WO2005105349A1 - Drill to which cbn sintered body is joined - Google Patents

Drill to which cbn sintered body is joined Download PDF

Info

Publication number
WO2005105349A1
WO2005105349A1 PCT/JP2004/005659 JP2004005659W WO2005105349A1 WO 2005105349 A1 WO2005105349 A1 WO 2005105349A1 JP 2004005659 W JP2004005659 W JP 2004005659W WO 2005105349 A1 WO2005105349 A1 WO 2005105349A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
sintered body
cutting edge
cbn sintered
cutting
Prior art date
Application number
PCT/JP2004/005659
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Kanada
Original Assignee
Sumitomo Electric Hardmetal Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp. filed Critical Sumitomo Electric Hardmetal Corp.
Priority to PCT/JP2004/005659 priority Critical patent/WO2005105349A1/en
Priority to EP04729979A priority patent/EP1741506A1/en
Publication of WO2005105349A1 publication Critical patent/WO2005105349A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2240/00Details of connections of tools or workpieces
    • B23B2240/08Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/28Arrangement of teeth
    • B23B2251/287Cutting edges having different lengths

Definitions

  • the present invention relates to a drill formed by joining a cubic boron nitride sintered body to a cutting edge portion and having excellent cutting edge strength and wear resistance.
  • a CBN sintered body obtained by sintering fine cubic boron nitride (hereinafter, also simply referred to as CBN) using various binders is excellent in cutting high-hardness iron-group metals and iron. The performance is shown.
  • Such a CBN sintered body is used, for example, by being brazed on a carbide tool base material and joined to a cutting edge of a cutting tip or a cutting edge of a rotary tool such as a drill or a reamer (for example, Patent Documents 1 and 2).
  • Patent Document 1 JP 2001-150216 A
  • Patent Document 2 JP 2000-317711 A
  • Fig. 2 shows a conventionally known drill for joining a CBN sintered body.
  • a pair of cemented carbide cuts is made through a CBN sintered body force S, which has a shape that is substantially rotationally symmetric with respect to the center axis of the drill, and a brazing material mainly composed of soft metals such as Ag and Cu. Joined on the blade. Since the CBN sintered body has higher hardness and higher heat resistance as compared with a cemented carbide, the cutting edge was expected to have a long life and a long combing force.
  • the drill In ordinary drilling using a drill, the drill itself rotates and is pressed against the workpiece to cut the workpiece. At this time, the cutting speed at the front cutting edge of the drill has a different value depending on the distance from the drill center axis for each front cutting edge portion. In other words, the closer the front cutting edge is to the drill center axis, the more Since the radius of gyration of the part is smaller and thus the linear velocity of the part is lower, the cutting speed at the part is lower. Conversely, the farther a point on the front cutting edge is from the center axis of the drill, the higher the cutting speed at that point.
  • the above-mentioned excellent properties of the CBN sintered body reduce the wear of the cutting edge.
  • the service life of the drill can be prolonged.
  • the strength of the CBN sintered body is lower than that of the cemented carbide generally used as the drill base material, the boundary portion between the CBN sintered body and the cemented carbide base material on the drill cutting edge and cutting In the area near the center axis of the drill where the speed is low and the cutting force is high, the chip is likely to have chippings and / or chips larger than the chipping of the CBN sintered body. There was a problem that cutting calories was difficult.
  • a drill according to the present invention is a drill having a pair of cutting edges, wherein a cubic boron nitride sintered body is brazed and joined to a carbide tool base material on the outer peripheral side of the drill of each of the pair of cutting edges.
  • the cubic boron nitride sintered body is arranged from a center axis of the drill.
  • the length from the outer end of one cutting edge to the outer end of the other cutting edge of the drill is not less than 5.0 (mm) and not more than 60 (mm). It is preferable.
  • the cubic boron nitride sintered body and the cemented carbide tool base material are joined by brazing via a joining layer.
  • it contains 0.5 or 20% by weight of one or two selected from the group consisting of 0.5% by weight, 10% by weight of Cu, and the balance consisting of Ag and inevitable impurities.
  • the cubic boron nitride sintered body and the cemented carbide tool base material are joined by brazing via a joining layer, and the joining layer comprises 20 30% by weight. Of Ti and 20-30% by weight of Zr, with the balance being Cu and unavoidable impurities.
  • the cubic boron nitride sintered body and the cemented carbide base material are joined by brazing via a joining layer.
  • the drill of the present invention is characterized in that the surface of the cutting edge of the drill including the surface of the cubic boron nitride sintered body has a group 4a element, a group 5a element, a group 6a element, Al, Si, and B having at least one element selected from the group consisting of B, or a coating layer made of at least one compound selected from the group consisting of nitrides, carbides, oxides, and solid solutions of the at least one element. preferable.
  • the drill of the present invention the occurrence of chipping of the drill cutting edge is prevented and wear is suppressed by brazing and joining a CBN sintered body having a different front cutting edge length to a pair of cutting edges of the drill. And has the effect of extending the life of the drill. Furthermore, the present invention In a drill, a strong bonding strength between them can be obtained by bonding a CBN sintered body to the drill's carbide tool base material through a bonding layer of a specific composition described in this specification. , Can extend the life of the drill. Further, in the drill of the present invention, the life of the drill is extended by coating the surface of the cutting edge of the drill with a coating layer having a specific composition described herein.
  • front cutting edge length of a CBN sintered body refers to the CBN sintering on the edge of the cutting edge at the tip of the drill of the CBN sintered body joined to the drill cutting edge. Connect the ends of the body (P and P in Fig. 4) to the center axis of the drill and the outer end of the drill tip (P in
  • Fig. 5 shows an example of the length of the front cutting edge in this case.
  • Fig. 5 is a view of the center axis of the drill perpendicular to the paper surface and viewed from the tip of the drill.
  • the cutting edge length of the CBN sintered body a joined to the cutting edge is 1.
  • the present inventors have studied the life of a CBN sintered body joining drill used for drilling. As a result, on the outer peripheral side of the pair of cutting edges of the drill, the drilling force obtained by brazing and joining the pair of CBN sintered bodies to the cutting edge so that the front cutting edge length of the CBN sintered body is different is obtained.
  • the present invention has been found to have a long tool life in which generation is small and wear progresses slowly, and the present invention has been completed.
  • FIG. 2 (A) is a front view of a known drill
  • FIG. 2 (B) is a side view of the known drill.
  • CBN sintered bodies a ′ and b ′ having the same shape are arranged on a pair of cutting edges of the drill at rotationally symmetric positions with respect to the central axis of the Dolinole, and brazed. Therefore, in FIG. 2, 1 ′ and 1 ′ are equal and r ′ and r ′ are also equal.
  • a CBN sintered body is joined to a cutting edge
  • the manufacturing method consists of combining the cemented carbide side of the CBN composite sintered body obtained by backing a CBN sintered body with a cemented carbide and integrally / Or, it is a common method to braze through a brazing material made of Cu.
  • FIG. 3 (A) schematically shows the joining state between the cemented carbide tool base material and the CBN sintered body in a conventional drill manufactured using this method.
  • M is a cemented carbide tool base material
  • a 'or b' (represented below by a ') is a CBN sintered body
  • m is a cemented carbide
  • S is a bonding layer made of brazing material.
  • a 'and m together constitute a CBN composite sintered body.
  • the boundary between the CBN sintered body a 'brazed to the carbide tool base material M and the carbide tool base material M is formed by the soft brazing joint layer S From
  • the brazing material is hardly wet with the CBN sintered body, a gap is formed at the boundary between the cemented carbide tool base material M and the CBN sintered body a '. Therefore, when drilling a work material using this drill, cutting resistance and frictional heat are applied to this boundary portion.
  • the bonding layer S is made of a soft metal, it is rapidly worn due to friction between the work material and the cutting waste.
  • the cutting resistance is first concentrated near the joining layer S of the cutting edge, or the joining layer S, especially the cemented carbide tool base material M and the CBN sintered body a
  • clogging of cutting debris occurs in the gap at the boundary of the boundary between the 'CBN sintered body a' and the carbide tool base metal M, and the mechanical load locally increases.
  • chipping occurs in a relatively low strength CBN sintered body.
  • the present inventors have found a process in which the lack is caused to lead to a larger defect.
  • the sharpness or cutting resistance of each pair of cutting edges is equal, and the conventional CBN sintered body is used.
  • a pair of CBN sintered bodies that are brazed on a carbide tool base material are designed so that the front cutting edges are equal in length and are arranged rotationally symmetrically with respect to the center axis of the drill. I was The reason for this is that as the cutting process progresses, the wear generated on the flank of the front cutting edge of the drill As described above, the CBN sintered body (for example, a 'and b' in Fig. 2) and the carbide tool base
  • the wear resistance of the material M differs greatly from that of the material M, if the length of the front cutting edge of a pair of CBN sintered bodies (for example, 1 'and 1' in Fig. 2) is different from each other, the amount of wear also differs for each cutting edge.
  • the present inventors have questioned the imbalance of the amount of wear between the respective cutting edges. Long before the subject, chipping and even larger chipping occurred at the boundary where the CBN sintered body and the cemented carbide tool base metal were joined. Preventing such chipping, etc. 1S drill life I found it important for extension. That is, the CBN sintered body (a and b) and the cemented carbide tool base are made different by changing the length of the front cutting edge of the CBN sintered body brazed to the outer periphery of the pair of cutting edges of the drill to different lengths. In the vicinity of the boundary with the material M, the CBN sintered body was chipped, and it was found that the drill life could be greatly extended.
  • the drill is designed so that the cemented carbide, which is the base material of the cemented carbide tool, acts as a cutting edge near the center axis of the drill, where the cutting resistance is high. Chipping of the CBN sintered body can be suppressed. Then, the length of the front cutting edge of the CBN sintered body brazed to the outer peripheral side of the drill is made different between the pair of cutting edges, so that the CBN is sintered from the center axis of the drill at each cutting edge. The distance to the boundary between the consolidated body and the carbide tool base material can be different.
  • the occurrence of chipping and wear of the CBN sintered body is greatly reduced near the boundary of the cutting edge and in the location. I found that I could control. Furthermore, by using a brazing material having a specific composition containing Ti, Z or Zr as a brazing material for joining the CBN sintered body and the cemented carbide base material, the wettability of the brazing material with the cemented carbide base material is improved. It has been found that a gap can be hardly generated at the joint between the CBN sintered body and the carbide tool base material.
  • FIG. Fig. 1A is a front view of the drill tip as viewed from the center axis of the drill.
  • Figure 1B shows the same drill as seen from the direction perpendicular to the central axis of Dolinole It is a side view.
  • the drill 1 has a cutting edge 2 and a cutting edge 3, and the CBN sintered bodies a and b are respectively provided on the outer peripheral side of the drill of the cutting edges 2 and 3, that is, on the outer end side of each cutting edge. Brazed to material M.
  • Figure 3 (B) shows the joint of the cutting edge of this drill with the CBN sintered body.
  • the side and the carbide tool base material M are joined by brazing with a brazing material S to form a cutting edge.
