体を再利用することが多い。上記の掘削工具では、一度ろう付けされた切刃チップを取り外し、回転させ、再度ろう付けして使用しているが、工具本体をろう材が溶融する温度まで加熱する必要があり、切刃チップの着脱に多大な時間と労力が必要であった。また、一度使用した工具本体や超硬ポストを再利用するため、この工具本体や超硬ポストが掘削作業時に変形や破損等した場合には、切刃チップを精度良くろう付けできず、再使用できなくなるといった問題があった。   Since the diamond sintered body is manufactured by sintering at an ultrahigh pressure, the cost is very high, and the unused diamond sintered body is often reused. In the above excavation tool, the blade tip once brazed is removed, rotated and brazed again, but the tool body must be heated to a temperature at which the brazing material melts. It took a lot of time and effort to attach and detach. In addition, since the tool body and carbide post that have been used once are reused, if the tool body or carbide post is deformed or damaged during excavation work, the cutting edge tip cannot be brazed accurately and reused. There was a problem that it was impossible.

上記のような状況から、非特許文献1では、Co金属を焼結助剤とする円形平板状をなすダイヤモンド焼結体から構成される切刃チップを装着した掘削工具の製作コストの低減を図るため、例えば中心角120°の扇形ダイヤモンド焼結体を有する切刃チップをマトリックス部に直接接合した掘削工具が開示されている。
このような切刃チップが装着された掘削工具では、ダイヤモンド焼結体の未使用部分がなくなるとともに、切刃チップを着脱して使用する必要がないので、切刃チップの着脱作業をなくすことができる。また、ダイヤモンド焼結体の使用量が少ないので、この切刃チップの製造コストを低減することができる。
T.Ohno, et al.“Cost reduction of polycrystalline diamond compact bits through improved durability” Geothermics, vol.31, pp.245-262,2002
In view of the above situation, Non-Patent Document 1 aims to reduce the manufacturing cost of a drilling tool equipped with a cutting edge tip composed of a diamond sintered body having a circular flat plate shape using Co metal as a sintering aid. Therefore, for example, a drilling tool is disclosed in which a cutting edge tip having a sector diamond sintered body having a central angle of 120 ° is directly joined to a matrix portion.
In an excavation tool equipped with such a cutting edge tip, the unused portion of the diamond sintered body is eliminated, and it is not necessary to attach and detach the cutting edge tip. it can. Moreover, since the usage-amount of a diamond sintered compact is small, the manufacturing cost of this cutting-edge chip | tip can be reduced.
T. Ohno, et al. “Cost reduction of compressing diamond compact bits through improved durability” Geothermics, vol.31, pp.245-262,2002

ところで、焼結助剤としてCoを用いた一般ダイヤモンド焼結体は、5〜6GPaの高圧下で、1500℃で30分保持の熱処理を施して焼結したもので製造コストが高いため、その高コストを相殺できる石油井等の掘削に専ら使用されている。
上記の一般ダイヤモンド焼結体によってカッタが構成されていた場合には、ダイヤモンド焼結体が800℃で劣化して、その硬度が著しく低下してしまうので、ろう付け温度を800℃以下とする必要がある。
By the way, a general diamond sintered body using Co as a sintering aid is sintered by applying a heat treatment held at 1500 ° C. for 30 minutes under a high pressure of 5 to 6 GPa. Used exclusively for drilling oil wells that can offset costs.
When the cutter is composed of the above general diamond sintered body, the diamond sintered body deteriorates at 800 ° C. and its hardness is remarkably lowered, so the brazing temperature must be 800 ° C. or lower. There is.

一般に、高融点のろう材は低融点のろう材に比べて接合強度が高いため、切刃チップと超硬ポストあるいはマトリックス部との接合強度は、ろう付け温度が高いほど高くなり、ろう付け温度が低いほど低くなってしまうので、掘削抵抗によって切刃チップの脱落が生じやすいといった問題があった。
また、扇形のカッタ自体を直接超硬ポストやマトリックス部にろう付けした場合には、接合面積が小さいため、強固に接合することができず、カッタが脱落及び破損してしまい、掘削工具として使用できなくなるといった問題があった。
このような状況から、一般ダイヤモンド焼結体でカッタを構成した場合には、上面外周一部分をカッタとした切刃チップを装着した掘削工具を安定して提供できないといった問題があった。
In general, since a high melting point brazing material has a higher bonding strength than a low melting point brazing material, the bonding strength between the cutting edge tip and the carbide post or the matrix portion increases as the brazing temperature increases. The lower the value, the lower the value, so there was a problem that the cutting edge tip was likely to fall off due to excavation resistance.
Also, when the fan-shaped cutter itself is brazed directly to a carbide post or matrix part, the joining area is small, so it cannot be firmly joined, and the cutter will fall off and be damaged and used as a drilling tool. There was a problem that it was impossible.
From such a situation, when a cutter is formed of a general diamond sintered body, there has been a problem that it is not possible to stably provide an excavation tool equipped with a cutting edge tip with a part of the outer periphery of the upper surface as a cutter.

この発明は、上述した事情に鑑みてなされたものであって、上面外周側一部分にダイヤモンド焼結体で構成されたカッタを配置した切刃チップであっても、工具本体の取付部に強固に固定できる掘削工具の製造方法及び掘削工具を提供することを目的とするものである。   The present invention has been made in view of the above-described circumstances, and even a cutting edge chip in which a cutter made of a diamond sintered body is arranged on a part of the outer peripheral side of the upper surface is firmly attached to the attachment portion of the tool body. An object of the present invention is to provide a method of manufacturing a drilling tool that can be fixed and a drilling tool.