  • the length from the outer end of one of the drill cutting edges to the outer end of the other drill cutting edge (hereinafter, also simply referred to as the drill diameter) is D, and is the distance from the central axis of the drill.
  • the distance to the outer edge of one of the drill cutting edges (hereinafter simply referred to as drill radius) is 1Z2D.
  • the cutting edge length of the CBN sintered body a joined to cutting edge 2 is 1,
  • the distance to the CBN sintered body is r.
  • the cutting edge length is 1, and the distance from the drill axis to its CBN sintered body is r.
  • the drill according to the present invention continues even if the material to be cut is left at a position corresponding to the boundary position between the CBN sintered body and the cemented carbide base material on one of the cutting edges and remains. Re, the other cutting edge
  • the difference between 1 and 1 should be at least 0.3 mm, because the effect may not be sufficient.
  • the shorter one may be determined as r and the longer one as r.
  • the ratio of each of 1 2 1 is 0.12 or more, and the ratio of r to the drill radius (D / 2) is 0.1.
  • the ratio of r to the drill radius (D / 2) is less than 0.12, the load on the CBN sintered compact a joined to the drill cutting edge will increase if the cutting force increases sharply near the center axis of the drill. The size of the CBN sintered body becomes large, and chipping and chipping are likely to occur in the CBN sintered body.
  • the cutting speed at each part of the cutting edge increases as the distance from the center axis of the drenole increases. Therefore, the ratio of r to the drill radius (DZ2)
  • r and r are preferably in the range of 0.12-0.8 with respect to the drill radius.
  • the outer end force of one cutting edge of the drill and the length to the outer end of the other cutting edge that is, the diameter D of the drill in Fig. 1A D force 5.0 (mm) or more and 6 It is preferably 0 (mm) or less.
  • the diameter D of the drill is less than 5.0 (mm)
  • the core thickness of the drill becomes small, so that the strength of the drill is reduced and the drill is easily broken.
  • the diameter D of the drill exceeds 3 ⁇ 40 (mm)
  • the resistance when cutting the material increases, and a large torque is required to rotate the drill, which exceeds the mechanical power used for general drills. As a result, the desired processing accuracy cannot be secured.
  • a material obtained by backing a CBN sintered body (a and b) with a cemented carbide m and integrally sintering the same is used.
  • the base material M is joined through a joining layer S made of a brazing material.
  • the cemented carbide tool base material M, the cemented carbide m, and the CBN sintered body a (hereinafter also referred to as "b" in Fig. 1A) shown in Fig. 3 are materials known in the art. Can be used.
  • carbide tool base material M has P, K, and M types specified in JIS B4053.
  • K It is preferable to use K-class for iron materials and P-class materials for steel material processing.
  • any of the above P, K, and M cemented carbides can be used for cemented carbide m.K class material should be used in consideration of good bondability with CBN sintered body. Is preferred.
  • the CBN sintered body a is in the range of 35-90% by volume.
  • Sintered bodies containing CBN are listed in the box. When processing iron materials, 75 to 90% by volume can be used to reduce the steel materials preferred by sintered bodies containing CBN. A sintered body containing CBN in the range of 70% by volume is preferred.
  • brazing material containing Ag or Cu
  • the brazing material is hard to wet the CBN sintered body, so the cemented carbide m lined with the CBN sintered body and the cemented carbide tool are used. Since only the space between the base material M and the CBN sintered body a is hardly directly bonded to the cemented carbide tool base material M, the CBN sintered body a and the cemented carbide tool base material M A gap is easily formed at the boundary. For this reason, there has been a problem that cutting waste is likely to be clogged in this gap.
  • the brazing material used in the bonding layer S contains 0.5 to 20% by weight of one or two selected from Ti and Zr, 10 to 40% by weight of Cu, and the balance is Ag. Further, it is preferable to use a brazing material composed of unavoidable impurities. As described above, by adding one or two kinds selected from T and Zr to the alloy of Ag and Cu, the wettability of the brazing material to the surface of the CBN sintered body a can be significantly improved. Thus, brazing joining between the CBN sintered body a and the carbide tool base material M becomes possible. For this reason, the force for eliminating the gap at the boundary portion between the CBN sintered body a and the carbide tool base material M can be reduced or significantly reduced, and it is preferable because clogging of the portion with cutting chips can be suppressed.
  • the content of one or two selected from Ti or Zr contained in the brazing material is less than 0.5% by weight, the effect of improving the wettability of the brazing material with respect to the CBN sintered body a does not occur. If the content exceeds 20% by weight, the melting point of the brazing material rises, so that the CBN sintered body “a” tends to be distorted during brazing, and cracking due to the distortion is likely to occur.
  • the Cu content 10-30% by weight with respect to Ag, the main component, the eutectic melting point drops due to Ag and Cu, and brazing at low temperatures is possible. Is preferable.
  • the CBN sintered body a and the cemented carbide tool base material M contain 20-30% by weight of Ti and 20-30% by weight of Zr, and the balance is It is preferable to form a bonding layer S by joining with a brazing material made of Cu and unavoidable impurities, because it is possible to suppress a gap from being generated at a boundary portion between the CBN sintered body a and the cemented carbide base material M. .
  • the brazing material contains Ti and Zr within the above range and the balance consists of Cu and unavoidable impurities
  • the wettability of the brazing material with respect to the CBN sintered body a is improved by the T and Zr. Since the eutectic melting point drop occurs due to the three elements, the brazing between the CBN sintered body a and the carbide tool base material M can be performed at a relatively low temperature. As a result, it is possible to suppress the distortion of the CBN sintered body a due to heating to a high temperature and the occurrence of deformation due to the distortion.
  • the bonding layer S between the CBN sintered body a and the carbide tool base material M contains 0.5 or 10% by weight of one or two selected from Ti and Zr. 5 to 25% by weight of one or two selected from Sn and Sn, and 15 to 35% by weight of Cu, with the balance being Ag and unavoidable impurities.
  • This is preferable because it is possible to suppress the occurrence of a gap at the boundary with the alloy base material M.
  • the brazing material contains one or two selected from In and Sn in the range of 5 to 25% by weight, the melting point is lowered and the brazing temperature can be lowered, which is preferable.
  • a group 4a element by using a physical vapor deposition method or a chemical vapor deposition method on the surface of the drill cutting edge, a group 4a element, a group 5a element, a group 6a element, Al, Si , And at least one element selected from the group consisting of B, or at least
  • a coating layer made of at least one compound selected from the group consisting of nitrides, carbides, oxides, and solid solutions of these elements.
  • the test was performed using a drill having the shape shown in FIG. 1 and having a drill diameter (D) of 25 mm and r shown in FIG. 1 and r having the values shown in Table 1.
  • the drill 1A IF in Table 1, eight ⁇ : 72 straight weight%, Rei_11: 26 straight weight%, and 1: 2 through the straight weight% force Ranaru brazing material, a pair of cutting edges of the drill After the CBN sintered body was joined to the carbide tool base material in, the diamond cutting wheel was used to grind the cutting edge of the drill.
  • the width of the bonding layer S shown in FIG. 3B is extremely narrow, the above r or r at each pair of cutting edges of the drill and the CBN firing of the cutting edge are performed.
  • the front cutting edge length of the CBN sintered body at the cutting edge is different.
  • (1) drilling of iron was performed, and the cutting performance was evaluated based on the number of drillings that could be made before the drill deteriorated.
  • Table 2 shows the obtained results.
  • Water-soluble cutting fluid is used.From the results shown in Table 2, the length of the front cutting edge of the CBN sintered body joined to the pair of cutting edges of the drill is different, and a drill with a difference of 0.3 mm or more is used. It can be seen that in Examples 2B, 2D, and 2F, the number of pierced holes significantly increased. That is, it can be seen that the drills of numbers 1B, ID, and IF have excellent continuous machining capabilities. On the other hand, in Comparative Examples 2A and 2C in Table 2, a small chip was found in the CBN sintered body at the boundary between the CBN sintered body at one of the cutting edges of the drill and the carbide tool base material shortly after the test started.
  • Drill 1D shows a case where a small chip is formed in the CBN sintered body near the boundary between the CBN sintered body of one of the cutting edges and the carbide tool base material, and the work material is left uncut. Even in this case, the other cutting edge made of cemented carbide can remove this residue. Therefore, even if a small chip occurs in the CBN sintered body near the boundary between the cutting edge CBN sintered body and the cemented carbide tool base material, the uncut part of the work material due to the chipping is again lost in the CBN sintered body. It is possible to suppress the progress of chipping of the CBN sintered body without applying a large load to the portion where cracks occur. others
  • the CBN sintered body was brazed to the carbide tool base material, the diameter (D) was 34 mm, and the values of r and r shown in Fig. 1 are shown in Table 3.
  • a drill performance test was performed using Nore 3A-3E. This test is based on r and r force drilling.
  • the purpose of this test is to test the effect of 12-mm on cutting performance.
  • drills 3A to 3G are all drills immediately after starting iron drilling. It can be said that any of the blades without chipping has excellent durability.
  • the distance r (mm) from the center axis of the drill to the CBN sintered body joined to one cutting edge of the drill, and the distance from the center axis of the drill to the CBN sintered body joined to the other cutting edge of the drill The distance r (mm) from the center axis of the drill to the CBN sintered body joined to one cutting edge of the drill.
  • Drill 3B with 0.12 ⁇ (r X 2 / D) and (r X 2 / D) ⁇ 0.8, and r ⁇ r
  • the 3F has a larger number of holes than the drills 3A and 3G, which can be drilled in the workpiece before the end of the life of the drill. This indicates that abrasion is unlikely to occur.
  • the sintered body was lined with a cemented carbide consisting of 90% by weight of WC and 10% by weight of Co to obtain a CBN composite sintered body.
  • Drills 6A-6D were manufactured by attaching and joining, and polishing the obtained joined body.
  • the brazing material was adjusted as follows. That is, a metal powder mixture having the composition shown in Table 5 (the numerical value before the element symbol indicates% by weight) was prepared, and this powder was mixed with an organic solvent to prepare brazing materials 5A-5D. The brazing materials 5A-5D were all pasted. Brazing to the cemented carbide tool substrate of CBN composite sintered body, when the case of using the brazing material 5B-5D with row-, brazing material 5A in a vacuum atmosphere of 1 X 10- 5 torr Was performed in an atmosphere. Table 5 shows the brazing temperature when each brazing material was used. The brazing materials 5A-5D shown in Table 5 all have different melting points due to the different types and compositions of metals contained in the force and other components containing Ag or Cu as the main component. Therefore, the brazing shown in Table 5
  • the temperature varies depending on the type of brazing material.
  • drills 6B, 6C, and 6D prepared using brazing materials 5B, 5C, and 5D, which have excellent wettability with the CBN sintered body, respectively, are provided at the boundary between the CBN sintered body and the cemented carbide tool base material. Since there are no gaps in this part, cutting chips are less likely to clog in this part. Therefore, as shown in Table 6, when drills 6B-6D are used, drills 6B-6D are more durable than drills 6A, since drilling can be performed more continuously in the work material than with drill 6A. It was found to be excellent in properties and had a long life.
  • FIG. 1 A front view (A) and a side view (B) of one embodiment of the drill of the present invention.
  • FIG. 2 Front view (A) and side view (B) of a known drill
  • FIG. 3 is an enlarged view of a portion where a CBN sintered body is joined in a known drill cutting edge (A) and a drill cutting edge (B) of the present invention.

Abstract

[PROBLEMS] To provide a drill having an edge with excellent strength and wear resistance less causing chipping at cutting edges and capable of cutting for a long period even if the drill is used for cutting a hard-to-cut material such as cast iron. [MEANS FOR SOLVING PROBLEMS] In the drill with the pair of cutting edges, cubic boron nitride sintered bodies are brazed to a carbide tool base metal on the drill outer peripheral sides of the pair of cutting edges, the length of the front cutting edge of the cubic boron nitride sintered body (a) joined to one edge of the pair of cutting edges and the length of the front cutting edge of the cubic boron nitride sintered body (b) joined to the other cutting edge are differentiated from each other, and a difference in the lengths of the front cutting edges between the cubic boron nitride sintered bodies (a) and (b) is set to 0.3 mm or longer.

Description

明 細 書  Specification
CBN焼結体が接合されたドリノレ  Dolinore with CBN sintered body
技術分野  Technical field
[0001] 本発明は、切れ刃部分に立方晶窒化硼素焼結体が接合されてなる、刃先の強度 および耐摩耗性に優れたドリルに関するものである。  The present invention relates to a drill formed by joining a cubic boron nitride sintered body to a cutting edge portion and having excellent cutting edge strength and wear resistance.
背景技術  Background art
[0002] 微細な立方晶窒化硼素(以下、単に CBNともいう)を種々の結合材を用いて焼結し て得られる CBN焼結体は、高硬度の鉄族金属および铸鉄に対する優れた切削性能 を示す。このような CBN焼結体は、例えば、超硬工具母材上にロウ付け接合されて 切削用チップの刃先、またはドリルもしくはリーマ等の回転工具の刃先に接合されて 使用されている (例えば、特許文献 1および 2参照)。  [0002] A CBN sintered body obtained by sintering fine cubic boron nitride (hereinafter, also simply referred to as CBN) using various binders is excellent in cutting high-hardness iron-group metals and iron. The performance is shown. Such a CBN sintered body is used, for example, by being brazed on a carbide tool base material and joined to a cutting edge of a cutting tip or a cutting edge of a rotary tool such as a drill or a reamer (for example, Patent Documents 1 and 2).
[0003] 特許文献 1 :特開 2001 - 150216号公報  [0003] Patent Document 1: JP 2001-150216 A
特許文献 2 :特開 2000— 317711号公報  Patent Document 2: JP 2000-317711 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記 CBN焼結体をドリルの切れ刃に接合した場合、ドリル回転軸近くにおレ、て切 れ刃の欠けが発生するという問題が生じる場合があることから、ドリルへの CBN焼結 体の使用は、切削用チップへの使用よりも普及していない。  [0004] When the above CBN sintered body is joined to a cutting edge of a drill, a problem may occur in which the cutting edge may be chipped near the rotation axis of the drill. The use of cement is less widespread than for cutting inserts.
[0005] 第 2図に、従来公知の CBN焼結体接合ドリルを示した。このドリルにおいては、ドリ ル中心軸に対して略回転対称な形状を有する CBN焼結体力 S、主に Agおよび Cuな どの軟質金属からなるロウ材を介して、一対の超硬合金製の切れ刃上に接合されて いる。 CBN焼結体が超硬合金に比較して硬度が高くしかも高い耐熱性を有するため に、前記切れ刃は摩耗しにくぐし力、も長寿命であることが期待された。  [0005] Fig. 2 shows a conventionally known drill for joining a CBN sintered body. In this drill, a pair of cemented carbide cuts is made through a CBN sintered body force S, which has a shape that is substantially rotationally symmetric with respect to the center axis of the drill, and a brazing material mainly composed of soft metals such as Ag and Cu. Joined on the blade. Since the CBN sintered body has higher hardness and higher heat resistance as compared with a cemented carbide, the cutting edge was expected to have a long life and a long combing force.
[0006] ドリルを用いた通常の穴あけ加工においては、ドリル自身が回転するとともに被削 材に押し付けられて被削材が切削される。このとき、ドリルの正面切れ刃における切 削速度は、正面切れ刃の部位ごとにドリル中心軸からの距離に応じて異なる値にな る。すなわち、正面切れ刃の部位がドリル中心軸に近いほど、ドリル回転時における その部位の回転半径は小さくなり、したがってその部位の線速度が低くなるために、 その部位における切削速度は低くなる。これとは逆に、正面切れ刃上のある部位がド リルの中心軸から遠いほど、その部位における切削速度は高くなる。したがって、切 削速度が高くなるドリル外周側においては、ドリルの切れ刃に CBN焼結体を接合す ることによって、上述した CBN焼結体の優れた特性により、切れ刃の摩耗量が少なく なり、ドリルの長寿命化が期待できる。しかし、 CBN焼結体はドリル母材として一般に 用いられる超硬合金と比較して強度が低いため、ドリル正面切れ刃上における CBN 焼結体と超硬合金母材との境界部位、および、切削速度が低くしかも切削抵抗が高 くなるドリル中心軸近くの部位においては、 CBN焼結体の欠けおよび/または欠け よりもさらに大きな欠損が生じやすくなるため、ドリルの寿命が短くなり、長時間の切削 カロェが困難であるという問題があった。 [0006] In ordinary drilling using a drill, the drill itself rotates and is pressed against the workpiece to cut the workpiece. At this time, the cutting speed at the front cutting edge of the drill has a different value depending on the distance from the drill center axis for each front cutting edge portion. In other words, the closer the front cutting edge is to the drill center axis, the more Since the radius of gyration of the part is smaller and thus the linear velocity of the part is lower, the cutting speed at the part is lower. Conversely, the farther a point on the front cutting edge is from the center axis of the drill, the higher the cutting speed at that point. Therefore, on the outer peripheral side of the drill where the cutting speed is high, by joining the CBN sintered body to the cutting edge of the drill, the above-mentioned excellent properties of the CBN sintered body reduce the wear of the cutting edge. The service life of the drill can be prolonged. However, since the strength of the CBN sintered body is lower than that of the cemented carbide generally used as the drill base material, the boundary portion between the CBN sintered body and the cemented carbide base material on the drill cutting edge and cutting In the area near the center axis of the drill where the speed is low and the cutting force is high, the chip is likely to have chippings and / or chips larger than the chipping of the CBN sintered body. There was a problem that cutting calories was difficult.
[0007] また、図 2に示した公知例のようにドリルの一対の切れ刃の正面全体に CBN焼結 体を接合した場合は、ドリル回転軸の直近では切削速度が 0に近くなり、切削抵抗が 非常に大きくなるため、超硬合金に比較して強度の低い CBN焼結体に欠けおよび /または欠損 が生じやすいという問題があった。すなわち、本発明は、铸鉄等の難 削材料の切削加工に用いても、切れ刃に欠けが生じにくくかつ長時間の切削加工が 可能であるドリルを提供しょうとするものである。 [0007] Further, when a CBN sintered body is joined to the entire front surface of a pair of cutting edges of a drill as in the known example shown in Fig. 2, the cutting speed becomes close to 0 immediately near the drill rotation axis, and Since the resistance becomes extremely large, there is a problem that a CBN sintered body having a lower strength than a cemented carbide tends to be chipped and / or chipped. That is, the present invention intends to provide a drill which is hardly chipped at a cutting edge and can perform a long-time cutting process even when used for cutting a difficult-to-cut material such as iron.
課題を解決するための手段  Means for solving the problem
[0008] 本発明のドリルは、一対の切れ刃を有するドリルであって、前記一対の各切れ刃の ドリル外周側において超硬工具母材に立方晶窒化硼素焼結体がロウ付け接合され ており、 [0008] A drill according to the present invention is a drill having a pair of cutting edges, wherein a cubic boron nitride sintered body is brazed and joined to a carbide tool base material on the outer peripheral side of the drill of each of the pair of cutting edges. Yes,
前記一対の切れ刃のうち、一方の切れ刃に接合された立方晶窒化硼素焼結体 (a) の正面切れ刃長さと、他方の切れ刃に接合された立方晶窒化硼素焼結体 (b)の正 面切れ刃長さが異なり、かつ前記立方晶窒化硼素焼結体 (a)および (b)の正面切れ 刃長さの差が 0· 3mm以上であることを特徴とするものである。  Of the pair of cutting edges, the front cutting edge length of the cubic boron nitride sintered body (a) joined to one of the cutting edges and the cubic boron nitride sintered body (b) joined to the other cutting edge ), And the difference between the front cutting edges of the cubic boron nitride sintered bodies (a) and (b) is not less than 0.3 mm. .
[0009] さらに上記ドリルにおいては、上記ドリルの中心軸から上記立方晶窒化硼素焼結体 [0009] Further, in the drill, the cubic boron nitride sintered body is arranged from a center axis of the drill.
(a)までの距離!: (mm)、上記ドリルの中心軸から上記立方晶窒化硼素焼結体 (b)ま での距離 r (mm)、および前記ドリルの一方の切れ刃の外側端から他方の切れ刃の 外側端までの長さ D (mm)が以下の関係: Distance to (a) !: (mm), distance r (mm) from the center axis of the drill to the cubic boron nitride sintered body (b), and from the outer edge of one cutting edge of the drill Of the other cutting edge The distance to the outer edge D (mm) is related to:
0. 12≤ (r X 2/D)、および、(r X 2/D)≤0. 8  0.12≤ (r X 2 / D) and (r X 2 / D) ≤0.8
1 2  1 2
を有し、しかも、 r <rであることが好ましい。  It is preferable that r <r.
1 2  1 2
[0010] さらに本発明の上記ドリルにおいては、ドリルの一方の切れ刃の外側端から他方の 切れ刃の外側端までの長さ D力 5. 0 (mm)以上かつ 60 (mm)以下であることが好 ましい。  [0010] Further, in the above-mentioned drill of the present invention, the length from the outer end of one cutting edge to the outer end of the other cutting edge of the drill is not less than 5.0 (mm) and not more than 60 (mm). It is preferable.
[0011] さらに本発明の上記ドリルにおいては、立方晶窒化硼素焼結体と超硬工具母材と が接合層を介してロウ付け接合されており、し力、も前記接合層が Tiおよび Zrから選ば れる一種または二種を 0. 5 20重量%、 Cuを 10 40重量%含み、かつ残部が Ag および不可避不純物からなることが好ましレ、。  [0011] Further, in the drill of the present invention, the cubic boron nitride sintered body and the cemented carbide tool base material are joined by brazing via a joining layer. Preferably, it contains 0.5 or 20% by weight of one or two selected from the group consisting of 0.5% by weight, 10% by weight of Cu, and the balance consisting of Ag and inevitable impurities.
[0012] また、本発明の上記ドリルにおいては、立方晶窒化硼素焼結体と前記超硬工具母 材とが接合層を介してロウ付け接合されており、しかも前記接合層が 20 30重量% の Ti、および 20— 30重量%の Zrを含みかつ残部が Cuおよび不可避不純物からな ることが好ましい。  [0012] In the above-mentioned drill of the present invention, the cubic boron nitride sintered body and the cemented carbide tool base material are joined by brazing via a joining layer, and the joining layer comprises 20 30% by weight. Of Ti and 20-30% by weight of Zr, with the balance being Cu and unavoidable impurities.
[0013] また、本発明の上記ドリルにおいては、立方晶窒化硼素焼結体と前記超硬工具母 材とが接合層を介してロウ付け接合されており、し力も前記接合層が、 Tiおよび Zrか ら選ばれる一種または二種を 0. 5— 10重量%、 Inおよび Snから選ばれる一種また は二種を 5— 25重量%、 Cuを 15— 35重量%含みかつ残部が Agおよび不可避不 純物からなることが好ましい。  [0013] In the drill of the present invention, the cubic boron nitride sintered body and the cemented carbide base material are joined by brazing via a joining layer. 0.5 to 10% by weight of one or two selected from Zr, 5 to 25% by weight of one or two selected from In and Sn, 15 to 35% by weight of Cu, with the balance being Ag and inevitable It is preferably made of impurities.
[0014] さらに、本発明のドリルは、立方晶窒化硼素焼結体表面を含むドリルの切れ刃の表 面に、周期律表 4a族元素、 5a族元素、 6a族元素、 Al、 Si、および Bからなる群から 選ばれる少なくとも一種の元素、または前記少なくとも一種の元素の窒化物、炭化物 、酸化物、およびこれらの固溶体からなる群から選ばれる少なくとも一種の化合物か らなる被覆層を有することが好ましい。  [0014] Further, the drill of the present invention is characterized in that the surface of the cutting edge of the drill including the surface of the cubic boron nitride sintered body has a group 4a element, a group 5a element, a group 6a element, Al, Si, and B having at least one element selected from the group consisting of B, or a coating layer made of at least one compound selected from the group consisting of nitrides, carbides, oxides, and solid solutions of the at least one element. preferable.
発明の効果  The invention's effect