上記目的を達成するために、本発明は以下の手段を提案している。
請求項1記載の掘削工具の製造方法は、円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具の製造方法であって、前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が 20%以上50%未満とされており、前記切刃基体と前記取付部とがろう付けされる第1接合工程と、該第1接合工程の後に、前記カッタと前記切刃基体とがろう付けされる第2接合工程とを有し、前記第1接合工程におけるろう付け温度が、前記第2接合工程のろう付け温度よりも高くされていることを特徴とする。
In order to achieve the above object, the present invention proposes the following means.
The manufacturing method of an excavation tool according to claim 1 has a cylindrical tool body, and a cutting edge tip formed in a circular flat plate shape is attached to a tip portion of the tool body. A method for manufacturing a drilling tool, wherein a plurality of tools are mounted in such a manner that the surfaces cross each other in the rotational direction, and the workpiece is excavated by the cutting blade tip. A blade base and a cutter supported by a recess formed in a part of the outer peripheral side of the upper surface of the cutting blade base, the upper surface side of the cutter being a cutter body made of a diamond sintered body, and the lower surface side being a cemented carbide And the ratio of the cutter to the outer periphery of the upper surface of the cutting edge tip is 20% or more and less than 50%, and the cutting blade base and the mounting portion are brazed. One joining step and after the first joining step A second joining step in which the cutter and the cutting blade base are brazed, and a brazing temperature in the first joining step is higher than a brazing temperature in the second joining step. It is characterized by.

上記の構成の掘削工具の製造方法では、切刃基体と工具本体の取付部とがろう付けされる第1接合工程と、この第1接合工程の後に切刃基体とカッタとを接合する第2接合工程とを有しているので、第1接合工程ではダイヤモンド焼結体の劣化温度を越える温度でろう付けできる。また、カッタの下面側に超硬合金からなる着座部が設けられているので、第2接合工程では、切刃基体とカッタとの接合が同じ超硬合金同士となる。   In the excavation tool manufacturing method having the above-described configuration, a first joining step in which the cutting blade base and the attachment portion of the tool body are brazed, and a second joining step in which the cutting blade base and the cutter are joined after the first joining step. In the first joining step, brazing can be performed at a temperature exceeding the deterioration temperature of the diamond sintered body. Moreover, since the seat part which consists of a cemented carbide is provided in the lower surface side of the cutter, in the 2nd joining process, joining of a cutting blade base | substrate and a cutter turns into the same cemented carbide.

請求項2に記載の掘削工具の製造方法は、前記第1接合工程のろう付け温度が800℃以上1000℃以下とされ、前記第2接合工程のろう付け温度が600℃以上800℃以下とされていることを特徴とする。
上記の構成の掘削工具の製造方法では、第1接合工程のろう付け温度が800℃以上とされているので、切刃基体と工具本体とを強固に固定できる。また、第2接合工程のろう付け温度が800℃以下とされているので、カッタ本体が一般ダイヤモンド焼結体で構成されている場合でも、カッタ本体が劣化することを防止できる。
In the method for manufacturing an excavating tool according to claim 2, the brazing temperature in the first joining step is set to 800 ° C. or more and 1000 ° C. or less, and the brazing temperature in the second joining step is set to 600 ° C. or more and 800 ° C. or less. It is characterized by.
In the excavation tool manufacturing method having the above configuration, the brazing temperature in the first joining step is set to 800 ° C. or higher, so that the cutting blade base and the tool body can be firmly fixed. Moreover, since the brazing temperature in the second joining step is set to 800 ° C. or lower, it is possible to prevent the cutter body from deteriorating even when the cutter body is made of a general diamond sintered body.

請求項3に記載の掘削工具は、円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具であって、前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が20%以上50%未満とされており、前記切刃基体と前記取付部との間に第1ろう材層が形成されるとともに、前記カッタと前記切刃基体との間に第2ろう材層が形成され、前記第1ろう材層が、前記第2ろう材層を構成するろう材よりも高い融点を有するろう材で構成されていることを特徴とする。   The excavation tool according to claim 3 has a cylindrical tool main body, and a cutting edge tip formed in a circular flat plate shape on a mounting portion provided on a tip surface of the tool main body is a rotation direction of the tool main body. A drilling tool for drilling a work material with the cutting edge tip, the cutting edge tip comprising a cemented carbide cutting blade base having a circular flat plate shape, A cutter supported by a recess formed in a part of the outer peripheral side of the upper surface of the cutting blade base, the upper surface side of the cutter is a cutter body made of a diamond sintered body, and the lower surface side is a seating portion made of cemented carbide. In addition, the ratio of the cutter to the outer periphery of the upper surface of the cutting blade tip is 20% or more and less than 50%, and a first brazing material layer is formed between the cutting blade base and the mounting portion. And between the cutter and the cutting blade base Second brazing material layer is formed, the first brazing material layer, characterized in that it is constituted by a brazing material having a melting point higher than the brazing material constituting the second brazing material layer.

上記の構成の掘削工具は、第1ろう材層が第2ろう材層よりも高い融点を有するろう材で構成されているので、第2ろう材層を形成する際に、第1ろう材層が溶融するおそれがない。また、カッタの下面側に超硬合金からなる着座部が設けられているので、切刃基体とカッタとの接合が同じ超硬合金同士となる。   Since the first brazing material layer is made of a brazing material having a melting point higher than that of the second brazing material layer, the first brazing material layer is formed when forming the second brazing material layer. There is no risk of melting. Moreover, since the seat part which consists of a cemented carbide is provided in the lower surface side of a cutter, joining of a cutting blade base | substrate and a cutter becomes the same cemented carbide.

請求項4に記載の掘削工具において、前記第1ろう材層は、融点が750℃以上900℃以下のろう材で構成され、前記第2ろう材層は、融点が500℃以上700℃以下のろう材で構成されたことを特徴とする。
上記の構成の掘削工具は、第1ろう材層が750℃以上の融点を有するろう材で構成され、第2ろう材層が700℃以下の融点を有するろう材で構成されているので、第2ろう材層を形成する際に、第1ろう材層が溶融するおそれがない。
The excavation tool according to claim 4, wherein the first brazing material layer is composed of a brazing material having a melting point of 750 ° C or higher and 900 ° C or lower, and the second brazing material layer has a melting point of 500 ° C or higher and 700 ° C or lower. It is composed of brazing material.
In the excavation tool having the above-described configuration, the first brazing material layer is composed of a brazing material having a melting point of 750 ° C. or more, and the second brazing material layer is composed of a brazing material having a melting point of 700 ° C. or less. When forming the two brazing filler metal layers, there is no possibility that the first brazing filler metal layer melts.