[0015] 本発明のドリルは、ドリルの一対の切れ刃に、正面切れ刃長さが異なる CBN焼結 体をロウ付け接合することにより、ドリル切れ刃の欠けの発生防止や摩耗を抑制する ことができ、ドリルの寿命を長くすることができるという効果を有する。さらに、本発明の ドリルにおいては、本明細書中で説明する特定組成の接合層を介して、ドリルの超硬 工具母材に CBN焼結体を接合することにより、これらの間の強い接合強度を得ること ができ、ドリルの寿命を長くすることができる。さらに、本発明のドリルにおいては、ドリ ルの切れ刃表面に本明細書中で説明する特定組成の被覆層を被覆することによつ て、ドリルの寿命を [0015] In the drill of the present invention, the occurrence of chipping of the drill cutting edge is prevented and wear is suppressed by brazing and joining a CBN sintered body having a different front cutting edge length to a pair of cutting edges of the drill. And has the effect of extending the life of the drill. Furthermore, the present invention In a drill, a strong bonding strength between them can be obtained by bonding a CBN sintered body to the drill's carbide tool base material through a bonding layer of a specific composition described in this specification. , Can extend the life of the drill. Further, in the drill of the present invention, the life of the drill is extended by coating the surface of the cutting edge of the drill with a coating layer having a specific composition described herein.
さらに長くすることができる。  It can be even longer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本明細書中に用いる「CBN焼結体の正面切れ刃長さ」とは、ドリル切れ刃に接合さ れた CBN焼結体のドリル先端部の切れ刃のエッジ上における CBN焼結体両端部( 図 4における Pおよび P )を、ドリル中心軸およびドリル先端部外側端(図 4の P )を [0016] As used herein, the term "front cutting edge length of a CBN sintered body" refers to the CBN sintering on the edge of the cutting edge at the tip of the drill of the CBN sintered body joined to the drill cutting edge. Connect the ends of the body (P and P in Fig. 4) to the center axis of the drill and the outer end of the drill tip (P in
1 2 2 含む平面上に投影したときに、その平面上に投影された Pおよび Pそれぞれのドリ  When projecting on a plane that includes 1 2 2, the P and P
1 2  1 2
ノレ中心軸からの距離の差(図 4の 1 )のことをいう。また、ドリル切れ刃が平面でない場  This refers to the difference in distance from the center axis (1 in Fig. 4). Also, if the drill cutting edge is not flat,
1  1
合の正面切れ刃長さの例を図 5に示す。図 5はドリル中心軸を紙面に垂直にし、ドリ ル先端から見た図であり、切れ刃に接合された CBN焼結体 aの切れ刃長さは 1であ る。  Fig. 5 shows an example of the length of the front cutting edge in this case. Fig. 5 is a view of the center axis of the drill perpendicular to the paper surface and viewed from the tip of the drill. The cutting edge length of the CBN sintered body a joined to the cutting edge is 1.
[0017] 本発明者らは、穴あけ加工に用いられる CBN焼結体接合ドリルの寿命について研 究を行った。その結果、ドリルの一対の切れ刃の外周側に、 CBN焼結体の正面切れ 刃長さが異なるように一対の CBN焼結体を切れ刃にロウ付け接合することによって 得られるドリル力 欠けの発生が少なくかつ摩耗の進行が遅ぐ長い工具寿命を有す ることを見出し、本発明を完成したものである。  The present inventors have studied the life of a CBN sintered body joining drill used for drilling. As a result, on the outer peripheral side of the pair of cutting edges of the drill, the drilling force obtained by brazing and joining the pair of CBN sintered bodies to the cutting edge so that the front cutting edge length of the CBN sintered body is different is obtained. The present invention has been found to have a long tool life in which generation is small and wear progresses slowly, and the present invention has been completed.
[0018] 従来公知の CBN焼結体接合ドリルを第 2図にもとづいて説明する。図 2 (A)は公知 のドリルの正面図、図 2 (B)は公知のドリルの側面図である。公知のドリルは、ドリルの 一対の切れ刃上に、同一形状の CBN焼結体 a'および b'をドリノレ中心軸に対して回 転対称な位置に配置し、ロウ付け接合されている。したがって、図 2において 1 'およ び 1 'は等しぐかつ r 'および r 'も等しい。 CBN焼結体を切れ刃に接合したドリルの A conventionally known CBN sintered body joining drill will be described with reference to FIG. FIG. 2 (A) is a front view of a known drill, and FIG. 2 (B) is a side view of the known drill. In the known drill, CBN sintered bodies a ′ and b ′ having the same shape are arranged on a pair of cutting edges of the drill at rotationally symmetric positions with respect to the central axis of the Dolinole, and brazed. Therefore, in FIG. 2, 1 ′ and 1 ′ are equal and r ′ and r ′ are also equal. For drills in which a CBN sintered body is joined to a cutting edge
2 1 2 2 1 2
製造方法としては、 CBN焼結体を超硬合金によって裏打ちして一体焼結して得られ た CBN複合焼結体の超硬合金側と、ドリルの超硬工具母材とを主に Agおよび/ま たは Cuからなるロウ材を介して、ロウ付け接合する方法が一般的である。 [0019] この方法を用いて製造した従来のドリルにおける超硬工具母材と CBN焼結体との 接合状態を模式的に示したのが図 3 (A)である。図 3において、 Mは超硬工具母材、 a'または b' (以下 a'で代表して説明する)は CBN焼結体、 mは超硬合金、および S はロウ材からなる接合層を表し、 a'および mはあわせて CBN複合焼結体を構成する 。図 3 (A)に示すように、超硬工具母材 Mにロウ付け接合された CBN焼結体 a'とそ の超硬工具母材 Mとの境界部分は、軟質なロウ付け接合層 Sからなつている。しかも 、ロウ材は CBN焼結体と濡れにくいために超硬工具母材 Mと CBN焼結体 a'との境 界部分に隙間が生じる。したがって、このドリルを使用して被削材に対する穴あけ加 ェを行う場合、この境界部分に対して切削抵抗力や摩擦熱が加わる。しかも、この接 合層 Sは軟質金属から成るために、被削材および切削くずとの摩擦により、急速に摩 耗する。 The manufacturing method consists of combining the cemented carbide side of the CBN composite sintered body obtained by backing a CBN sintered body with a cemented carbide and integrally / Or, it is a common method to braze through a brazing material made of Cu. FIG. 3 (A) schematically shows the joining state between the cemented carbide tool base material and the CBN sintered body in a conventional drill manufactured using this method. In Fig. 3, M is a cemented carbide tool base material, a 'or b' (represented below by a ') is a CBN sintered body, m is a cemented carbide, and S is a bonding layer made of brazing material. A 'and m together constitute a CBN composite sintered body. As shown in Fig. 3 (A), the boundary between the CBN sintered body a 'brazed to the carbide tool base material M and the carbide tool base material M is formed by the soft brazing joint layer S From In addition, since the brazing material is hardly wet with the CBN sintered body, a gap is formed at the boundary between the cemented carbide tool base material M and the CBN sintered body a '. Therefore, when drilling a work material using this drill, cutting resistance and frictional heat are applied to this boundary portion. Moreover, since the bonding layer S is made of a soft metal, it is rapidly worn due to friction between the work material and the cutting waste.
[0020] すなわち、切削加工の進行とともに、まず初めに切れ刃の接合層 S付近で集中して 切削抵抗が高くなるか、または接合層 S、特に超硬工具母材 Mと CBN焼結体 a'の境 界部分の隙間に切削くずの詰まりが発生するなどにより、 CBN焼結体 a'と超硬工具 母材 Mとの境界部分で局所的に機械的な負荷が高まり、さらにこの境界付近におい て、比較的強度の低い CBN焼結体に欠けが発生する。そして、この欠けがもとになり 、さらに大きな欠損につながってレ、くという過程を本発明者らは見出した。  [0020] That is, with the progress of the cutting process, the cutting resistance is first concentrated near the joining layer S of the cutting edge, or the joining layer S, especially the cemented carbide tool base material M and the CBN sintered body a As a result, clogging of cutting debris occurs in the gap at the boundary of the boundary between the 'CBN sintered body a' and the carbide tool base metal M, and the mechanical load locally increases. In this case, chipping occurs in a relatively low strength CBN sintered body. The present inventors have found a process in which the lack is caused to lead to a larger defect.
[0021] そのうえ従来は、ドリルの直進性向上および刃先の振れ減少のためには、一対の 切れ刃の各刃の切れ味または切削抵抗が等しくなることが好ましいと考えられ、従来 の CBN焼結体接合ドリルにおいては、超硬工具母材上にロウ付け接合される一対の CBN焼結体の正面切れ刃長さが等しくなり、かつドリル中心軸に対して回転対称に 配置されるように設計されていた。その理由は、切削加工の進行と共にドリルの正面 切れ刃逃げ面には摩耗が生じる力 上述の通り CBN焼結体(例えば図 2における a' および b' )と超硬工具母  [0021] In addition, conventionally, in order to improve the straightness of the drill and reduce the run-out of the cutting edge, it is considered that it is preferable that the sharpness or cutting resistance of each pair of cutting edges is equal, and the conventional CBN sintered body is used. In a joining drill, a pair of CBN sintered bodies that are brazed on a carbide tool base material are designed so that the front cutting edges are equal in length and are arranged rotationally symmetrically with respect to the center axis of the drill. I was The reason for this is that as the cutting process progresses, the wear generated on the flank of the front cutting edge of the drill As described above, the CBN sintered body (for example, a 'and b' in Fig. 2) and the carbide tool base
材 Mとではその耐摩耗性が大きく異なるために、一対の CBN焼結体の正面切れ刃 長さ(例えば図 2における 1 'および 1 ' )が互いに異なる場合、摩耗量も各切れ刃で異  Since the wear resistance of the material M differs greatly from that of the material M, if the length of the front cutting edge of a pair of CBN sintered bodies (for example, 1 'and 1' in Fig. 2) is different from each other, the amount of wear also differs for each cutting edge.
1 2  1 2
なり、一対の切れ刃間で切削抵抗も異なってくると考えられていたからである。  This is because it has been considered that the cutting resistance differs between the pair of cutting edges.
[0022] し力、しながら、本発明者らは、そのような各切れ刃間の摩耗量のアンバランスが問 題となるよりもはるか以前に、 CBN焼結体と超硬工具母材が接合されている境界部 分において欠けおよびさらに大きな欠損が発生し、この欠け等の発生を防止すること 1S ドリルの寿命延長のためには重要であることを見出した。すなわち、ドリルの一対 の切れ刃の外周側にロウ付け接合された CBN焼結体の正面切れ刃長さを異なる長 さにすることにより、 CBN焼結体 (aおよび b)と超硬工具母材 Mとの境界近くにおい て CBN焼結体に欠けが発生しに《なり、ドリルの寿命を大幅に伸ばすことができる ことを見出した。 [0022] However, the present inventors have questioned the imbalance of the amount of wear between the respective cutting edges. Long before the subject, chipping and even larger chipping occurred at the boundary where the CBN sintered body and the cemented carbide tool base metal were joined. Preventing such chipping, etc. 1S drill life I found it important for extension. That is, the CBN sintered body (a and b) and the cemented carbide tool base are made different by changing the length of the front cutting edge of the CBN sintered body brazed to the outer periphery of the pair of cutting edges of the drill to different lengths. In the vicinity of the boundary with the material M, the CBN sintered body was chipped, and it was found that the drill life could be greatly extended.
[0023] 具体的にはまず、切削抵抗が高いドリル中心軸近くにおいては超硬工具母材であ る超硬合金が切れ刃として作用するようにドリルを設計することにより、ドリル中心軸 付近における CBN焼結体の欠けを抑制することが可能である。そして、ドリル外周側 にロウ付け接合されている CBN焼結体の正面切れ刃長さを、一対の切れ刃間で異 なる長さにすることによって、各切れ刃における、ドリル中心軸から CBN焼結体と超 硬工具母材との境界部分までの距離を異なるものにできる。このようにドリルを設計 することによって、一対の切れ刃の一方において、 CBN焼結体と超硬工具母材との 境界位置で欠けや摩耗が発生し、その欠け等によって切削できない取り残しが切削 材料上に生じたとしても、この取り残し位置は他方の切れ刃における CBN焼結体と 超硬工具母材との境界位置には当たらないため、その他方の超硬合金切れ刃また は CBN焼結体切れ刃力 その取り残しを除去することができる。したがって、一方の 切れ刃の CBN焼結体と超硬工具母材との境界位置に欠けが発生したとしても、同じ 切れ刃が切削材料の上記取り残し部分を再度切削しなければならないということには ならず、その切れ刃の境界部分に大きな負荷力 Sかからないため、その切れ刃の境界 部分に近レ、場所にぉレ、て CBN焼結体の欠けや摩耗の進行が生じることを大幅に抑 制できることを見出した。さらに、 CBN焼結体と超硬工具母材を接合するロウ材として Tiおよび Zまたは Zrを含む特定組成のロウ材を用いることにより、超硬工具母材に 対するロウ材の濡れ性を高め、 CBN焼結体と超硬工具母材との接合部において隙 間が生じにくくできることを見いだした。  Specifically, first, the drill is designed so that the cemented carbide, which is the base material of the cemented carbide tool, acts as a cutting edge near the center axis of the drill, where the cutting resistance is high. Chipping of the CBN sintered body can be suppressed. Then, the length of the front cutting edge of the CBN sintered body brazed to the outer peripheral side of the drill is made different between the pair of cutting edges, so that the CBN is sintered from the center axis of the drill at each cutting edge. The distance to the boundary between the consolidated body and the carbide tool base material can be different. By designing the drill in this way, chipping or wear occurs at one of the pair of cutting edges at the boundary between the CBN sintered body and the cemented carbide base material, and the remaining material that cannot be cut due to the chipping etc. Even if it occurs above, the remaining position does not correspond to the boundary position between the CBN sintered body and the cemented carbide base material at the other cutting edge, so the other cemented carbide cutting edge or CBN sintered body Cutting edge force The residual can be removed. Therefore, even if one of the cutting edges is chipped at the boundary between the CBN sintered body and the carbide tool base material, the same cutting edge must still cut the remaining portion of the cutting material again. In addition, since a large load S is not applied to the boundary of the cutting edge, the occurrence of chipping and wear of the CBN sintered body is greatly reduced near the boundary of the cutting edge and in the location. I found that I could control. Furthermore, by using a brazing material having a specific composition containing Ti, Z or Zr as a brazing material for joining the CBN sintered body and the cemented carbide base material, the wettability of the brazing material with the cemented carbide base material is improved. It has been found that a gap can be hardly generated at the joint between the CBN sintered body and the carbide tool base material.