請求項1に記載の発明によれば、第1接合工程においてダイヤモンド焼結体の劣化温度を越える温度でろう付けできるので、切刃基体と工具本体の取付部との接合強度を高くすることができ、被掘削材掘削時の衝撃力による切刃基体の脱落を防止することができる。
また、カッタの下面側に超硬合金からなる着座部が設けられており、切刃基体とカッタとの接合が同じ超硬合金同士となるので、切刃基体とカッタとの接合強度が高くなり、切刃基体からカッタが脱落することを防止できる。
According to the first aspect of the present invention, since the brazing can be performed at a temperature exceeding the deterioration temperature of the diamond sintered body in the first joining step, the joining strength between the cutting blade base and the attachment portion of the tool body can be increased. In addition, it is possible to prevent the cutting blade base body from dropping off due to the impact force during excavation of the work material.
In addition, a seating part made of cemented carbide is provided on the lower surface side of the cutter, and the cemented carbide between the cutting blade base and the cutter is the same cemented carbide, so the bonding strength between the cutting blade base and the cutter is increased. The cutter can be prevented from falling off from the cutting blade base.

請求項2に記載の発明によれば、切刃基体と工具本体を強固に固定でき、工具本体から切刃基体が脱落することを確実に防止できる。また、第2接合工程において、一般ダイヤモンド焼結体の劣化が防止されるので、カッタ本体が一般ダイヤモンド焼結体で構成されていてもカッタの硬度が著しく低下することが防止され、掘削工具として使用できる。   According to invention of Claim 2, a cutting blade base | substrate and a tool main body can be fixed firmly, and it can prevent reliably that a cutting blade base | substrate falls out from a tool main body. Moreover, since the deterioration of the general diamond sintered body is prevented in the second joining step, even if the cutter body is made of the general diamond sintered body, it is possible to prevent the cutter hardness from being significantly lowered, and as a drilling tool. Can be used.

請求項3に記載の発明によれば、第2ろう材層を形成する際に、第1ろう材層が溶融するおそれがないので、切刃基体と工具本体とが強固に接合された掘削工具を提供することができる。また、切刃基体とカッタとの接合が同じ超硬合金同士となるので、切刃基体とカッタとの接合強度が高く、切刃基体からのカッタの脱落を防止できる。   According to the third aspect of the present invention, when the second brazing filler metal layer is formed, the first brazing filler metal layer is not likely to melt, so that the cutting blade base and the tool body are firmly joined to each other. Can be provided. Moreover, since the cemented carbide of the cutting blade base and the cutter is the same, the bonding strength between the cutting blade base and the cutter is high, and the cutter can be prevented from falling off the cutting blade base.

請求項4に記載の発明によれば、第2ろう材層を形成する際に、第1ろう材層が溶融するおそれがないので、切刃基体と工具本体との間に形成された第1ろう材層が溶融せず、切刃基体が工具本体から脱落することを防止できる。また、第2ろう材層を形成する際に、一般ダイヤモンド焼結体の劣化が防止されるので、カッタ本体が一般ダイヤモンド焼結体で構成されていても、カッタの硬度が著しく低下することが防止され掘削工具として使用できる。   According to the fourth aspect of the present invention, when the second brazing material layer is formed, there is no possibility that the first brazing material layer is melted. Therefore, the first brazing material layer is formed between the cutting blade base and the tool body. The brazing filler metal layer is not melted, and the cutting blade base can be prevented from falling off from the tool body. In addition, since the deterioration of the general diamond sintered body is prevented when forming the second brazing material layer, the hardness of the cutter may be significantly reduced even if the cutter body is composed of the general diamond sintered body. Can be used as a drilling tool.

したがって、本発明によれば、上面外周側一部分にダイヤモンド焼結体で構成されたカッタを配置した切刃チップであっても、工具本体の取付部に強固に固定できる掘削工具の製造方法及び掘削工具を提供することができる。   Therefore, according to the present invention, a method for manufacturing an excavation tool and excavation that can be firmly fixed to a mounting portion of a tool body even with a cutting edge tip in which a cutter composed of a diamond sintered body is disposed on a part of the outer peripheral side of the upper surface. A tool can be provided.

以下に、本発明の実施形態について添付した図面を参照して説明する。
図1に、本発明の実施形態である掘削工具を、図2に、掘削工具の先端部に具備される超硬ポストと切刃チップを示す。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows an excavation tool according to an embodiment of the present invention, and FIG. 2 shows a carbide post and a cutting edge tip provided at the tip of the excavation tool.

掘削工具1は、例えばJIS・SCH415に規定される合金鋼等からなり外形が円柱状に形成された工具本体2と、工具本体2の先端面に所定の配列で複数設けられた超硬ポスト3とを有する。本実施形態においては、図1に示すように、径方向に等間隔で4つ、周方向に等間隔で4つ配置されている。超硬ポスト3は、工具本体2に対して、ろう付けや焼き嵌めなどの手段によって装着されている。   The excavation tool 1 includes, for example, a tool body 2 made of alloy steel or the like defined in JIS / SCH415 and having an outer shape formed in a columnar shape, and a plurality of carbide posts 3 provided in a predetermined arrangement on the tip surface of the tool body 2. And have. In this embodiment, as shown in FIG. 1, four are arranged at equal intervals in the radial direction and four are arranged at equal intervals in the circumferential direction. The carbide post 3 is attached to the tool body 2 by means such as brazing or shrink fitting.

超硬ポスト3は、図2に示すように柱状に形成されており、タングステンカーバイド基超硬合金によって構成されている。超硬ポスト3の上部には、超硬ポスト3の上方に向かうに従い、該超硬ポスト3の径方向内側に近づく傾斜面が設けられており、この傾斜面が、切刃チップ11の取付面3Aとされている。そして、超硬ポスト3は、超硬ポスト3の軸線Mが工具本体2の回転軸Lと平行するように、かつ、取付面3Aが工具本体2の回転方向T前方側を向くように取り付けられている。   The cemented carbide post 3 is formed in a columnar shape as shown in FIG. 2 and is made of a tungsten carbide based cemented carbide. The upper surface of the carbide post 3 is provided with an inclined surface that approaches the radial inner side of the carbide post 3 as it goes above the carbide post 3, and this inclined surface is the mounting surface of the cutting edge tip 11. 3A. The cemented carbide post 3 is mounted so that the axis M of the cemented carbide post 3 is parallel to the rotation axis L of the tool body 2 and the mounting surface 3A faces the front side in the rotation direction T of the tool body 2. ing.

図3、図4に、上記の超硬ポスト3に装着される切刃基体及び切刃チップを示す。
切刃チップ11は、超硬合金からなる切刃基体12と、この切刃基体12の凹部13に支持されるカッタ14とを具備しており、切刃チップ11全体として略一定厚みの円形平板状をなしている。
切刃基体12は、図3に示すように円形平板状に形成されており、その下面12Aが超硬ポスト3の取付面3Aとろう付けされるろう付け面で、この下面12Aに対向する上面12Bが、掘削方向を向く面である。
3 and 4 show the cutting blade base and the cutting blade tip mounted on the above-mentioned carbide post 3.
The cutting blade tip 11 includes a cutting blade base 12 made of cemented carbide and a cutter 14 supported by the recess 13 of the cutting blade base 12, and the cutting blade tip 11 as a whole is a circular flat plate having a substantially constant thickness. It has a shape.
The cutting blade base 12 is formed in a circular flat plate shape as shown in FIG. 3, and its lower surface 12A is a brazing surface to be brazed with the mounting surface 3A of the carbide post 3, and an upper surface facing the lower surface 12A. 12B is a surface facing the excavation direction.

この上面12Bの外周一部分には、カッタ14を支持するための凹部13が形成され、この凹部13は、カッタ14の外形と同形状で、切刃チップ11において掘削作業時に被掘削材と接触される部分に設けられており、本実施形態では、平面視において切刃基体12の中心を同じく中心とする扇形とされており、凹部13の底面は、切刃基体12の下面12A及び上面12Bと平行となるように形成されている。この凹部13は、焼結成形された円形平板状の超硬合金材を放電加工することによって形成される。   A concave portion 13 for supporting the cutter 14 is formed in a part of the outer periphery of the upper surface 12B. The concave portion 13 has the same shape as the outer shape of the cutter 14 and is brought into contact with the work material at the cutting edge tip 11 during excavation work. In the present embodiment, in the present embodiment, it is formed in a sector shape having the center of the cutting blade base 12 as the center in plan view, and the bottom surface of the recess 13 is formed with the lower surface 12A and the upper surface 12B of the cutting blade base 12. It is formed to be parallel. The recess 13 is formed by electric discharge machining of a sintered flat plate cemented carbide material.

そして、この凹部13は、外周側に向けて漸次間隔が広がるV字状をなす一対の支持面13A、13Bを有しており、これら支持面13A、13Bがカッタ14に加わる掘削時の衝撃力を受けることになる。凹部13がこのようなクサビ形状の支持面13A、13Bを有していることにより、カッタ14に加わる衝撃力が切刃基体12において広く分散され、切刃チップ11の衝撃力に対する強度が増すことになる。   And this recessed part 13 has a pair of support surface 13A, 13B which makes | forms the V shape where a space | interval gradually spreads toward an outer peripheral side, and the impact force at the time of excavation which these support surfaces 13A, 13B apply to the cutter 14 Will receive. Since the recess 13 has the wedge-shaped support surfaces 13A and 13B, the impact force applied to the cutter 14 is widely dispersed in the cutting blade base 12, and the strength against the impact force of the cutting blade tip 11 is increased. become.

また、切刃基体12は、一般的な超硬合金、例えば結合材としてCoを用いたタングステンカーバイド基超硬合金によって一体に形成されている。本実施形態においては、切刃基体12は、結合材であるCoを9.5質量%含有し、残りがタングステンカーバイドと不可避不純物からなる超硬合金によって一体に形成されている。上記の超硬合金は、次のように製造される。原料粉末として、9.5質量%のCo粉末と、0.5質量%のTiCと、平均粒径3μmのWC粉末とを用いる。これらの原料粉末をボールミルで84時間湿式混合し、乾燥後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中で1400℃で1時間の焼結を行うことで上記の超硬合金が得られる。
上記の超硬合金は高い強度と高い靱性を有しており、この切刃基体12は、掘削作業時に切刃チップ11に加わる熱的衝撃及び機械的衝撃を吸収する衝撃吸収体となる。
Further, the cutting blade base 12 is integrally formed of a general cemented carbide, for example, a tungsten carbide based cemented carbide using Co as a binder. In the present embodiment, the cutting blade base 12 contains 9.5% by mass of Co as a binder, and the remainder is integrally formed of a cemented carbide made of tungsten carbide and inevitable impurities. The above cemented carbide is manufactured as follows. As the raw material powder, 9.5% by mass of Co powder, 0.5% by mass of TiC, and WC powder having an average particle size of 3 μm are used. These raw material powders are wet mixed in a ball mill for 84 hours, dried, pressed into a green compact at a pressure of 100 MPa, and the green compact is sintered at 1400 ° C. for 1 hour in a vacuum of 6 Pa. The above cemented carbide is obtained.
The above cemented carbide has high strength and high toughness, and the cutting blade base 12 serves as an impact absorber that absorbs thermal shock and mechanical shock applied to the cutting blade tip 11 during excavation work.