[0024] 本発明のドリルを図 1に基づいて説明する。図 1Aはドリル先端からドリル中心軸方 向にみた正面図である。図 1Bは同じドリルをドリノレ中心軸に対して垂直方向からみた 側面図である。ドリル 1は、切れ刃 2および切れ刃 3を有し、切れ刃 2および 3のドリル の外周側、すなわち各切れ刃の外端部側にはそれぞれ CBN焼結体 aおよび bが超 硬工具母材 Mにロウ付け接合されている。このドリルの切れ刃の CBN焼結体接合部 分を示したのが図 3 (B)である。 CBN焼結体 aおよび bをそれぞれ超硬合金 mによつ て裏打ちして一体焼結して得られた、 aおよび m、ならびに bおよび mからなる CBN複 合焼結体の超硬合金 m側と、超硬工具母材 Mとをロウ材 Sによりロウ付け接合し、切 れ刃が構成されている。 [0024] A drill according to the present invention will be described with reference to FIG. Fig. 1A is a front view of the drill tip as viewed from the center axis of the drill. Figure 1B shows the same drill as seen from the direction perpendicular to the central axis of Dolinole It is a side view. The drill 1 has a cutting edge 2 and a cutting edge 3, and the CBN sintered bodies a and b are respectively provided on the outer peripheral side of the drill of the cutting edges 2 and 3, that is, on the outer end side of each cutting edge. Brazed to material M. Figure 3 (B) shows the joint of the cutting edge of this drill with the CBN sintered body. CBN composite sintered body consisting of a and m , and b and m, obtained by integrally sintering CBN sintered bodies a and b with cemented carbide m The side and the carbide tool base material M are joined by brazing with a brazing material S to form a cutting edge.
[0025] 図 1 Aに示すドリルにおいて、一方のドリル切れ刃の外側端から他方のドリル切れ刃 の外側端までの長さ(以下、単にドリル直径とも記す)は Dであり、ドリノレ中心軸から一 方のドリル切れ刃の外側端までの距離(以下、単にドリル半径とも記す)は 1Z2Dで ある。また、切れ刃 2に接合された CBN焼結体 aの切れ刃長さは 1、ドリル中心軸から  [0025] In the drill shown in Fig. 1A, the length from the outer end of one of the drill cutting edges to the outer end of the other drill cutting edge (hereinafter, also simply referred to as the drill diameter) is D, and is the distance from the central axis of the drill. The distance to the outer edge of one of the drill cutting edges (hereinafter simply referred to as drill radius) is 1Z2D. The cutting edge length of the CBN sintered body a joined to cutting edge 2 is 1,
1  1
その CBN焼結体までの距離は rである。一方、切れ刃 3に接合された CBN焼結体 b  The distance to the CBN sintered body is r. On the other hand, the CBN sintered body b
1  1
の切れ刃長さは 1、ドリル中心軸からその CBN焼結体までの距離は rである。  The cutting edge length is 1, and the distance from the drill axis to its CBN sintered body is r.
2 2  twenty two
[0026] 本発明のドリルは、たとえ一方の切れ刃における CBN焼結体と超硬工具母材との 境界位置に対応する位置にぉレ、て被切削材料が切削され残った場合でも、続レ、て 他方の切れ刃  [0026] The drill according to the present invention continues even if the material to be cut is left at a position corresponding to the boundary position between the CBN sintered body and the cemented carbide base material on one of the cutting edges and remains. Re, the other cutting edge
がその材料を切削するときに、その切削材料が取り残された位置に CBN焼結体と超 硬工具母材との境界位置が来ないようにするとともに、 CBN焼結体切れ刃または超 硬合金切れ刃によってその取り残し部分を切削可能にするものである。そのようにし て、それぞれの切れ刃の CBN焼結体と超硬工具母材との境界付近において、 CBN 焼結体に欠けなどが生じることを抑制するものである。そのために、上記切れ刃長さ 1 および切れ刃長さ 1を異なる値にする力 その差が小さい場合は上述した本発明の  When cutting the material, make sure that the boundary between the CBN sintered body and the carbide tool base material does not come to the position where the cutting material is left behind, and also the cutting edge of the CBN sintered body or cemented carbide. The remaining portion can be cut by the cutting edge. In this way, chipping of the CBN sintered body near the boundary between the CBN sintered body of each cutting edge and the carbide tool base material is suppressed. Therefore, the cutting edge length 1 and the force to make the cutting edge length 1 different values If the difference is small, the above-described present invention
2  2
効果が充分に得られない場合があることから、 1と 1の差は 0. 3mm以上であることが  The difference between 1 and 1 should be at least 0.3 mm, because the effect may not be sufficient.
1 2  1 2
好ましぐ 0. 5mm以上であることがさらに好ましい。  More preferably, it is more preferably 0.5 mm or more.
[0027] さらに、本発明のドリルにおいては、ドリルの中心軸から CBN焼結体 aまでの距離 r Further, in the drill of the present invention, the distance r from the center axis of the drill to the CBN sintered body a
(mm)、ドリルの中心軸から CBN焼結体 bまでの距離 r、およびドリル直径 D (mm)  (mm), the distance r from the center axis of the drill to the CBN sintered body b, and the drill diameter D (mm)
2  2
が以下の関係:  Has the following relationship:
0. 12≤ (r X 2/D)、および、(r X 2/D)≤0. 8 を有し、しかも、 r <rであることが好ましい。この場合、前記ドリルの一対の切れ刃に 0.12≤ (r X 2 / D) and (r X 2 / D) ≤0.8 It is preferable that r <r. In this case, the pair of cutting edges of the drill
1 2  1 2
おいて、中心軸力 それぞれの CBN焼結体までの距離のうち、短い方を r、長い方 を rと定めればよい。  In this case, of the distances to the respective CBN sintered bodies, the shorter one may be determined as r and the longer one as r.
2  2
[0028] 上記条件は、本発明のドリノレにおいては、ドリルの中心軸から CBN焼結体 aまたは bまでの距離 rとでとが異なる値であるとともに、ドリル半径 (D/2)に対する rおよび r  [0028] The above conditions are different values for the distance r from the center axis of the drill to the CBN sintered body a or b, and the r and the drill radius (D / 2) r
1 2 1 のそれぞれの割合を 0. 12以上とし、かつドリル半径 (D/2)に対する rの割合を 0. The ratio of each of 1 2 1 is 0.12 or more, and the ratio of r to the drill radius (D / 2) is 0.1.
2 2 twenty two
8以下とすることが好ましいことを示す。ドリル中心軸近くでは切削抵抗が急激に高く なるため、ドリル半径 (D/2)に対する rの割合が 0. 12未満の場合は、ドリル切れ刃 に接合された CBN焼結体 aへの負荷が大きくなり、 CBN焼結体に欠けの発生および 欠けの進行が起こりやすくなる。一方、切れ刃の各部位における切削速度は、ドリノレ の中心軸から離れるほど大きくなる。したがって、ドリル半径(DZ2)に対する rの割  It shows that it is preferable to be 8 or less. When the ratio of r to the drill radius (D / 2) is less than 0.12, the load on the CBN sintered compact a joined to the drill cutting edge will increase if the cutting force increases sharply near the center axis of the drill. The size of the CBN sintered body becomes large, and chipping and chipping are likely to occur in the CBN sintered body. On the other hand, the cutting speed at each part of the cutting edge increases as the distance from the center axis of the drenole increases. Therefore, the ratio of r to the drill radius (DZ2)
2 合が 0. 8を超える場合は、切削速度の高い部分の切れ刃が超硬合金によって構成 されていることになり、超硬合金切れ刃の摩耗が著しく速くなる。したがって、 rおよび rはドリル半径に対して 0. 12-0. 8の割合の範囲内であることが好ましい。  When the ratio exceeds 0.8, the cutting edge at the high cutting speed is made of cemented carbide, and the wear of the cemented carbide cutting edge is significantly increased. Therefore, r and r are preferably in the range of 0.12-0.8 with respect to the drill radius.
2  2
[0029] 本発明のドリルにおいては、ドリルの一方の切れ刃の外側端力 他方の切れ刃の 外側端までの長さ、すなわち図 1Aにおけるドリルの直径 D力 5. 0 (mm)以上かつ 6 0 (mm)以下であることが好ましい。ドリルの直径 Dが 5. 0(mm)未満の場合、ドリルの 心厚が小さくなるため、ドリルの強度が低下して折れやすくなる。また、ドリルの直径 D 力 ¾0 (mm)を超える場合には、材料切削時の抵抗が大きくなり、ドリルを回転させる ために大きなトルクが必要となり、一般的なドリルに用いられる機械動力を超えてしま うため、所望の加工精度を確保できなくなる。  [0029] In the drill of the present invention, the outer end force of one cutting edge of the drill and the length to the outer end of the other cutting edge, that is, the diameter D of the drill in Fig. 1A D force 5.0 (mm) or more and 6 It is preferably 0 (mm) or less. When the diameter D of the drill is less than 5.0 (mm), the core thickness of the drill becomes small, so that the strength of the drill is reduced and the drill is easily broken. In addition, when the diameter D of the drill exceeds ¾0 (mm), the resistance when cutting the material increases, and a large torque is required to rotate the drill, which exceeds the mechanical power used for general drills. As a result, the desired processing accuracy cannot be secured.
[0030] また上述のとおり、本発明のドリルにおいては、図 3に示すように CBN焼結体(aお よび b)を超硬合金 mで裏打ちして一体焼結した材料と、超硬工具母材 Mとを、ロウ 材からなる接合層 Sを介して接合するものであるが、これらの各材料を以下に具体的 に説明する。  [0030] As described above, in the drill of the present invention, as shown in Fig. 3, a material obtained by backing a CBN sintered body (a and b) with a cemented carbide m and integrally sintering the same is used. The base material M is joined through a joining layer S made of a brazing material. Each of these materials will be specifically described below.
[0031] 図 3に示した超硬工具母材 M、超硬合金 m、および CBN焼結体 a (以下、図 1Aの b においても aと同じである)は、当技術分野において公知の材料を用いることができる 。例えば、超硬工具母材 Mには、 JIS B4053に規定される P種、 K種、および M種 のいずれの超硬合金も使用できる力 铸鉄材料カ卩ェ用には K種を用レ、、鋼材料加工 用には P種材料を用いることが好ましい。同様に超硬合金 mにも上記の P種、 K種、 および M種のいずれの超硬合金も使用できる力 CBN焼結体との接合性の良さを 考慮した場合、 K種材料を用いることが好ましい。また、 CBN焼結体 aとしては、 35— 90容量%の範 [0031] The cemented carbide tool base material M, the cemented carbide m, and the CBN sintered body a (hereinafter also referred to as "b" in Fig. 1A) shown in Fig. 3 are materials known in the art. Can be used. For example, carbide tool base material M has P, K, and M types specified in JIS B4053. 力 The ability to use any of the cemented carbides. K It is preferable to use K-class for iron materials and P-class materials for steel material processing. Similarly, any of the above P, K, and M cemented carbides can be used for cemented carbide m.K class material should be used in consideration of good bondability with CBN sintered body. Is preferred. The CBN sintered body a is in the range of 35-90% by volume.
囲内で CBNを含む焼結体が挙げられ、铸鉄材料を加工する場合には 75 90容量 %の範囲内で CBNを含む焼結体が好ましぐ鋼材料をカ卩ェする場合には 40 70 容量%の範囲内で CBNを含む焼結体が好ましい。  Sintered bodies containing CBN are listed in the box. When processing iron materials, 75 to 90% by volume can be used to reduce the steel materials preferred by sintered bodies containing CBN. A sintered body containing CBN in the range of 70% by volume is preferred.
[0032] 上記接合に Agや Cuを含む従来公知のロウ材を用いた場合は、ロウ材が CBN焼結 体と濡れにくいため、 CBN焼結体に裏打ちされた超硬合金 mと超硬工具母材 Mとの 間だけがロウ材により接合され、 CBN焼結体 aと超硬工具母材 Mとの間は直接接合 されにくいために、 CBN焼結体 aと超硬工具母材 Mの境界部分に隙間が生じやすい 。このため、この隙間に切削くずが詰まりやすいという問題があった。  [0032] When a conventionally known brazing material containing Ag or Cu is used for the joining, the brazing material is hard to wet the CBN sintered body, so the cemented carbide m lined with the CBN sintered body and the cemented carbide tool are used. Since only the space between the base material M and the CBN sintered body a is hardly directly bonded to the cemented carbide tool base material M, the CBN sintered body a and the cemented carbide tool base material M A gap is easily formed at the boundary. For this reason, there has been a problem that cutting waste is likely to be clogged in this gap.