カッタ14は、切刃チップ11において掘削作業時に被掘削材と接触する部分に設けられるものであり、本実施形態においては、切刃チップ11の上面外周のうちの1/4を占めるように配置されている。すなわち、カッタ14は、図3に示すように上面視して扇形に形成され、この扇形の2つの直線がなす角度が90°となっている。   The cutter 14 is provided at a portion of the cutting edge tip 11 that comes into contact with the work material during excavation work. In the present embodiment, the cutter 14 is arranged so as to occupy 1/4 of the outer periphery of the upper surface of the cutting edge tip 11. Has been. That is, the cutter 14 is formed in a fan shape when viewed from above as shown in FIG. 3, and an angle formed by two straight lines of the fan shape is 90 °.

そして、カッタ14の下面側は着座部15で、この着座部15は、切刃基体12と略同じ材質の超硬合金によって構成されている。
一方、カッタ14の上面側はカッタ本体16で、このカッタ本体16は、焼結助剤としてCoを用いた一般ダイヤモンド焼結体で構成されている。
The lower surface side of the cutter 14 is a seating portion 15, and the seating portion 15 is made of a cemented carbide made of substantially the same material as the cutting blade base 12.
On the other hand, the upper surface side of the cutter 14 is a cutter main body 16, and the cutter main body 16 is made of a general diamond sintered body using Co as a sintering aid.

上記のカッタ14は、次のように製造される。原料粉末として平均粒径25μmのダイヤモンド粉末を、円板状に形成されたコバルト(Co)を結合材とするタングステンカーバイド基超硬合金母材の上に成形し、この成形体を超高圧・高温発生装置を用いてダイヤモンド安定領域(5.5GPa、1500℃、30分間保持)まで、加圧、加熱する。この超高圧・高温処理の際に、超硬合金側のCoがダイヤモンド粉末側に溶浸し、最終的にダイヤモンドと超硬合金とが一体成形された円形平板状の焼結体を得る。   The cutter 14 is manufactured as follows. Diamond powder having an average particle diameter of 25 μm is formed as a raw material powder on a tungsten carbide-based cemented carbide base material using cobalt (Co) as a binder formed in a disk shape. Using a generator, pressurize and heat to the diamond stable region (5.5 GPa, 1500 ° C., hold for 30 minutes). During the ultrahigh pressure / high temperature treatment, Co on the cemented carbide side is infiltrated on the diamond powder side, and finally, a circular flat plate-like sintered body in which diamond and cemented carbide are integrally formed is obtained.

その後、この焼結体に、ダイヤモンド砥石による研磨を施して粗加工してから、さらにレーザー加工又はワイヤー放電加工によって所望の形状に切り出すことにより、扇形のカッタ14を得ることができる。ここで、カッタ14は、超硬合金からなる着座部15とダイヤモンド焼結体からなるカッタ本体16とを具備することになる。また、本実施形態では、カッタ14が扇形に形成され、扇形の2つの直線がなす角度が90°となっているので、円形平板状の焼結体を1/4に切断することにより、一個の焼結体から4つのカッタ14を作成することができる。   Thereafter, the sintered body is subjected to roughing by polishing with a diamond grindstone, and further cut into a desired shape by laser processing or wire electric discharge processing, whereby the fan-shaped cutter 14 can be obtained. Here, the cutter 14 includes a seating portion 15 made of a cemented carbide and a cutter body 16 made of a diamond sintered body. In the present embodiment, the cutter 14 is formed in a fan shape, and the angle formed by the two fan-shaped straight lines is 90 °. Therefore, by cutting the circular flat plate-like sintered body into 1/4, Four cutters 14 can be created from the sintered body.

ここで、上記の切刃チップ11と超硬ポスト3とを接合する方法及び切刃基体12とカッタ14とを接合する方法について説明する。
まず、第1接合工程として、超硬ポスト3の取付面3Aと切刃基体12のろう付け面(下面12A)とをTi活性ろう材を使用してろう付けする。このTi活性ろう材の組成は、Ag70%、Cu28%、Ti2%であり、融点は780℃から800℃である。このTi活性ろう材を使用して、850℃でろう付けする。このとき、超硬ポスト3の取付面3Aは工具本体2の回転方向T前方側に向くとともに超硬ポスト3の上方に向かうに従い超硬ポスト3の径方向内側に後退するように傾斜しているので、切刃基体12は工具本体2の回転方向T前方側を向くとともに、掘削工具1先端側に向かうに従い回転方向Tの後方側に後退するように配置される。また、切刃基体12の凹部13が、掘削工具1の先端側に向くようにろう付けされている。
Here, a method of joining the above-mentioned cutting blade tip 11 and the carbide post 3 and a method of joining the cutting blade base 12 and the cutter 14 will be described.
First, as a first joining step, the attachment surface 3A of the carbide post 3 and the brazing surface (lower surface 12A) of the cutting blade base 12 are brazed using a Ti active brazing material. The composition of this Ti active brazing material is Ag 70%, Cu 28%, Ti 2%, and the melting point is 780 ° C to 800 ° C. This Ti active brazing material is used for brazing at 850 ° C. At this time, the mounting surface 3A of the carbide post 3 is inclined so as to face the front side in the rotation direction T of the tool body 2 and to recede inward in the radial direction of the carbide post 3 as it goes upward of the carbide post 3. Therefore, the cutting blade base 12 is arranged so as to face the front side in the rotation direction T of the tool body 2 and to move backward toward the rear side in the rotation direction T toward the tip end side of the excavation tool 1. Further, the recess 13 of the cutting blade base 12 is brazed so as to face the tip side of the excavation tool 1.

次に、第2接合工程として、切刃基体12の凹部13とカッタ14の着座部15とを銀ろう材を使用してろう付けする。この銀ろう材の組成は、Ag45%、Cu15%、Zn16%、Cd24%であり、融点は605℃から620℃である。この銀ろう材を使用して、650℃でろう付けする。ここで、切刃基体12の凹部13が、掘削工具1の先端側に向くようにろう付けされているので、ダイヤモンド焼結体からなるカッタ本体16が掘削工具1の先端側に向くように配置される。   Next, as a second joining step, the concave portion 13 of the cutting blade base 12 and the seating portion 15 of the cutter 14 are brazed using a silver brazing material. The composition of this silver brazing material is Ag 45%, Cu 15%, Zn 16%, Cd 24%, and the melting point is 605 ° C. to 620 ° C. This silver brazing material is used for brazing at 650 ° C. Here, since the recess 13 of the cutting blade base 12 is brazed so as to face the front end side of the excavation tool 1, the cutter body 16 made of a diamond sintered body is arranged so as to face the front end side of the excavation tool 1. Is done.

上記の第1接合工程によって、超硬ポスト3の取付面3Aと切刃基体12のろう付け面(下面12A)との間にTi活性ろう材からなる第1ろう材層21が形成される。また、第2接合工程によって、切刃基体12の凹部13とカッタ14の着座部15との間に銀ろう材からなる第2ろう材層22が形成される。よって、第1ろう材層21は、第2ろう材層22を構成するろう材の融点よりも高い融点を有するろう材で構成されることになる。   By the first joining step, the first brazing filler metal layer 21 made of Ti active brazing material is formed between the attachment surface 3A of the carbide post 3 and the brazing surface (lower surface 12A) of the cutting blade base 12. Further, a second brazing material layer 22 made of a silver brazing material is formed between the recess 13 of the cutting blade base 12 and the seating portion 15 of the cutter 14 by the second joining step. Therefore, the first brazing material layer 21 is composed of a brazing material having a melting point higher than that of the brazing material constituting the second brazing material layer 22.

上記の構成の掘削工具1は、掘削機械に取り付けられ、モーター等の回転駆動体に接続され、工具本体2の回転軸L回りに回転されるとともに、掘削工具1先端側の被掘削材中に送り込まれることによって、工具本体2先端部の超硬ポスト3に装着された切刃チップ11で被掘削材である岩盤等を掘削して穿孔加工するものである。ここで、上記の掘削工具1では、ダイヤモンド焼結体からなるカッタ本体16が、掘削工具1の先端部に向けて配置されているので、このカッタ本体16によって被掘削材が掘削される。   The excavation tool 1 having the above-described configuration is attached to an excavation machine, connected to a rotary drive body such as a motor, rotated about the rotation axis L of the tool body 2, and in the excavation material on the tip side of the excavation tool 1. By being fed, the rock body or the like to be excavated is excavated and drilled by the cutting edge tip 11 attached to the carbide post 3 at the tip of the tool body 2. Here, in the excavation tool 1, the cutter main body 16 made of a diamond sintered body is disposed toward the tip of the excavation tool 1, so that the material to be excavated is excavated by the cutter main body 16.

上記の掘削工具1においては、第1ろう材層21は、第2ろう材層22を構成するろう材の融点よりも高い融点を有するろう材で構成されているので、第2接合工程によって第2ろう材層22を形成する際に第1ろう材層21が溶融することが防止され、切刃基体12が超硬ポスト3から脱落することを防止できる。また、第1接合工程でろう付けを800℃以上の高温で行うことができるので、切刃基体12と超硬ポスト3との接合強度を高くでき、掘削抵抗によって切刃基体12が超硬ポスト3から脱落したり破損したりすることを防止できる。   In the excavation tool 1 described above, the first brazing filler metal layer 21 is composed of a brazing filler metal having a melting point higher than that of the brazing filler metal constituting the second brazing filler metal layer 22, so that the second joining step performs the first brazing filler metal layer 21. When the two brazing filler metal layers 22 are formed, the first brazing filler metal layer 21 is prevented from melting, and the cutting blade base 12 can be prevented from falling off the carbide post 3. Moreover, since brazing can be performed at a high temperature of 800 ° C. or higher in the first joining step, the joining strength between the cutting blade base 12 and the carbide post 3 can be increased, and the cutting blade base 12 is made of the carbide post by the excavation resistance. 3 can be prevented from falling off or being damaged.

また、第2接合工程では、切刃基体12の凹部13とカッタ14の着座部15とが略同じ材質の超硬合金で構成され、同種材料同士での接合となるので、接合強度を高くでき、掘削抵抗によってカッタ14が切刃基体12から脱落することを防止できる。また、ダイヤモンド焼結体からなるカッタ本体16が切刃チップ11の上面外周の1/4を占めるように配置されているので、高価なダイヤモンド焼結体の使用量が少なく切刃チップ11の製造コストを低減できる。   Further, in the second joining step, the concave portion 13 of the cutting blade base 12 and the seating portion 15 of the cutter 14 are composed of cemented carbides of substantially the same material and are joined with the same kind of materials, so that the joining strength can be increased. The cutter 14 can be prevented from falling off the cutting blade base 12 due to the excavation resistance. Further, since the cutter main body 16 made of a diamond sintered body is arranged so as to occupy 1/4 of the outer periphery of the upper surface of the cutting edge tip 11, the amount of expensive diamond sintered body used is small and the cutting edge tip 11 is manufactured. Cost can be reduced.

さらに、第2接合工程において、一般ダイヤモンド焼結体の劣化温度である800℃よりも低温でろう付けすることにより、カッタ本体16がCoを焼結助剤とする一般ダイヤモンド焼結体で構成されていても、カッタ本体16の硬度が第2接合工程によって著しく低下することを防止でき、掘削工具1として使用することができる。   Furthermore, in the second joining step, the cutter body 16 is composed of a general diamond sintered body using Co as a sintering aid by brazing at a temperature lower than 800 ° C., which is a deterioration temperature of the general diamond sintered body. Even so, the hardness of the cutter body 16 can be prevented from being significantly reduced by the second joining step, and can be used as the excavation tool 1.