[0033] 本発明においてはこの接合層 Sに用いるロウ材として、 Tiおよび Zrから選ばれる一 種または二種を 0. 5— 20重量%、 Cuを 10— 40重量%含み、かつ残部が Agおよび 不可避不純物からなるロウ材を用いることが好ましい。このように Agおよび Cuの合金 中に、 Tほたは Zrから選ばれる一種または二種を添カ卩することにより、 CBN焼結体 a の表面に対するロウ材の濡れ性を大幅に改善することができ、 CBN焼結体 aと超硬 工具母材 Mとの間のロウ付け接合が可能となる。このため、 CBN焼結体 aと超硬工具 母材 Mとの境界部分の隙間を無くす力または著しく小さくでき、この部分に切削くず が詰まることを抑制できるため好ましい。  In the present invention, the brazing material used in the bonding layer S contains 0.5 to 20% by weight of one or two selected from Ti and Zr, 10 to 40% by weight of Cu, and the balance is Ag. Further, it is preferable to use a brazing material composed of unavoidable impurities. As described above, by adding one or two kinds selected from T and Zr to the alloy of Ag and Cu, the wettability of the brazing material to the surface of the CBN sintered body a can be significantly improved. Thus, brazing joining between the CBN sintered body a and the carbide tool base material M becomes possible. For this reason, the force for eliminating the gap at the boundary portion between the CBN sintered body a and the carbide tool base material M can be reduced or significantly reduced, and it is preferable because clogging of the portion with cutting chips can be suppressed.
[0034] 上記ロウ材に含まれる Tiまたは Zrから選ばれる一種または二種が 0. 5重量%未満 の場合は、 CBN焼結体 aに対するロウ材の濡れ性改善の効果が生じず、逆に 20重 量%を超えるとロウ材の融点が上昇するため、ロウ付け時に CBN焼結体 aの歪みや その歪みに起因するヮレが発生しやすくなる。また、超硬工具母材 Mに CBN焼結体 aをロウ付けする場合は CBN焼結体 aの歪みや割れ防止のために高温でロウ付けし ないことが好ましレ、が、ロウ材の主成分である Agに対して Cuの含有量を 10— 30重 量%とすることにより、 Agと Cuによる共晶融点降下が生じ、低温でのロウ付けが可能 となるために好ましい。 When the content of one or two selected from Ti or Zr contained in the brazing material is less than 0.5% by weight, the effect of improving the wettability of the brazing material with respect to the CBN sintered body a does not occur. If the content exceeds 20% by weight, the melting point of the brazing material rises, so that the CBN sintered body “a” tends to be distorted during brazing, and cracking due to the distortion is likely to occur. When brazing the CBN sintered body a to the carbide tool base material M, it is preferable not to braze at a high temperature in order to prevent distortion and cracking of the CBN sintered body a. By setting the Cu content to 10-30% by weight with respect to Ag, the main component, the eutectic melting point drops due to Ag and Cu, and brazing at low temperatures is possible. Is preferable.
[0035] 以上説明した理由と同じ理由により、 CBN焼結体 aと超硬工具母材 Mとを、 20— 3 0重量%の Ti、および 20— 30重量%の Zrを含み、かつ残部が Cuおよび不可避不 純物からなるロウ材で接合して接合層 Sを形成することにより、 CBN焼結体 aと超硬 合金母材 Mとの境界部分に隙間が生じることを抑制できるために好ましい。  [0035] For the same reason as described above, the CBN sintered body a and the cemented carbide tool base material M contain 20-30% by weight of Ti and 20-30% by weight of Zr, and the balance is It is preferable to form a bonding layer S by joining with a brazing material made of Cu and unavoidable impurities, because it is possible to suppress a gap from being generated at a boundary portion between the CBN sintered body a and the cemented carbide base material M. .
[0036] ロウ材が上記範囲内の Tiおよび Zrを含みかつ残部が Cuと不可避不純物からなる 場合、 CBN焼結体 aに対するロウ材の濡れ性が Tほたは Zrによって改善されるととも に、 3種の元素による共晶融点降下が生じるために、 CBN焼結体 aと超硬工具母材 Mとのロウ付けを比較的低温で行うことができる。これにより、高温に加熱することによ る CBN焼結体 aの歪みやこれに起因するヮレの発生を抑制することが可能となる。  [0036] When the brazing material contains Ti and Zr within the above range and the balance consists of Cu and unavoidable impurities, the wettability of the brazing material with respect to the CBN sintered body a is improved by the T and Zr. Since the eutectic melting point drop occurs due to the three elements, the brazing between the CBN sintered body a and the carbide tool base material M can be performed at a relatively low temperature. As a result, it is possible to suppress the distortion of the CBN sintered body a due to heating to a high temperature and the occurrence of deformation due to the distortion.
[0037] 以上説明した理由と同じ理由により、 CBN焼結体 aと超硬工具母材 Mとの接合層 S に、 Tiおよび Zrから選ばれる一種または二種を 0. 5 10重量%、 Inおよび Snから 選ばれる一種または二種を 5— 25重量%、および Cuを 15— 35重量%含み、かつ 残部が Agおよび不可避不純物からなるロウ材を用いることにより、 CBN焼結体 aと超 硬合金母材 Mとの境界部分に隙間が生じることを抑制できるために好ましい。この場 合、ロウ材が Inおよび Snから選ばれる一種または二種を 5— 25重量%の範囲内で 含む場合に融点降下が生じ、ロウ付け可能温度を低くすることができるため好ましい  [0037] For the same reason as described above, the bonding layer S between the CBN sintered body a and the carbide tool base material M contains 0.5 or 10% by weight of one or two selected from Ti and Zr. 5 to 25% by weight of one or two selected from Sn and Sn, and 15 to 35% by weight of Cu, with the balance being Ag and unavoidable impurities. This is preferable because it is possible to suppress the occurrence of a gap at the boundary with the alloy base material M. In this case, when the brazing material contains one or two selected from In and Sn in the range of 5 to 25% by weight, the melting point is lowered and the brazing temperature can be lowered, which is preferable.
[0038] さらに本発明のドリルにおいては、ドリル切れ刃の表面に、物理的蒸着方法または 化学的蒸着方法を用いることによって、周期律表 4a族元素、 5a族元素、 6a族元素、 Al、 Si、および Bからなる群から選択される少なくとも一種の元素、または前記少なく と [0038] Further, in the drill of the present invention, by using a physical vapor deposition method or a chemical vapor deposition method on the surface of the drill cutting edge, a group 4a element, a group 5a element, a group 6a element, Al, Si , And at least one element selected from the group consisting of B, or at least
も一種の元素の窒化物、炭化物、酸化物、およびこれらの固溶体からなる群から選 ばれる少なくとも一種の化合物からなる被覆層を形成することが好ましい。ドリル切れ 刃の表面に前記被覆層を形成することによって、ドリルの切れ刃表面の耐摩耗性を 向上でき、ドリルの寿命の伸ばすことが可能となる。  It is also preferable to form a coating layer made of at least one compound selected from the group consisting of nitrides, carbides, oxides, and solid solutions of these elements. By forming the coating layer on the surface of the drill cutting edge, the wear resistance of the drill cutting edge surface can be improved, and the life of the drill can be extended.
実施例  Example
[0039] 以下に実施例に基づいて本発明をさらに説明するが、本発明は実施例に限定され るものではない。 Hereinafter, the present invention will be further described based on examples, but the present invention is not limited to the examples. Not something.
[0040] [実施例その 1]  [Example 1]
図 1に示した形状を有し、かつドリル直径(D)が 25mmであり、図 1に示した rおよ び rが表 1に示す値を有するドリルを用いて試験を行った。  The test was performed using a drill having the shape shown in FIG. 1 and having a drill diameter (D) of 25 mm and r shown in FIG. 1 and r having the values shown in Table 1.
2  2
[0041] [表 1] 表 1  [Table 1] Table 1
Figure imgf000013_0001
Figure imgf000013_0001
ドリ レ外径: 2 5 mm  Outer diameter of drill: 25 mm
[0042] 表 1中のドリル 1A IFは、八§ : 72直量%、〇11: 26直量%、および 1 : 2直量%力 らなるロウ材を介して、ドリルの一対の切れ刃において超硬工具母材に CBN焼結体 を接合した後、ダイヤモンド砥石を用レ、てドリルの切れ刃を研磨することによって製造 した。本実施例および比較例においては、図 3Bに示される接合層 Sの幅はきわめて 狭いため、ドリルの一対の各切れ刃における上記 rまたは rとその切れ刃の CBN焼 [0042] The drill 1A IF in Table 1, eight §: 72 straight weight%, Rei_11: 26 straight weight%, and 1: 2 through the straight weight% force Ranaru brazing material, a pair of cutting edges of the drill After the CBN sintered body was joined to the carbide tool base material in, the diamond cutting wheel was used to grind the cutting edge of the drill. In this example and the comparative example, since the width of the bonding layer S shown in FIG. 3B is extremely narrow, the above r or r at each pair of cutting edges of the drill and the CBN firing of the cutting edge are performed.
1 2  1 2
結体の正面切れ刃長さとの合計は、実質的に 12. 5mmとなる。表 1に示した比較例 1A、 1C、および IEにおいては、ドリルの一対の CBN焼結体の正面切れ刃長さは等 しいのに対して、実施例 1B、 1D、および IFのドリルでは、 rと rが異なるとともに各  The sum with the front cutting edge length of the body is practically 12.5 mm. In Comparative Examples 1A, 1C, and IE shown in Table 1, the front cutting edge lengths of the pair of CBN sintered bodies of the drills are equal, whereas in the drills of Examples 1B, 1D, and IF, r and r are different and each
1 2  1 2
切れ刃における CBN焼結体の正面切れ刃長さが異なる。表 1に示したドリルを用い て铸鉄の穴あけ加工を行レ、、ドリルが劣化するまでに穴あけ加工ができた数によって 切削性能を評価した。得られた結果を表 2に示した。  The front cutting edge length of the CBN sintered body at the cutting edge is different. Using the drills shown in Table 1, (1) drilling of iron was performed, and the cutting performance was evaluated based on the number of drillings that could be made before the drill deteriorated. Table 2 shows the obtained results.
[0043] [表 2] 表 2 [Table 2] Table 2
Figure imgf000014_0001
Figure imgf000014_0001
被削材: F C 2 0 0 (錶鉄)  Work material: F C 200 (iron)
切削条件: ドリルの回転数 8 0 0 0 ( r p m)  Cutting conditions: Number of rotations of drill 800 0 0 (r p m)
ドリルの送り量 0. 1 (mm/刃)  Drill feed amount 0.1 (mm / blade)
加工穴深さ 3 0 (mm)  Hole depth 30 (mm)
水溶性切削液を使用 表 2に示した結果から、ドリルの一対の切れ刃に接合された CBN焼結体の正面切 れ刃長さが異なり、その差が 0. 3mm以上であるドリルを用いた実施例 2B、 2D、およ び 2Fにおいて穴あけできた数が著しく多くなることがわかる。すなわち、番号 1B、 ID 、および IFのドリルが優れた連続加工能力を有することがわかる。これに対し、表 2の 比較例 2Aおよび 2Cでは、試験開始後短時間でドリルの一方の切れ刃の CBN焼結 体と超硬工具母材との境界部分で CBN焼結体に小さな欠けが生じ、この部分が被 削材料を切削したときに材料を削り残し、この削り残し部分がドリルの他方の切れ刃 の CBN焼結体と超硬工具母材との境界部分にあたることによって、他方の切れ刃の CBN焼結体にも欠けが生じた。一方の切れ刃の欠けが他方の切れ刃の欠けの成長 を促進するという機構により、切れ刃の CBN焼結体の欠けが急速に進行し、最終的 には被削材をカ卩ェできなくなるほどの大きな切れ刃の欠損を引き起こしたため、ドリ ノレ 1A (比較例 2A)およびドリル 1C (比較例 2C)は少ない数の穴あけ加工しかできな かった。また、ドリル 1E (比較例 2E)では、 rおよび r力 Sドリル 1Aおよびドリル 1Cより  Water-soluble cutting fluid is used.From the results shown in Table 2, the length of the front cutting edge of the CBN sintered body joined to the pair of cutting edges of the drill is different, and a drill with a difference of 0.3 mm or more is used. It can be seen that in Examples 2B, 2D, and 2F, the number of pierced holes significantly increased. That is, it can be seen that the drills of numbers 1B, ID, and IF have excellent continuous machining capabilities. On the other hand, in Comparative Examples 2A and 2C in Table 2, a small chip was found in the CBN sintered body at the boundary between the CBN sintered body at one of the cutting edges of the drill and the carbide tool base material shortly after the test started. This part is left uncut when the work material is cut, and this uncut part strikes the boundary between the CBN sintered body of the other cutting edge of the drill and the carbide tool base material, thereby causing the other part to be cut. Chipping also occurred in the cutting edge CBN sintered body. Due to the mechanism whereby the chipping of one cutting edge promotes the growth of the chipping of the other cutting edge, the chipping of the CBN sintered body at the cutting edge progresses rapidly, and eventually the work material cannot be removed. Due to the occurrence of an extremely large loss of cutting edge, the drill 1A (Comparative Example 2A) and the drill 1C (Comparative Example 2C) were able to drill only a small number of holes. In drill 1E (Comparative Example 2E), r and r forces were lower than those of S drill 1A and drill 1C.
1 2  1 2
も大きぐ切れ刃の CBN焼結体と超硬工具母材の境界部分における切削速度が高 いために、境界部分近くの超硬合金からなる切れ刃部分が急速に摩耗される。一方 の切れ刃が急速に摩耗することにより、摩耗された部分の切れ刃が切削材料を削り 残すため、他方の切れ刃上の対応する位置もまた急速に摩耗される。これらが相互 に作用してドリル切れ刃の摩耗が急速に進行したため、ドリル 1Eは少ない数の穴あ け加工しかできな力 た。 Due to the high cutting speed at the boundary between the CBN sintered body with the large cutting edge and the cemented carbide base material, the cutting edge made of cemented carbide near the boundary is rapidly worn. on the other hand Due to the rapid wear of one of the cutting edges, the corresponding position on the other cutting edge is also rapidly worn since the cutting edge of the worn part leaves the cutting material. These interacted with each other and the wear of the drill cutting edge progressed rapidly, so the drill 1E was able to drill only a small number of holes.