なお、本実施形態においては、カッタ本体16を、コバルト(Co)を焼結助剤として使用した一般ダイヤモンド焼結体で構成したもので説明したが、これに限定されることはなく、例えば焼結助剤としてSiC等のセラミックスを用いたダイヤモンド焼結体で構成したものや、焼結助剤として使用したCoを化学的処理により除去したダイヤモンド焼結体で構成されたものであっても良い。
また、取付部として超硬ポスト3を設け、この超硬ポスト3に切刃チップ11を装着しているが、これに限定されることはなく、例えば取付部として超硬合金製のマトリックス部を設け、切刃チップ11をマトリックス部に直接接合したものであっても良い。
In the present embodiment, the cutter main body 16 has been described as being composed of a general diamond sintered body using cobalt (Co) as a sintering aid. However, the present invention is not limited to this. It may be composed of a diamond sintered body using ceramics such as SiC as a binder, or a diamond sintered body obtained by removing Co used as a sintering aid by chemical treatment. .
Moreover, although the cemented carbide post 3 is provided as an attachment part and the cutting edge chip | tip 11 is mounted | worn with this carbide post 3, it is not limited to this, For example, the matrix part made from a cemented carbide is used as an attachment part. It may be provided and the cutting edge tip 11 is directly joined to the matrix portion.

また、カッタ14が切刃チップ11の上面外周の1/4(25%)を占める切刃チップ11で説明したが、これに限定されることはなく、例えば、上面外周の1/3(33%)を占めるものであっても良い。上面外周の1/3を占めるものでは、円形平板状の焼結体から3つのカッタを作成することができる。
また、カッタ14及び切刃基体12の凹部13が、扇形のもので説明したが、切刃チップ11の上面の外周側一部にカッタ本体16が配置されていれば良く、切刃基体12の凹部13の部分が例えば三日月状に形成されていても良い。
Moreover, although the cutter 14 has been described with the cutting edge tip 11 occupying ¼ (25%) of the outer periphery of the upper surface of the cutting edge tip 11, the present invention is not limited to this. %). In what occupies 1/3 of the outer periphery of the upper surface, three cutters can be formed from a circular flat plate-like sintered body.
Further, the cutter 14 and the recess 13 of the cutting blade base 12 have been described as having a fan shape, but the cutter main body 16 may be disposed on a part of the outer peripheral side of the upper surface of the cutting blade tip 11. For example, the concave portion 13 may be formed in a crescent shape.

さらに、切刃チップ11が円周方向で4つ、径方向に4つ配置された掘削工具1で説明したが、これに限定されることはなく、例えば、工具本体2が円筒状に形成され、この工具本体2の先端部に切刃チップ11が装着されたコアビット等の掘削工具であっても良い。また、切刃チップの配置は、掘削工具の形状・サイズ、切刃チップのサイズ及び被掘削材の材質などを考慮して決定することが好ましい。   Further, the excavation tool 1 in which four cutting edge tips 11 are arranged in the circumferential direction and four in the radial direction has been described, but the present invention is not limited to this. For example, the tool body 2 is formed in a cylindrical shape. An excavation tool such as a core bit having a cutting edge tip 11 attached to the tip of the tool body 2 may be used. Further, it is preferable that the arrangement of the cutting edge tips is determined in consideration of the shape and size of the excavating tool, the size of the cutting edge chip, the material of the material to be excavated, and the like.

本発明の実施形態である掘削工具の先端部の斜視図である。It is a perspective view of the front-end | tip part of the excavation tool which is embodiment of this invention. 図1の掘削工具の先端部に設けられた超硬ポスト及び切刃チップの側面図である。FIG. 2 is a side view of a cemented carbide post and a cutting edge tip provided at the tip of the excavation tool in FIG. 1. 図2の超硬ポストにろう付けされる切刃基体の説明図である。It is explanatory drawing of the cutting blade base | substrate brazed to the cemented carbide post of FIG. 図1の掘削工具に装着される切刃チップの説明図である。It is explanatory drawing of the cutting blade chip | tip with which the excavation tool of FIG. 1 is mounted | worn.

符号の説明Explanation of symbols

1 掘削工具
2 工具本体
3 超硬ポスト(取付部)
11 切刃チップ
12 切刃基体
13 凹部
14 カッタ
15 着座部
16 カッタ本体
21 第1ろう材層
22 第2ろう材層
1 Drilling tool 2 Tool body 3 Carbide post (mounting part)
11 Cutting Blade Tip 12 Cutting Blade Base 13 Recess 14 Cutter 15 Seating Section 16 Cutter Main Body 21 First Brazing Material Layer 22 Second Brazing Material Layer

Claims (4)

円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具の製造方法であって、
前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が20%以上50%未満とされており、
前記切刃基体と前記取付部とがろう付けされる第1接合工程と、該第1接合工程の後に、前記カッタと前記切刃基体とがろう付けされる第2接合工程とを有し、
前記第1接合工程におけるろう付け温度が、前記第2接合工程のろう付け温度よりも高くされていることを特徴とする掘削工具の製造方法。
A plurality of cutting edge tips formed in a circular flat plate shape are mounted in a posture that crosses the surface in the rotation direction of the tool body on a mounting portion provided on the tip surface of the tool body. , A method for manufacturing an excavation tool for excavating a work material with the cutting edge tip,
The cutting edge tip has a cutting blade base made of cemented carbide having a circular flat plate shape, and a cutter supported by a recess formed in a part of the outer peripheral side of the upper surface of the cutting blade base, and the upper surface of the cutter The side is a cutter body made of a diamond sintered body and the lower surface side is a seating portion made of cemented carbide, and the ratio of the cutter to the outer periphery of the upper surface of the cutting edge tip is 20% or more and less than 50%. And
A first joining step in which the cutting blade base and the attachment portion are brazed, and a second joining step in which the cutter and the cutting blade base are brazed after the first joining step,
The method for manufacturing an excavating tool, wherein a brazing temperature in the first joining step is higher than a brazing temperature in the second joining step.
前記第1接合工程のろう付け温度が800℃以上1000℃以下とされ、前記第2接合工程のろう付け温度が600℃以上800℃以下とされていることを特徴とする請求項1記載の掘削工具の製造方法。   2. The excavation according to claim 1, wherein the brazing temperature in the first joining step is 800 ° C. or more and 1000 ° C. or less, and the brazing temperature in the second joining step is 600 ° C. or more and 800 ° C. or less. Tool manufacturing method. 円柱状の工具本体を有し、該工具本体の先端面に設けられた取付部に、円形平板状に形成された切刃チップが前記工具本体の回転方向に表面を交差させる姿勢で複数装着され、該切刃チップによって被掘削材を掘削する掘削工具であって、
前記切刃チップは、円形平板状をなす超硬合金製の切刃基体と、該切刃基体の上面の外周側一部分に形成された凹部に支持されるカッタとを有し、該カッタの上面側はダイヤモンド焼結体からなるカッタ本体とされ下面側が超硬合金からなる着座部とされるとともに、前記切刃チップの上面外周のうち前記カッタが占める割合が20%以上50%未満とされており、
前記切刃基体と前記取付部との間に第1ろう材層が形成されるとともに、前記カッタと前記切刃基体との間に第2ろう材層が形成され、
前記第1ろう材層が、前記第2ろう材層を構成するろう材よりも高い融点を有するろう材で構成されていることを特徴とする掘削工具。
A plurality of cutting edge tips formed in a circular flat plate shape are mounted in a posture that crosses the surface in the rotation direction of the tool body on a mounting portion provided on the tip surface of the tool body. , An excavation tool for excavating a work material with the cutting edge tip,
The cutting edge tip has a cutting blade base made of cemented carbide having a circular flat plate shape, and a cutter supported by a recess formed in a part of the outer peripheral side of the upper surface of the cutting blade base, and the upper surface of the cutter The side is a cutter body made of a diamond sintered body and the lower surface side is a seating portion made of cemented carbide, and the ratio of the cutter to the outer periphery of the upper surface of the cutting edge tip is 20% or more and less than 50%. And
A first brazing filler metal layer is formed between the cutting blade base and the mounting portion, and a second brazing filler metal layer is formed between the cutter and the cutting blade base,
The excavation tool, wherein the first brazing material layer is made of a brazing material having a melting point higher than that of the brazing material constituting the second brazing material layer.
前記第1ろう材層は、融点が750℃以上900℃以下のろう材で構成され、前記第2ろう材層は、融点が500℃以上700℃以下のろう材で構成されたことを特徴とする請求項3記載の掘削工具。   The first brazing material layer is composed of a brazing material having a melting point of 750 ° C. or more and 900 ° C. or less, and the second brazing material layer is composed of a brazing material having a melting point of 500 ° C. or more and 700 ° C. or less. The excavation tool according to claim 3.
JP2005088740A 2005-03-25 2005-03-25 Excavation tool manufacturing method and excavation tool Active JP4604182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088740A JP4604182B2 (en) 2005-03-25 2005-03-25 Excavation tool manufacturing method and excavation tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088740A JP4604182B2 (en) 2005-03-25 2005-03-25 Excavation tool manufacturing method and excavation tool

Publications (2)

Publication Number Publication Date
JP2006266008A true JP2006266008A (en) 2006-10-05
JP4604182B2 JP4604182B2 (en) 2010-12-22

Family

ID=37202253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088740A Active JP4604182B2 (en) 2005-03-25 2005-03-25 Excavation tool manufacturing method and excavation tool

Country Status (1)

Country Link
JP (1) JP4604182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014079870A (en) * 2012-10-16 2014-05-08 Yunika Kk Cylindrical cutting tool
KR101470847B1 (en) * 2007-11-09 2014-12-10 일진다이아몬드(주) Excavating tool insert, method of manufacturing the same and excavating tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284887A (en) * 1986-03-24 1987-12-10 ゼネラル・エレクトリツク・カンパニイ Support with pocket for polycrystalline diamond edge tool
JP2002013377A (en) * 2000-06-29 2002-01-18 Japan National Oil Corp Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength
JP2004060201A (en) * 2002-07-26 2004-02-26 Mitsubishi Materials Corp Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284887A (en) * 1986-03-24 1987-12-10 ゼネラル・エレクトリツク・カンパニイ Support with pocket for polycrystalline diamond edge tool
JP2002013377A (en) * 2000-06-29 2002-01-18 Japan National Oil Corp Excavation tool having brazed join part of cutting edge piece having excellent resistance against impact and join strength
JP2004060201A (en) * 2002-07-26 2004-02-26 Mitsubishi Materials Corp Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101470847B1 (en) * 2007-11-09 2014-12-10 일진다이아몬드(주) Excavating tool insert, method of manufacturing the same and excavating tool
JP2014079870A (en) * 2012-10-16 2014-05-08 Yunika Kk Cylindrical cutting tool

Also Published As

Publication number Publication date
JP4604182B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
US10815732B2 (en) Cutting elements, bearings, and earth-boring tools including multiple substrates attached to one another
US9683410B2 (en) Cutter assemblies, downhole tools incorporating such cutter assemblies and methods of making such downhole tools
CA2770676C (en) Methods of forming polycrystalline diamond cutting elements, cutting elements, and earth-boring tools carrying cutting elements
US8740048B2 (en) Thermally stable polycrystalline ultra-hard constructions
CA2588331C (en) Thermally stable ultra-hard material compact constructions
CN101195257B (en) Diamond soldering appliance
JP4604182B2 (en) Excavation tool manufacturing method and excavation tool
JP4858940B2 (en) Drilling bit and cutting edge insert
JP4686760B2 (en) Excavation tool manufacturing method and excavation tool
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
US20190118345A1 (en) Polycrystalline diamond compact, drill bit incorporating same, and methods of manufacture
JP4851029B2 (en) Super abrasive tool with sintered super abrasive tip
WO2003083148A1 (en) Polycrystalline material element with improved wear resistance and methods of manufacture thereof
JP2004291040A (en) Bonding method between cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
JP2004291037A (en) Bonding method for cemented carbide member and diamond member, bonding structure, cutting blade chip for drilling tool, cutting blade member, and drilling tool
WO2005105349A1 (en) Drill to which cbn sintered body is joined
JPS63190132A (en) Temperature stable diamond molded body and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4604182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250