[0045] これに対して、 CBN焼結体の正面切れ刃長さ 1および 1が異なるドリル 1B (実施例 [0045] On the other hand, a drill 1B having different front cutting edge lengths 1 and 1 of the CBN sintered body (Example
1 2  1 2
2B)およびドリル 1D (実施例 2D)では、一方の切れ刃の CBN焼結体と超硬工具母 材の境界近くの CBN焼結体に小さな欠けが生じて被削材料を削り残した場合であつ ても、他方の切れ刃の超硬合金からなる刃がこの肖 ijり残しを除去できる。したがって、 切れ刃の CBN焼結体と超硬工具母材の境界付近で CBN焼結体に小さな欠けが発 生した場合でも、その欠けによる被削材の削り残しが再び CBN焼結体の欠けが発生 した部分に大きな負荷をかけることがなぐ CBN焼結体の欠けが進行することを抑制 できる。このた  2B) and Drill 1D (Example 2D) show a case where a small chip is formed in the CBN sintered body near the boundary between the CBN sintered body of one of the cutting edges and the carbide tool base material, and the work material is left uncut. Even in this case, the other cutting edge made of cemented carbide can remove this residue. Therefore, even if a small chip occurs in the CBN sintered body near the boundary between the cutting edge CBN sintered body and the cemented carbide tool base material, the uncut part of the work material due to the chipping is again lost in the CBN sintered body. It is possible to suppress the progress of chipping of the CBN sintered body without applying a large load to the portion where cracks occur. others
めに、各比較例に対して、各実施例において工具寿命が大きく伸びた。また、ドリル 1 F (実施例 2F)においては、一方の切れ刃の CBN焼結体と超硬合金母材の境界部 分付近の超硬合金の切れ刃に摩耗が生じ、被削材の削り残しを生じたとしても、他方 の切れ刃の CBN焼結体切れ刃がその削り残しを切削して除去できる。これにより、超 硬合金切れ刃部分の摩耗の進行を抑制することが可能となり、工具寿命を大きく伸 ばすことができた。  For this reason, the tool life was significantly extended in each example with respect to each comparative example. In addition, in drill 1F (Example 2F), the cutting edge of the cemented carbide near the boundary between the CBN sintered body and the cemented carbide base material on one of the cutting edges was worn, and the material was cut. Even if a residue occurs, the other cutting edge of the CBN sintered body cutting edge can remove and remove the uncut portion. This made it possible to suppress the progress of wear of the cemented carbide cutting edge, and greatly extended the tool life.
[0046] [実施例その 2] [Example 2]
図 1に示したように超硬工具母材に CBN焼結体がロウ付け接合されており、直径( D)が 34mmであり、さらに図 1に示した rおよび rの値が表 3に示された値であるドリ  As shown in Fig. 1, the CBN sintered body was brazed to the carbide tool base material, the diameter (D) was 34 mm, and the values of r and r shown in Fig. 1 are shown in Table 3. The value of the drill
1 2  1 2
ノレ 3A— 3Eを用いて、ドリルの切削性能試験を行った。この試験は、 rおよび r力ドリ  A drill performance test was performed using Nore 3A-3E. This test is based on r and r force drilling.
1 2 ルの切削性能に及ぼす影響を試験することを目的としたものである。  The purpose of this test is to test the effect of 12-mm on cutting performance.
[0047] [表 3] 表 3 [Table 3] Table 3
Figure imgf000016_0001
Figure imgf000016_0001
ドリノレ直径 (D) : 34mm  Dorinore diameter (D): 34mm
[0048] 表 3に示したドリル 3A— 3Gを使用し、表 4下に示す条件を用いて铸鉄の穴あけ加 ェ試験を行い、得られた結果を表 4に示した。表 4には、各ドリルを使用して錶鉄に連 続して穴あけ加工を行レ、、正常な穴あけができなくなるまでにあけることができた穴の 数を示した。 [0048] Using a drill 3A-3G shown in Table 3, a drilling test was performed on iron using the conditions shown in the lower part of Table 4, and the obtained results are shown in Table 4. Table 4 shows the number of holes that could be drilled before normal drilling could not be performed using each drill.
[0049] [表 4] 表 4  [Table 4] Table 4
Figure imgf000016_0002
Figure imgf000016_0002
被削材: FC250 (錶鉄)  Work material: FC250 (錶 iron)
切削条件: ドリルの回転数 5000 ( r pm)  Cutting conditions: Drill rotation speed 5000 (rpm)
ドリルの送り量 0. 1 2 (mm/刃)  Drill feed amount 0.1 2 (mm / blade)
加工穴深さ 35 (mm)  Hole depth 35 (mm)
水溶性切削液を使用 表 4に示したとおり、ドリル 3A— 3Gはいずれも铸鉄の穴あけ加工開始直後にドリル の刃の欠けが生じることはなぐいずれも優れた耐久性を有するといえる。しかし、ドリ ルの中心軸からドリルの一方の切れ刃に接合された CBN焼結体までの距離 r (mm) 、ドリルの中心軸からドリルの他方の切れ刃に接合された CBN焼結体までの距離 r ( Use water-soluble cutting fluid. As shown in Table 4, drills 3A to 3G are all drills immediately after starting iron drilling. It can be said that any of the blades without chipping has excellent durability. However, the distance r (mm) from the center axis of the drill to the CBN sintered body joined to one cutting edge of the drill, and the distance from the center axis of the drill to the CBN sintered body joined to the other cutting edge of the drill The distance r (
2 mm)、およびドリルの直径 D (mm)との間に以下の関係:  2 mm) and the diameter D (mm) of the drill:
0. 12≤ (r X 2/D)、および(r X 2/D)≤0. 8を有し、しかも r <rであるドリル 3B  Drill 3B with 0.12≤ (r X 2 / D) and (r X 2 / D) ≤0.8, and r <r
1 2 1 2  1 2 1 2
一 3Fは、ドリル 3Aおよび 3Gよりもドリルの寿命が尽きるまでに被削体に穴あけできた 数が多ぐ切れ刃に接合された CBN焼結体の欠けおよび超硬合金からなる切れ刃 部分の摩耗が生じにくいことを示してレ、る。  (1) The 3F has a larger number of holes than the drills 3A and 3G, which can be drilled in the workpiece before the end of the life of the drill. This indicates that abrasion is unlikely to occur.
[0051] [実施例その 3] [Example 3]
次にドリルの切れ刃において超硬工具母材に CBN焼結体をロウ付け接合するため に用いるロウ材の組成がドリルの耐久性に及ぼす影響について試験を行った。試験 に用いたドリルの形状は、図 1に示したドリルと同様の形状を有し、ドリル直径は 5mm 、rは  Next, the effect of the composition of the brazing filler metal used for brazing and joining the CBN sintered body to the cemented carbide base material at the cutting edge of the drill on the durability of the drill was tested. The shape of the drill used in the test was the same as the drill shown in Fig. 1, with a drill diameter of 5 mm and r
0. 5mm、および rは 2· Ommである。表 5に示すロウ材 5A— 5Dを用い、 CBN焼結  0.5 mm, and r is 2 · Omm. CBN sintering using brazing materials 5A-5D shown in Table 5
2  2
体を WC: 90重量%および Co: 10重量%からなる超硬合金で裏打ちして一体焼結 することにより得られた CBN複合焼結体を、ドリルの超硬工具母材の切れ刃にロウ付 け接合し、得られた接合体を研磨することによってドリル 6A— 6Dを製造した。  The sintered body was lined with a cemented carbide consisting of 90% by weight of WC and 10% by weight of Co to obtain a CBN composite sintered body. Drills 6A-6D were manufactured by attaching and joining, and polishing the obtained joined body.
[0052] 上記ロウ材の調整は以下のように行った。すなわち、表 5に示した組成(元素記号 の前の数値は重量%を示す)を有する金属粉末混合物を調製し、この粉末を有機溶 剤と混合することによりロウ材 5A— 5Dを調製した。ロウ材 5A— 5Dはいずれもペース ト状だった。 CBN複合焼結体の上記超硬工具母材へのロウ付けは、ロウ材 5B— 5D を用いた場合は 1 X 10— 5torrの真空雰囲気下で行レ、、ロウ材 5Aを用いた場合は大 気雰囲気下で行った。また、各ロウ材を用いた場合のロウ付け温度を表 5に示した。 表 5に示したロウ材 5A— 5Dはいずれも Agまたは Cuを主成分として含む力 その他 に含まれる金属の種類および金属組成が異なるために融点が異なる。そのため、表 5に示したロウ付け [0052] The brazing material was adjusted as follows. That is, a metal powder mixture having the composition shown in Table 5 (the numerical value before the element symbol indicates% by weight) was prepared, and this powder was mixed with an organic solvent to prepare brazing materials 5A-5D. The brazing materials 5A-5D were all pasted. Brazing to the cemented carbide tool substrate of CBN composite sintered body, when the case of using the brazing material 5B-5D with row-,, brazing material 5A in a vacuum atmosphere of 1 X 10- 5 torr Was performed in an atmosphere. Table 5 shows the brazing temperature when each brazing material was used. The brazing materials 5A-5D shown in Table 5 all have different melting points due to the different types and compositions of metals contained in the force and other components containing Ag or Cu as the main component. Therefore, the brazing shown in Table 5
温度はロウ材の種類に応じて異なる。  The temperature varies depending on the type of brazing material.
[0053] [表 5] 表 5[0053] [Table 5] Table 5
Figure imgf000018_0001
Figure imgf000018_0001
[0054] さらに、 PVD法(物理気相成長法)を用いて、上記ドリル 6A 6Dの切れ刃表面に 厚さ 1. Ο μ πιの T1A1Nの被覆層を形成した後、これら各ドリルを使用して炭素鋼の穴 あけ加工を行レ、、ドリルの切れ刃の欠け等によって穴あけ加工ができなくなるまでに 穴あけできた数をドリルの切削性能として表 6に示した。この穴あけ加工に用いた被 削材および切削条件は表 6の下に記載した。 [0054] Further, after forming a coating layer of T1A1N with a thickness of 1.Ομπι on the cutting edge surface of the drill 6A and 6D using a PVD method (physical vapor deposition method), each of these drills was used. Table 6 shows the number of holes that could be drilled before carbon steel could be drilled due to the lack of drill cutting edges. The work materials and cutting conditions used for this drilling are listed below Table 6.
[0055] [表 6] 表 6  [Table 6] Table 6
Figure imgf000018_0002
Figure imgf000018_0002
被削材: S 5 5 C (炭素鋼)  Work material: S55C (carbon steel)
切削条件: ドリルの回転数 1 5 0 0 0 ( r p m)  Cutting conditions: Number of drill rotations 1 5 0 0 0 (r p m)
ドリルの送り量 0. 1 (mm 刃)  Drill feed amount 0.1 (mm blade)
加工穴深さ 2 0 (mm)  Hole depth 20 (mm)
水溶性切削液を使用  Uses water-soluble cutting fluid
CBN焼結体と濡れにくいロウ材 5Aを用いて作製したドリル 6Aにおいては、 CBN 焼結体と超硬工具母材との境界部分に隙間が生じ、この隙間に切削くずが詰まると いう問題が生じた。このため、ドリル 6Aの前記境界位置において切削抵抗が非常に 高くなり、境界付近において CBN焼結体の欠けが生じ、さらにその欠けが広がった ために、ドリル 6Aは被削材に穴あけした回数がまだ少ない時点で穴あけ加工ができ ない状態になった。 In drills 6A manufactured using a CBN sintered body and a brazing filler metal 5A that is difficult to wet, there is a problem that a gap is formed at the boundary between the CBN sintered body and the base metal of the carbide tool, and this gap is clogged with cutting waste. occured. For this reason, the cutting force is very low at the boundary position of the drill 6A. As the height increased, the CBN sintered body chipped near the boundary, and the chipping widened, so that drill 6A was unable to perform drilling when the number of drillings in the work material was still small.
[0057] 一方、 CBN焼結体との濡れ性に優れるロウ材 5B、 5C、および 5Dをそれぞれ用い て作製したドリル 6B、 6C、および 6Dは、 CBN焼結体と超硬工具母材の境界部分に 隙間がないために、この部分に切削くずが詰まりにくい。したがって、表 6に示したよう にドリル 6B— 6Dを用いた場合は、被削材に連続して穴あけできる回数がドリル 6Aを 用いた場合よりも多ぐドリル 6B— 6Dはドリル 6Aよりも耐久性に優れ、長い寿命を有 することがわかった。  [0057] On the other hand, drills 6B, 6C, and 6D prepared using brazing materials 5B, 5C, and 5D, which have excellent wettability with the CBN sintered body, respectively, are provided at the boundary between the CBN sintered body and the cemented carbide tool base material. Since there are no gaps in this part, cutting chips are less likely to clog in this part. Therefore, as shown in Table 6, when drills 6B-6D are used, drills 6B-6D are more durable than drills 6A, since drilling can be performed more continuously in the work material than with drill 6A. It was found to be excellent in properties and had a long life.
図面の簡単な説明  Brief Description of Drawings
[0058] [図 1]本発明のドリルの一態様の正面図(A)および側面図(B)  [FIG. 1] A front view (A) and a side view (B) of one embodiment of the drill of the present invention.
[図 2]公知のドリルの正面図(A)および側面図(B)  [FIG. 2] Front view (A) and side view (B) of a known drill
[図 3]公知のドリル切れ刃(A)および本発明のドリル切れ刃(B)において CBN焼結 体が接合された部分の拡大図  FIG. 3 is an enlarged view of a portion where a CBN sintered body is joined in a known drill cutting edge (A) and a drill cutting edge (B) of the present invention.
[図 4]ドリルの切れ刃における CBN焼結体の正面切れ刃長さの説明図  [Fig. 4] Illustration of front cutting edge length of CBN sintered body at drill cutting edge
[図 5]ドリルの切れ刃における CBN焼結体の正面切れ刃長さの説明図  [Figure 5] Illustration of the front cutting edge length of a CBN sintered body at the cutting edge of a drill
符号の説明  Explanation of symbols
[0059] 1:ドリル、 2:切れ刃、 3:切れ刃 [0059] 1: drill, 2: cutting edge, 3: cutting edge

Claims

請求の範囲 The scope of the claims
[1] 一対の切れ刃を有するドリルであって、前記一対の各切れ刃のドリル外周側におい て超硬工具母材に立方晶窒化硼素焼結体がロウ付け接合されており、  [1] A drill having a pair of cutting edges, wherein a cubic boron nitride sintered body is brazed and joined to a carbide tool base material on a drill outer peripheral side of each of the pair of cutting edges,
前記一対の切れ刃のうち、一方の切れ刃に接合された立方晶窒化硼素焼結体 (a) の正面切れ刃長さと、他方の切れ刃に接合された立方晶窒化硼素焼結体 (b)の正 面切れ刃長さが異なり、かつ前記立方晶窒化硼素焼結体 (a)および (b)の正面切れ 刃長さの差が、 0. 3mm以上であることを特徴とするドリル。  Of the pair of cutting edges, the front cutting edge length of the cubic boron nitride sintered body (a) joined to one of the cutting edges and the cubic boron nitride sintered body (b) joined to the other cutting edge ), Wherein the length of the front cutting edge is different, and the difference between the front cutting edge lengths of the cubic boron nitride sintered bodies (a) and (b) is 0.3 mm or more.
[2] 前記ドリルにおいて、前記ドリルの中心軸から前記立方晶窒化硼素焼結体 (a)まで の距離 r (mm)、前記ドリルの中心軸から前記立方晶窒化硼素焼結体 (b)までの距 離 r (mm)、および前記ドリルの一方の切れ刃の外側端力 他方の切れ刃の外側端[2] In the drill, a distance r (mm) from a center axis of the drill to the cubic boron nitride sintered body (a), and a distance r from the center axis of the drill to the cubic boron nitride sintered body (b). Distance (mm) and the outer end force of one cutting edge of the drill.
2 2
までの長さ D (mm)が以下の関係:  Length D (mm) has the following relationship:
0. 12≤ (r X 2/D)、および、(r X 2/D)≤0. 8  0.12≤ (r X 2 / D) and (r X 2 / D) ≤0.8
1 2  1 2
を有し、しかも、 r <rであることを特徴とする請求項 1記載のドリル。  The drill according to claim 1, wherein r <r.
1 2  1 2
[3] 前記ドリルの一方の切れ刃の外側端から他方の切れ刃の外側端までの長さ D力 5 . 0 (mm)以上かつ 60 (mm)以下であることを特徴とする請求項 1または 2に記載のド リル。  [3] The length from the outer end of one cutting edge to the outer end of the other cutting edge of the drill, wherein the D force is not less than 5.0 (mm) and not more than 60 (mm). Or the drill according to 2 above.
[4] 前記立方晶窒化硼素焼結体と前記超硬工具母材とが接合層を介してロウ付け接 合されており、前記接合層が Tiおよび Zrから選ばれる一種または二種を 0. 5— 20重 量%、 Cuを 10 40重量%含み、かつ残部が Agおよび不可避不純物からなることを 特徴とする請求項 1一 3のいずれか一項に記載のドリル。  [4] The cubic boron nitride sintered body and the cemented carbide tool base material are joined by brazing via a joining layer, and the joining layer is one or two selected from Ti and Zr. The drill according to any one of claims 13 to 13, comprising 5 to 20% by weight, 1040% by weight of Cu, and the balance consisting of Ag and unavoidable impurities.
[5] 前記立方晶窒化硼素焼結体と前記超硬工具母材とが接合層を介してロウ付け接 合されており、前記接合層が 20 30重量%の Ti、および 20— 30重量%の Zrを含 みかつ残部が Cuおよび不可避不純物からなることを特徴とする請求項 1一 3のいず れか一項に記載のドリル。  [5] The cubic boron nitride sintered body and the cemented carbide tool base material are joined by brazing via a joining layer, and the joining layer is formed of 20-30% by weight of Ti and 20-30% by weight. The drill according to any one of claims 13 to 13, wherein the drill contains Zr and the balance consists of Cu and unavoidable impurities.
[6] 前記立方晶窒化硼素焼結体と前記超硬工具母材とが接合層を介してロウ付け接 合されており、前記接合層が、 Tiおよび Zrから選ばれる一種または二種を 0. 5— 10 重量%、 Inおよび Sn力 選ばれる一種または二種を 5— 25重量%、 Cuを 15— 35 重量%含みかつ残部が Agおよび不可避不純物からなることを特徴とする請求項 1一 3のレ、ずれか一項に記載のドリル。 [6] The cubic boron nitride sintered body and the cemented carbide tool base material are joined by brazing via a joining layer, and the joining layer is formed of one or two selected from Ti and Zr. .5-10% by weight, In and Sn strengths. 5 or 25% by weight of one or two selected, 15-35% by weight of Cu, and the balance being Ag and unavoidable impurities. Drill described in item 3 or item 3.
前記立方晶窒化硼素焼結体表面を含む前記ドリルの切れ刃の表面に、周期律表 4 &族元  On the surface of the cutting edge of the drill including the surface of the cubic boron nitride sintered body, the periodic table 4 &
素、 5a族元素、 6a族元素、 Al、 Si、および Bからなる群から選ばれる少なくとも一種 の元素、または前記少なくとも一種の元素の窒化物、炭化物、酸化物、およびこれら の固溶体からなる群から選ばれる少なくとも一種の化合物からなる被覆層を有するこ とを特徴とする請求項 1一 6のいずれか一項に記載のドリル。 At least one element selected from the group consisting of elemental elements, group 5a elements, group 6a elements, Al, Si, and B; or nitrides, carbides, oxides of the at least one element, and solid solutions thereof. 17. The drill according to claim 16, comprising a coating layer made of at least one selected compound.
PCT/JP2004/005659 2004-04-28 2004-04-28 Drill to which cbn sintered body is joined WO2005105349A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/005659 WO2005105349A1 (en) 2004-04-28 2004-04-28 Drill to which cbn sintered body is joined
EP04729979A EP1741506A1 (en) 2004-04-28 2004-04-28 Drill to which cbn sintered body is joined

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/005659 WO2005105349A1 (en) 2004-04-28 2004-04-28 Drill to which cbn sintered body is joined

Publications (1)

Publication Number Publication Date
WO2005105349A1 true WO2005105349A1 (en) 2005-11-10

Family

ID=35241492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005659 WO2005105349A1 (en) 2004-04-28 2004-04-28 Drill to which cbn sintered body is joined

Country Status (2)

Country Link
EP (1) EP1741506A1 (en)
WO (1) WO2005105349A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007001041A1 (en) * 2006-09-11 2008-03-27 Nanya Technology Corporation, Kueishan Latency counter with frequency detector and latency counting
JP2011101928A (en) * 2009-11-11 2011-05-26 Sumitomo Electric Hardmetal Corp Brazing drill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005991A1 (en) * 2000-07-19 2002-01-24 Sumitomo Electric Industries, Ltd. Hard sintered compact throwaway tip
JP2002263935A (en) * 2001-03-14 2002-09-17 Dijet Ind Co Ltd Twist drill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005991A1 (en) * 2000-07-19 2002-01-24 Sumitomo Electric Industries, Ltd. Hard sintered compact throwaway tip
JP2002263935A (en) * 2001-03-14 2002-09-17 Dijet Ind Co Ltd Twist drill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007001041A1 (en) * 2006-09-11 2008-03-27 Nanya Technology Corporation, Kueishan Latency counter with frequency detector and latency counting
JP2011101928A (en) * 2009-11-11 2011-05-26 Sumitomo Electric Hardmetal Corp Brazing drill

Also Published As

Publication number Publication date
EP1741506A1 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
EP0157625B1 (en) Composite tool
US9844814B2 (en) Superhard tool tip, method for making same and tool comprising same
EP0940215B1 (en) Hard sintered body tool
EP2429746B1 (en) Superhard cutter element
US20070187154A1 (en) Bonding structure and bonding method for cemented carbide element and diamond element, cutting tip and cutting element for drilling tool, and drilling tool
JP2015142959A (en) Thick thermal barrier coating for super-abrasive tool
EP1609551A1 (en) Support pads for drill heads
TWI323202B (en) Machine reamer
EP2534114B1 (en) Method of using a superhard element
JP3549424B2 (en) Hard sintered body tool and manufacturing method thereof
EP3042729B1 (en) Ceramic milling cutter
WO2005105349A1 (en) Drill to which cbn sintered body is joined
JP2004060201A (en) Cutting edge piece of excavating tool for exhibiting superior fine chipping resistance under high speed rotary operation condition
JP3697893B2 (en) Hard sintered body throw-away tip and manufacturing method thereof
JP4851029B2 (en) Super abrasive tool with sintered super abrasive tip
JP4653789B2 (en) Surface coated cubic boron nitride sintered body tool
JP2013521134A (en) Thick thermal barrier coating for superabrasive tools
JP2013521134A6 (en) Thick thermal barrier coating for superabrasive tools
JPS6154858B2 (en)
JP2012254486A (en) Extra-high pressure sintered rotary cutting tool
JP2006266008A (en) Manufacturing method for excavating tool, and excavating tool
JPH04217414A (en) Throw away drill
JPH02152703A (en) Cutting tool using high-hardness compound sintered compact for cutting edge
JP2004291144A (en) Cutting insert for use in drill, and drill unit
JP2000271810A (en) Diamond sintered body rotation cutting tool

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004729979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004729979

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004729979

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP