JP2004298935A - Friction pressure joining method - Google Patents

Friction pressure joining method Download PDF

Info

Publication number
JP2004298935A
JP2004298935A JP2003095635A JP2003095635A JP2004298935A JP 2004298935 A JP2004298935 A JP 2004298935A JP 2003095635 A JP2003095635 A JP 2003095635A JP 2003095635 A JP2003095635 A JP 2003095635A JP 2004298935 A JP2004298935 A JP 2004298935A
Authority
JP
Japan
Prior art keywords
joining
friction welding
members
strength
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003095635A
Other languages
Japanese (ja)
Inventor
Satoshi Takahashi
聰 高橋
Sadao Nishigori
貞郎 錦織
Kazunori Tawara
和典 田原
Mitsuhiro Takegawa
光弘 竹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2003095635A priority Critical patent/JP2004298935A/en
Publication of JP2004298935A publication Critical patent/JP2004298935A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction pressure joining method capable of joining even members consisting of a material having high strength at high temperature without causing cracks. <P>SOLUTION: In this joining method for joining the joining parts 11a, 12a of members 11, 12 with the friction pressure joining, padding layers 13, 14 having compositions of almost equivqlent to the base materials of the respective members 11, 12 and consisting of materials having lower strength at the high temperature than the base materials of the respective members 11, 12, are formed on the joined parts 11a, 12a of the respective members 11, 12. The padding layers 13, 14 of the members 11, 12 are butted and also, one side of member 12 is relatively slide-moved while pushing toward the other side of member 11 and the friction-pressure joining is performed to both padding layers 13, 14 with the friction heat caused by this rotation-sliding movement. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、摩擦圧接による接合方法に係り、特に、高温雰囲気下において使用される部材の摩擦圧接による接合方法に関するものである。
【0002】
【従来の技術】
摩擦圧接による接合方法は、比較的軟質な鋼、Al、Cu等の材料で構成される回転部材、例えば、自動車の駆動部品の接合方法として一般的に用いられている。この摩擦圧接による接合方法として、主にブレーキ式、イナーシャ式の2つの方式がある。
【0003】
例えば、ブレーキ式の接合方法は、図11に示す回転部材111,112の突き合わせ接合を行う接合端面111a,112a同士を、図12に示すように突き合わせる。その後、回転部材111を静止させたまま、回転部材112を回転部材111側(図12中では左側)に向かって圧力P1で押し付けながら回転摺動させる。この回転摺動による摩擦熱で、接合端面111a,112a間の領域121の温度を上昇させる。その後、図13に示すように、領域121が十分な温度に達したら、回転部材112の回転を急停止すると共に、回転部材112を回転部材111側(図13中では左側)に向かって更に高い圧力P2(>P1)で押し付ける。これによって、領域121が圧縮変形し、その後、領域121が冷却されて、図14に示す接合部材140が得られる。図14の15−15線断面図を図15に示すように、この接合部材140は、摩擦圧接接合部151を介して回転部材111,112の接合端面同士が接合されている。
【0004】
【発明が解決しようとする課題】
ところで、ジェットエンジンやガスタービン等の回転軸部材のように、高温雰囲気下において使用される回転部材は、耐熱材料、例えば、Ni基合金、耐熱鋼、又はTi基合金などで構成される。これらの耐熱材料は高温強度が高いことから、耐熱材料からなる回転部材111,112を摩擦圧接により接合して接合部材140を製造する場合、冷却時に発生する熱歪みを領域121で緩和、吸収することができない。その場合、図15の要部Aの拡大図を図16に示すように、接合部151においてクラック161が発生してしまい、構造部材として機能させることができなくなってしまう。よって、一般的には、耐熱材料からなる回転部材の、摩擦圧接による接合はあまり行われていない。
【0005】
クラックを発生させることなく、耐熱材料からなる回転部材111,112を摩擦圧接により接合するには、事前に接合前処理(熱処理)を施す方法がある。この熱処理条件は、例えば、Ni基超合金の場合、1080℃×0.5hrの熱処理→980℃まで2〜5℃/minの冷却速度で冷却した後に4時間保持→870℃まで2〜5℃/minの冷却速度で冷却した後に4時間保持→760℃まで冷却した後に16時間保持→室温まで空冷するというものである。
【0006】
この接合前処理を施すことによって、高温耐熱材からなる回転部材111,112が軟化するため、冷却時に発生する熱歪みを領域121で緩和、吸収することができるようになる。その結果、クラックを発生させることなく摩擦圧接により接合することができるようになる。
【0007】
しかしながら、この接合前処理は、耐熱材料の強化因子である析出物を粗大化させ、耐熱材料の強度を低下させてしまうことから、得られた接合部材においては、耐熱材料が本来有していた機械的特性(優れた高温強度等)が得られなくなってしまう。また、接合前処理には長時間(数日)を要することから、生産効率が低いという問題があった。
【0008】
以上の事情を考慮して創案された本発明の目的は、高温強度の高い材料からなる部材であってもクラックを発生させることなく接合できる摩擦圧接による接合方法を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成すべく、第1の発明に係る摩擦圧接による接合方法は、部材同士の接合部を摩擦圧接により接合する方法において、上記各部材の少なくとも一方の接合部に、各部材の母材と略同等の組成を有し、かつ、各部材の母材よりも高温強度が低い材料で構成される肉盛層を形成し、それらの各部材の接合部同士を摺動させ、その摺動による摩擦熱で肉盛層を介して部材同士の接合部を摩擦圧接接合するものである。
【0010】
また、第2の発明に係る摩擦圧接による接合方法は、部材同士の接合部を摩擦圧接により接合する方法において、上記各部材の接合部に、各部材の母材と略同等の組成を有し、かつ、各部材の母材よりも高温強度が低い合金で構成される肉盛層をそれぞれ形成し、それらの各部材の肉盛層同士を突き合わせると共に、少なくとも一方の部材を他方の部材に向かって押し付けながら回転摺動させ、その回転摺動による摩擦熱で肉盛層同士を摩擦圧接接合するものである。
【0011】
これらの方法によって、部材が高温強度の高い材料からなるものであっても、部材同士の接合部を摩擦圧接により接合した際に摩擦圧接接合部にクラックが発生することはない。
【0012】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基いて説明する。
【0013】
本発明に係る摩擦圧接による接合方法の好適一実施の形態を説明するための模式図を図1〜図4に示す。
【0014】
本実施の形態に係る摩擦圧接による接合方法は、先ず、図1に示すように、回転部材11,12の突き合わせ接合を行う接合端面(接合部)11a,12aに、回転部材11,12の母材と略同等の組成を有し、かつ、回転部材11,12の母材よりも高温強度が低い合金で構成される層厚tの肉盛層13,14をそれぞれ形成する。回転部材11,12としては、横断面が環状又は円状の部材、つまり横断面が環状の中空部材や横断面が円状の中実部材であり、例えば管部材、円柱部材、又はコーン状部材等が挙げられる。肉盛層13,14は、回転部材11,12の接合端面11a,12aに肉盛溶接などを施すことで形成される。
【0015】
次に、図2に示すように、回転部材11,12の肉盛層13,14同士を突き合わせる。その後、回転部材11を静止させたまま、回転部材12を回転部材11側(図2中では左側)に向かって第1の圧力P1で押し付けながら所定の回転数で回転させ、摺動させる。この回転摺動による摩擦熱で、肉盛層13,14の摺動部、つまり領域21は、その温度が融点近傍まで徐々に上昇し、部分的な溶融が生じる。また、領域21の近傍部は温度上昇に伴って徐々に軟化する。回転摺動の進行に伴って、領域21の外周縁(又は内周縁)の一部は、圧力P1によって径方向外側(又は径方向内側)に向かって盛り上がり、“バリ”状に形成され、摺動部から排出される。
【0016】
次に、図3に示すように、領域21が十分な温度に達したら、回転部材12の回転を急停止すると共に、回転部材12を回転部材11側(図3中では左側)に向かって更に高い第2の圧力P2(>P1)で押し付ける。この時、領域21の外周縁(又は内周縁)の一部は前述したように“バリ”状に排出されると共に、残部は圧力P2によって圧縮変形される。その結果、圧力P2の負荷後(圧縮変形後)の肉盛層13,14の層厚tは、当初の層厚tと比較して薄くなる。例えば、約1/2の厚さとなる。また、領域21において肉盛層13,14が融合される。領域21が十分な温度に達したかどうかは、温度センサによって直接計測して行う方法や、圧力P1と回転数との関係からどの位の時間で何℃に達するかを予め求めておき、時間により推測する方法などが挙げられる。圧力P2による押込みは、長い時間に亘って負荷するものではなく、短時間(例えば、5〜10sec程度)の負荷で十分である。
【0017】
その後、回転部材11,12、特に領域21を自然冷却などにより冷却することで、図4に示すように、摩擦圧接接合部41を介して回転部材11,12の肉盛層13,14同士が融着、圧着により接合された接合部材40が得られる。
【0018】
得られた接合部材40に対して、少なくとも摩擦圧接接合部41及びその近傍部に熱処理を施す。この接合部熱処理により、回転部材11,12から摩擦圧接接合部41に強化元素の拡散が生じる。拡散する強化元素は、回転部材11,12の母材中に含まれる固溶強化元素、金属間化合物形成元素、粒界強化元素、炭化物形成元素、耐酸化保護被膜元素などである。この拡散によって、回転部材11,12と摩擦圧接接合部41との組成上の差異が殆どなくなる(又は減少する)と共に、各種の強化元素により摩擦圧接接合部41の強化がなされ、摩擦圧接接合部41の強度が実用上支障がないレベルまで向上する。その結果、回転部材11,12の母材と比較して強度的に遜色のない摩擦圧接接合部41を有する最終製品が得られる。ここで言う接合部熱処理は、拡散を主眼とした熱処理であって、母材の軟化を主眼とした従来の接合前処理とは、目的、処理条件(温度及び保持時間)が全く異なるものである。また、この接合部熱処理の処理条件は、母材ごとに適宜定められており、母材に応じて適宜選択されるものであって、特に限定するものではない。
【0019】
ここで、回転部材11,12の母材としては、耐熱材料、例えば、Ni基合金、耐熱鋼、又はTi基合金などが挙げられる。また、ジェットエンジンやガスタービン等の回転軸部材のように、高温雰囲気下において慣用的に使用されている材料も、回転部材11,12の母材として全て適用可能である。また、摩擦圧接によって慣用的に接合がなされている材料も、回転部材11,12の母材として全て適用可能である。
【0020】
回転部材11,12の母材が、例えば、図5に示すNi基合金(図5中の網掛け領域52)である場合、肉盛層13,14を構成する材料の組成は、図5中に斜線領域51で示すように、回転部材11,12の母材と略同等の組成で、かつ、Ti含有量が0〜6wt%、Al含有量が0〜3wt%のものである。具体的には、Inconel 718、Inconel X、M 252、Inconel X−750、Rene′62、Waspaloy、Rene′41(以上、全て登録商標)、純Ni等が挙げられる。ここで、Alは、析出強化相であるγ′(NiAl)を構成する元素であるため、Alを3wt%を超えて含有させると、強度が著しく大きくなってしまい、好ましくない。また、Tiは、固溶強化、金属間化合物形成、及び炭化物形成のための元素であり、かつ、Alとも金属間化合物を形成する元素であるため、Tiを6wt%を超えて含有させると、強度が著しく大きくなってしまい、好ましくない。
【0021】
本実施の形態に係る摩擦圧接による接合方法においては、肉盛層13,14を、回転部材11,12の母材を構成する材料よりも高温強度が低い合金、つまり軟質な合金で構成している。よって、圧力P1での回転摺動の際及び圧力P2での領域21の圧縮変形の際、肉盛層13,14が回転摺動及び圧縮変形に十分に追従することができ、領域21における熱歪みを十分に吸収、緩和することができる。その結果、摩擦圧接接合部41においてクラックが発生するということはなくなる。よって、高温雰囲気下において使用される耐熱材で構成されていることから、摩擦圧接による接合があまり行われていなかったジェットエンジンやガスタービン等の回転軸部材などについても、摩擦圧接接合部においてクラックを発生させることなく、摩擦圧接による接合を行うことができる。
【0022】
また、本実施の形態においては、少なくとも摩擦圧接接合部41及びその近傍部に接合部熱処理を施している。この接合部熱処理は、回転部材11,12の母材の強化元素を接合部41に拡散させることを主眼とした熱処理であって、従来の接合前処理のように、母材の強化因子である析出物を粗大化させ、母材の強度を低下させるためのものではない。よって、得られた接合部材において、回転部材11,12の母材の強度が軟化することはなく、また、母材が本来有していた機械的特性が失われることはない。また、この接合部熱処理は、接合前処理と比較して処理に要する時間が短くて済むことから、生産効率も良好である。
【0023】
また、摩擦圧接後においては、通常、回転部材11,12の母材に生じた歪みを緩和・除去するための熱処理がなされていた。本実施の形態においては、従来、摩擦圧接後に通常行われていた熱処理の代わりに、強化元素の拡散のための接合部熱処理を行うだけであるため、接合に要する工程数が増大することはない。
【0024】
肉盛層13,14を、高温強度が比較的低い材料で構成した場合、領域21における熱歪みを吸収、緩和する効果が高くなるものの、摩擦圧接後、接合部材40の摩擦圧接接合部41における接合強度が低くなってしまう。このため、この場合の接合部熱処理は、略純粋に強化元素を拡散させるための熱処理となる。また、これとは反対に、肉盛層13,14を、高温強度が比較的高い材料で構成した場合、摩擦圧接後、接合部材40の摩擦圧接接合部41における接合強度は高くなるものの、領域21における熱歪みを吸収、緩和する効果が低くなってしまう。このため、この場合の接合部熱処理は、強化元素を拡散させるための熱処理である他に、熱歪みを緩和させるための熱処理でもある。
【0025】
以上、本実施の形態においては、回転部材11,12に対して摩擦圧接を行う場合について説明を行ったが、摩擦圧接によって慣用的に接合がなされている部材全般に対して適用することができる。
【0026】
また、本実施の形態においては、ブレーキ式の摩擦圧接による接合方法の場合について説明を行ったが、イナーシャ式の摩擦圧接による接合方法にも適用することができることはいうまでもない。この場合、ブレーキ式における圧力P2が不要となる。また、圧力P1の圧力値および摺動回転の回転数は、ブレーキ式の時と比較して、それぞれ大きく、高くする必要がある。
【0027】
【実施例】
次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。尚、本実施例においても、図1〜図4の添付図面を参照して説明を行う。
【0028】
摩擦圧接による接合の諸条件、具体的には、肉盛層13,14の層厚t、圧力P1,P2、回転摺動の回転数、及び接合部熱処理を適宜設定することで、十分な接合強度を有する接合部材40、つまり構造部材としての機能を十分に有する接合部材40を得ることができる。
【0029】
先ず、圧力P1と接合強度との関係を調べた。具体的には、図6に示すように、母材の組成をNi−16Cr−15Co−3Mo−1W−3Al−5Ti−0.02C(wt%)、肉盛層の組成をNi−20Cr(wt%)、圧力P2を396MPa、肉盛層の層厚tを2mm、回転数を2000rpmに固定し、圧力P1と接合強度との関係を調べた。その結果、圧力P1の上昇と共に接合強度が上昇し、圧力P1が約225MPaの時に1000MPaを超える接合強度が得られた。その後も、圧力P1が大きくなるにつれて接合強度が上昇し、圧力P1が300MPa前後の時に、摩擦圧接接合部41において最大の接合強度(1200MPa強)が得られた。よって、良好な接合強度を得るには、適正な圧力P1を設定することが望ましく、圧力P1は220MPa以上が好ましく、より好ましくは250MPa以上、特に好ましくは300MPa前後である。ここで、圧力P1が220MPaよりも小さいと十分な摩擦熱が得られず、領域21において肉盛層13,14が十分に融着されなくなってしまう。
【0030】
圧力P2と接合強度との関係を調べた。具体的には、図7に示すように、母材及び肉盛層の組成、回転数、及び層厚tは図6の時と同様にし、圧力P1が98、196、297MPaと異なる場合の、圧力P2と接合強度との関係を調べた。その結果、圧力P1が297MPaの場合においてだけ、摩擦圧接接合部41において1000MPaを超える接合強度(1200MPa強)が得られた。圧力P1が98、196MPaの場合は、圧力P2の大小にかかわらず、1000MPa未満の接合強度しか得られず、接合強度が不足していた。よって、良好な接合強度を得るには、適正な圧力P2を設定することが望ましく、圧力P2は圧力P1よりも大きな値で、領域21を十分に圧縮変形できる圧力値であることが好ましく、より好ましくはP1+100MPa程度、特に好ましくは400MPa前後である。
【0031】
回転摺動の回転数と接合強度との関係を調べた。具体的には、図8に示すように、母材及び肉盛層の組成は図6の時と同様で、かつ、圧力P1は297MPa、圧力P2は396MPa、層厚tは2mmに固定し、回転数と接合強度との関係を調べた。その結果、回転数の上昇と共に接合強度が上昇し、回転数が約1500rpmの時に1000MPaを超える接合強度が得られた。その後も、回転数が高くなるにつれて接合強度が上昇し、回転数が約2000rpmの時に、摩擦圧接接合部41において最大の接合強度(1200MPa強)が得られた。その後は、回転数の上昇と共に接合強度が徐々に減少してゆき、回転数が約2500rpmを超えると、接合強度が1000MPa未満となった。よって、良好な接合強度を得るには、適正な回転数を設定することが望ましく、回転数は1500〜2500rpmが好ましく、より好ましくは1700〜2300rpm、特に好ましくは2000rpm前後である。ここで、回転数が1500rpmよりも少ないと十分な摩擦熱が得られなくなってしまう。また、回転数が2500rpmを超えると、摩擦熱が過剰となって、バリとして排出される肉盛層13,14の量が多くなってしまい(肉盛層13,14の層厚tが薄くなってしまい)、好ましくない。
【0032】
肉盛層13,14の当初の層厚tと接合強度との関係を調べた。具体的には、図9に示すように、母材及び肉盛層の組成は図6の時と同様で、かつ、圧力P1は297MPa、圧力P2は396MPa、回転数は2000rpmに固定し、層厚tと接合強度との関係を調べた。その結果、層厚tが厚くなると共に接合強度が上昇し、層厚tが約1.0mmの時に1000MPaを超える接合強度が得られた。その後も、層厚tが厚くなるにつれて接合強度が上昇し、層厚tが約2mmの時に、摩擦圧接接合部41において最大の接合強度(1200MPa強)が得られた。その後は、層厚tが厚くなるにつれて接合強度が徐々に減少してゆき、層厚tが約3mmを超えると、接合強度が1000MPa未満となった。よって、良好な接合強度を得るには、適正な層厚tを設定することが望ましく、層厚tは1〜3mmが好ましく、より好ましくは1.5〜2.5mm、特に好ましくは2mm前後とする。ここで、層厚tが1mmよりも薄いと、熱歪みを吸収、緩和する効果が得られにくくなってしまい、また、層厚tが3mmを超えると、接合部熱処理を施しても接合部41を十分に強化することができなくなってしまい、接合強度が不足してしまう。
【0033】
接合部熱処理と接合強度との関係を調べた。具体的には、図10に示すように、母材及び肉盛層の組成は図6の時と同様で、かつ、圧力P1は297MPa、圧力P2は396MPa、回転数は2000rpm、層厚tは2mmに固定し、接合部熱処理の有無と接合強度との関係を調べた。その結果、熱処理前(熱処理なし)における摩擦圧接接合部41の接合強度は900MPa前後(2つの試料の平均値)であった。これらに対して、それぞれ接合部熱処理(1,105℃×2hr→649℃×24hr→760℃×8hr)を施すことで、熱処理後(熱処理あり)における摩擦圧接接合部41の接合強度は1200MPa強(2つの試料の平均値)となった。つまり、接合部熱処理によって接合強度を30%以上も向上させることができることが確認できた。ここで、接合部材40の摩擦圧接接合部41が、接合部熱処理前において回転部材11,12の母材と比較して遜色のないレベルの強度、例えば、母材強度の約70%以上、好ましくは約80%以上の強度を有していれば、強化元素を拡散させることを主眼とした接合部熱処理は必ずしも必要としない。
【0034】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0035】
【発明の効果】
以上要するに、本発明に係る摩擦圧接による接合方法によれば、部材が高温強度の高い材料からなるものであっても、部材同士の接合部を摩擦圧接により接合した際に摩擦圧接接合部にクラックが発生しないという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明に係る摩擦圧接による接合方法の好適一実施の形態を説明するための模式図であり、突き合わせ前の状態を示している。
【図2】本発明に係る摩擦圧接による接合方法の好適一実施の形態を説明するための模式図であり、回転摺動状態を示している。
【図3】本発明に係る摩擦圧接による接合方法の好適一実施の形態を説明するための模式図であり、圧縮変形状態を示している。
【図4】本発明に係る摩擦圧接による接合方法の好適一実施の形態を説明するための模式図であり、接合完了後の状態を示している。
【図5】肉盛層を構成する材料の組成の一例を示す図である。
【図6】第1の圧力と接合強度との関係を示す図である。
【図7】第2の圧力と接合強度との関係を示す図である。
【図8】回転摺動の回転数と接合強度との関係を示す図である。
【図9】肉盛層の層厚と接合強度との関係を示す図である。
【図10】接合部熱処理の有無と接合強度との関係を示す図である。
【図11】従来の摩擦圧接による接合方法の模式図であり、突き合わせ前の状態を示している。
【図12】従来の摩擦圧接による接合方法の模式図であり、回転摺動状態を示している。
【図13】従来の摩擦圧接による接合方法の模式図であり、圧縮変形状態を示している。
【図14】従来の摩擦圧接による接合方法の模式図であり、接合完了後の状態を示している。
【図15】図14の15−15線断面図である。
【図16】図15の要部Aの拡大図である。
【符号の説明】
11,12 回転部材(部材)
11a,12a 接合部
13,14 肉盛層
40 接合部材
41 摩擦圧接接合部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a joining method by friction welding, and more particularly to a joining method by friction welding of a member used in a high-temperature atmosphere.
[0002]
[Prior art]
The joining method by friction welding is generally used as a joining method of a rotating member made of a relatively soft material such as steel, Al, or Cu, for example, a driving part of an automobile. There are mainly two types of joining methods by friction welding, a brake type and an inertia type.
[0003]
For example, in the brake-type joining method, joining end surfaces 111a and 112a for performing butt joining of the rotating members 111 and 112 shown in FIG. 11 are joined together as shown in FIG. Thereafter, while keeping the rotating member 111 stationary, the rotating member 112 is rotated and slid while pressing the rotating member 112 toward the rotating member 111 side (the left side in FIG. 12) with the pressure P1. The temperature of the region 121 between the joining end surfaces 111a and 112a is increased by the frictional heat generated by the rotational sliding. Thereafter, as shown in FIG. 13, when the temperature of the region 121 reaches a sufficient temperature, the rotation of the rotating member 112 is suddenly stopped, and the rotating member 112 is further raised toward the rotating member 111 side (the left side in FIG. 13). Press with pressure P2 (> P1). As a result, the region 121 is compressed and deformed, and then the region 121 is cooled, and the joining member 140 shown in FIG. 14 is obtained. As shown in FIG. 15 in a sectional view taken along the line 15-15 in FIG. 14, the joining end faces of the rotating members 111 and 112 of the joining member 140 are joined via a friction welding joint 151.
[0004]
[Problems to be solved by the invention]
Meanwhile, a rotating member used in a high-temperature atmosphere, such as a rotating shaft member of a jet engine or a gas turbine, is made of a heat-resistant material, for example, a Ni-based alloy, a heat-resistant steel, a Ti-based alloy, or the like. Since these heat-resistant materials have high-temperature strength, when the joining members 140 are manufactured by joining the rotating members 111 and 112 made of the heat-resistant materials by friction welding, the heat distortion generated during cooling is reduced and absorbed in the region 121. I can't. In this case, as shown in an enlarged view of the main part A in FIG. 15, a crack 161 is generated in the joint 151, and it becomes impossible to function as a structural member. Therefore, in general, the joining of the rotating member made of a heat-resistant material by friction welding is rarely performed.
[0005]
In order to join the rotating members 111 and 112 made of a heat-resistant material by friction welding without generating a crack, there is a method of performing a joining pretreatment (heat treatment) in advance. This heat treatment condition is, for example, in the case of a Ni-based superalloy, a heat treatment at 1080 ° C. × 0.5 hr → cooling to 980 ° C. at a cooling rate of 2 to 5 ° C./min and holding for 4 hours → 2 to 5 ° C. to 870 ° C. After cooling at a cooling rate of / min, hold for 4 hours → cool to 760 ° C, hold for 16 hours → air cool to room temperature.
[0006]
By performing this pre-joining treatment, the rotating members 111 and 112 made of a high-temperature heat-resistant material are softened, so that the thermal strain generated during cooling can be reduced and absorbed in the region 121. As a result, joining can be performed by friction welding without generating cracks.
[0007]
However, this pre-joining treatment coarsens precipitates, which are the strengthening factor of the heat-resistant material, and lowers the strength of the heat-resistant material. Therefore, in the obtained joining member, the heat-resistant material originally possessed. Mechanical properties (such as excellent high-temperature strength) cannot be obtained. In addition, since the bonding pretreatment requires a long time (several days), there is a problem that the production efficiency is low.
[0008]
SUMMARY OF THE INVENTION An object of the present invention, which has been made in view of the above circumstances, is to provide a joining method by friction welding that can join members made of a material having high strength at high temperature without generating cracks.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a method for joining by friction welding according to a first invention is a method for joining joints between members by friction welding, wherein a base material of each member is attached to at least one joint of the members. Forming a build-up layer composed of a material having a high temperature strength lower than that of the base material of each member, having the composition substantially equivalent to that of the base material of each member, and sliding the joints of the members, In this case, the joints between the members are friction-welded to each other through the build-up layer by the frictional heat generated by the welding.
[0010]
Further, the joining method by friction welding according to the second invention is a method of joining the joining portions of the members by friction welding, wherein the joining portion of each member has a composition substantially equal to the base material of each member. And, while forming a buildup layer composed of an alloy having a lower high-temperature strength than the base material of each member, and abutting the buildup layers of those members, at least one member is attached to the other member. The sliding layers are slid while being pressed toward each other, and the build-up layers are friction-welded to each other by frictional heat generated by the rotating and sliding.
[0011]
According to these methods, even when the members are made of a material having high high-temperature strength, cracks do not occur in the friction welded joints when the joints of the members are joined by friction welding.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
[0013]
FIGS. 1 to 4 are schematic views for explaining a preferred embodiment of a joining method by friction welding according to the present invention.
[0014]
In the joining method by friction welding according to the present embodiment, first, as shown in FIG. 1, mother ends of the rotating members 11 and 12 are attached to joining end surfaces (joining portions) 11a and 12a where the rotating members 11 and 12 are butt-joined. Overlay layers 13 and 14 each having a composition substantially equal to that of the material and having a layer thickness t made of an alloy having a lower high-temperature strength than the base material of rotating members 11 and 12 are formed. The rotating members 11 and 12 are members having a circular or circular cross section, that is, a hollow member having a circular cross section or a solid member having a circular cross section. For example, a tubular member, a cylindrical member, or a cone-shaped member And the like. The build-up layers 13 and 14 are formed by performing build-up welding or the like on the joint end surfaces 11a and 12a of the rotating members 11 and 12.
[0015]
Next, as shown in FIG. 2, the cladding layers 13 and 14 of the rotating members 11 and 12 are butted against each other. Thereafter, while the rotating member 11 is stationary, the rotating member 12 is rotated at a predetermined number of revolutions while being pressed against the rotating member 11 side (the left side in FIG. 2) at the first pressure P1, and slides. Due to the frictional heat generated by the rotational sliding, the temperature of the sliding portions of the build-up layers 13 and 14, that is, the region 21, gradually increases to near the melting point, and partial melting occurs. Further, the vicinity of the region 21 gradually softens as the temperature rises. With the progress of the rotational sliding, a part of the outer peripheral edge (or the inner peripheral edge) of the region 21 rises toward the outside in the radial direction (or the inside in the radial direction) due to the pressure P1, and is formed into a “burr” shape. It is discharged from the moving part.
[0016]
Next, as shown in FIG. 3, when the temperature of the region 21 reaches a sufficient temperature, the rotation of the rotating member 12 is suddenly stopped, and the rotating member 12 is further moved toward the rotating member 11 (the left side in FIG. 3). Press with high second pressure P2 (> P1). At this time, part of the outer peripheral edge (or inner peripheral edge) of the region 21 is discharged in a “burr” shape as described above, and the remaining part is compressed and deformed by the pressure P2. As a result, the layer thickness t of the cladding layers 13 and 14 after the load of the pressure P2 (after compression deformation) becomes smaller than the initial layer thickness t. For example, the thickness is about 1/2. In the area 21, the overlay layers 13, 14 are fused. Whether or not the region 21 has reached a sufficient temperature is determined by directly measuring with a temperature sensor, or in advance how long the temperature reaches ° C. from the relationship between the pressure P1 and the number of rotations. And the like. The pressing by the pressure P2 does not apply a load for a long time, but a short load (for example, about 5 to 10 seconds) is sufficient.
[0017]
Thereafter, by cooling the rotating members 11 and 12, particularly the region 21, by natural cooling or the like, as shown in FIG. 4, the overlay layers 13 and 14 of the rotating members 11 and 12 are connected to each other via the friction welding joint 41. The joining member 40 joined by fusion and pressure bonding is obtained.
[0018]
A heat treatment is performed on at least the friction welded joint 41 and the vicinity thereof on the obtained joint member 40. Due to this joint heat treatment, the reinforcing elements are diffused from the rotating members 11 and 12 to the friction welding joint 41. The diffusing strengthening elements include a solid solution strengthening element, an intermetallic compound forming element, a grain boundary strengthening element, a carbide forming element, an oxidation-resistant protective coating element, and the like contained in the base materials of the rotating members 11 and 12. Due to this diffusion, the difference in composition between the rotating members 11 and 12 and the friction welded joint 41 is almost eliminated (or reduced), and the friction welded joint 41 is strengthened by various reinforcing elements. The strength of 41 improves to a level that does not hinder practical use. As a result, a final product having the friction welding portion 41 which is not inferior in strength to the base material of the rotating members 11 and 12 is obtained. The joint heat treatment referred to here is a heat treatment focused on diffusion, and is completely different in purpose and processing conditions (temperature and holding time) from a conventional pre-bonding treatment focused on softening of a base material. . In addition, the processing conditions of the joint heat treatment are appropriately determined for each base material, are appropriately selected according to the base material, and are not particularly limited.
[0019]
Here, as a base material of the rotating members 11 and 12, a heat-resistant material, for example, a Ni-based alloy, heat-resistant steel, or a Ti-based alloy is used. Further, materials commonly used in a high-temperature atmosphere, such as a rotating shaft member of a jet engine, a gas turbine, or the like, are all applicable as a base material of the rotating members 11 and 12. In addition, any material that is conventionally joined by friction welding can be applied as the base material of the rotating members 11 and 12.
[0020]
When the base material of the rotating members 11 and 12 is, for example, a Ni-based alloy shown in FIG. 5 (hatched region 52 in FIG. 5), the composition of the material forming the overlay layers 13 and 14 is as shown in FIG. As shown by the hatched area 51, the composition is substantially the same as that of the base material of the rotating members 11 and 12, and has a Ti content of 0 to 6 wt% and an Al content of 0 to 3 wt%. Specifically, Inconel 718, Inconel X, M252, Inconel X-750, Rene'62, Waspaloy, Rene'41 (all of which are registered trademarks), pure Ni and the like can be mentioned. Here, Al is an element constituting γ ′ (Ni 3 Al), which is a precipitation strengthening phase. Therefore, if Al is contained in excess of 3 wt%, the strength becomes extremely large, which is not preferable. Further, Ti is an element for strengthening solid solution, forming an intermetallic compound, and forming a carbide, and Al is also an element forming an intermetallic compound. Therefore, when Ti is contained in an amount exceeding 6 wt%, The strength is significantly increased, which is not preferable.
[0021]
In the joining method by friction welding according to the present embodiment, the build-up layers 13 and 14 are made of an alloy having a lower high-temperature strength than the material constituting the base material of the rotating members 11 and 12, that is, a soft alloy. I have. Therefore, when rotating and sliding at the pressure P1 and when compressing and deforming the area 21 at the pressure P2, the build-up layers 13 and 14 can sufficiently follow the rotating and sliding deformation and the compressive deformation. Distortion can be sufficiently absorbed and reduced. As a result, cracks do not occur in the friction welding portion 41. Therefore, since it is made of a heat-resistant material used in a high-temperature atmosphere, even a rotary shaft member of a jet engine, a gas turbine, or the like, for which welding by friction welding has not been performed much, cracks at the friction welding joint. , Welding can be performed by friction welding.
[0022]
Further, in the present embodiment, at least the friction-welded joint 41 and the vicinity thereof are subjected to joint heat treatment. This joint heat treatment is a heat treatment mainly for diffusing the reinforcing elements of the base materials of the rotating members 11 and 12 into the joints 41, and is a strengthening factor of the base materials as in the conventional pre-joining treatment. It is not for coarsening the precipitates and reducing the strength of the base material. Therefore, in the obtained joining member, the strength of the base material of the rotating members 11 and 12 does not soften, and the mechanical properties originally possessed by the base material are not lost. In addition, since the time required for the heat treatment in the bonding portion is shorter than that in the pre-bonding process, the production efficiency is good.
[0023]
Further, after the friction welding, a heat treatment is usually performed to alleviate and remove the strain generated in the base materials of the rotating members 11 and 12. In the present embodiment, conventionally, instead of the heat treatment normally performed after the friction welding, only the joint heat treatment for diffusing the reinforcing element is performed, so that the number of steps required for the bonding does not increase. .
[0024]
When the cladding layers 13 and 14 are made of a material having a relatively low high-temperature strength, the effect of absorbing and relaxing the thermal strain in the region 21 is increased, but after the friction welding, the friction welding connection portion 41 of the joining member 40 is formed. The joining strength will be low. Therefore, the joint heat treatment in this case is a heat treatment for diffusing the strengthening element substantially purely. On the contrary, when the build-up layers 13 and 14 are made of a material having a relatively high high-temperature strength, after the friction welding, the joining strength at the friction welding joint 41 of the joining member 40 increases, In this case, the effect of absorbing and relaxing the thermal strain at 21 is reduced. For this reason, the joint heat treatment in this case is not only a heat treatment for diffusing the strengthening element, but also a heat treatment for relaxing thermal strain.
[0025]
As described above, in the present embodiment, the case where the friction welding is performed on the rotating members 11 and 12 has been described, but the present invention can be applied to all members that are conventionally joined by the friction welding. .
[0026]
Further, in the present embodiment, the description has been given of the case of the joining method by the brake type friction welding, but it is needless to say that the present invention can be applied to the joining method by the inertia type friction welding. In this case, the pressure P2 in the brake system becomes unnecessary. Further, the pressure value of the pressure P1 and the rotational speed of the sliding rotation need to be higher and higher, respectively, than in the case of the brake type.
[0027]
【Example】
Next, the present invention will be described based on examples, but the present invention is not limited to these examples. Incidentally, also in this embodiment, description will be made with reference to the accompanying drawings of FIGS.
[0028]
Sufficient joining can be achieved by appropriately setting the conditions of joining by friction welding, specifically, the layer thickness t of the build-up layers 13 and 14, the pressures P1 and P2, the number of rotations of rotary sliding, and the heat treatment of the joint. A joining member 40 having strength, that is, a joining member 40 having a sufficient function as a structural member can be obtained.
[0029]
First, the relationship between the pressure P1 and the bonding strength was examined. Specifically, as shown in FIG. 6, the composition of the base material was Ni-16Cr-15Co-3Mo-1W-3Al-5Ti-0.02C (wt%), and the composition of the cladding layer was Ni-20Cr (wt%). %), The pressure P2 was fixed at 396 MPa, the thickness t of the build-up layer was fixed at 2 mm, and the rotation speed was fixed at 2000 rpm, and the relationship between the pressure P1 and the bonding strength was examined. As a result, the joining strength increased with an increase in the pressure P1, and a joining strength exceeding 1000 MPa was obtained when the pressure P1 was about 225 MPa. Thereafter, as the pressure P1 increased, the joining strength increased. When the pressure P1 was around 300 MPa, the maximum joining strength (more than 1200 MPa) was obtained in the friction welding portion 41. Therefore, in order to obtain good bonding strength, it is desirable to set an appropriate pressure P1, and the pressure P1 is preferably 220 MPa or more, more preferably 250 MPa or more, and particularly preferably about 300 MPa. Here, if the pressure P1 is smaller than 220 MPa, sufficient frictional heat cannot be obtained, and the cladding layers 13 and 14 in the region 21 will not be sufficiently fused.
[0030]
The relationship between the pressure P2 and the bonding strength was examined. Specifically, as shown in FIG. 7, when the composition, the number of rotations, and the layer thickness t of the base material and the build-up layer are the same as those in FIG. 6, and the pressure P1 is different from 98, 196, and 297 MPa, The relationship between the pressure P2 and the bonding strength was examined. As a result, only when the pressure P1 was 297 MPa, a joining strength (greater than 1200 MPa) of more than 1000 MPa was obtained in the friction welding portion 41. When the pressure P1 was 98 or 196 MPa, a bonding strength of less than 1000 MPa was obtained regardless of the magnitude of the pressure P2, and the bonding strength was insufficient. Therefore, in order to obtain good joining strength, it is desirable to set an appropriate pressure P2, and the pressure P2 is preferably a value larger than the pressure P1 and a pressure value that can sufficiently compress and deform the region 21. It is preferably about P1 + 100 MPa, particularly preferably about 400 MPa.
[0031]
The relationship between the rotational speed of rotational sliding and the joining strength was examined. Specifically, as shown in FIG. 8, the compositions of the base material and the overlay layer are the same as those in FIG. 6, and the pressure P1 is fixed at 297 MPa, the pressure P2 is set at 396 MPa, and the layer thickness t is fixed at 2 mm. The relationship between the rotation speed and the bonding strength was examined. As a result, the joining strength increased with an increase in the number of revolutions, and a joining strength exceeding 1000 MPa was obtained when the number of revolutions was about 1500 rpm. Thereafter, the joining strength increased as the number of revolutions increased, and when the number of revolutions was about 2000 rpm, the maximum joining strength (more than 1200 MPa) was obtained in the friction welding joint 41. Thereafter, the joining strength gradually decreased with an increase in the number of revolutions, and when the number of revolutions exceeded about 2500 rpm, the joining strength became less than 1000 MPa. Therefore, in order to obtain good bonding strength, it is desirable to set an appropriate number of revolutions, and the number of revolutions is preferably 1500 to 2500 rpm, more preferably 1700 to 2300 rpm, and particularly preferably about 2000 rpm. Here, if the rotational speed is less than 1500 rpm, sufficient frictional heat cannot be obtained. On the other hand, if the rotation speed exceeds 2500 rpm, the frictional heat becomes excessive, and the amount of the build-up layers 13, 14 discharged as burrs increases (the thickness t of the build-up layers 13, 14 decreases). Is not desirable).
[0032]
The relationship between the initial layer thickness t of the cladding layers 13 and 14 and the bonding strength was examined. Specifically, as shown in FIG. 9, the compositions of the base material and the build-up layer are the same as those in FIG. 6, and the pressure P1 is 297 MPa, the pressure P2 is 396 MPa, and the number of rotations is fixed at 2000 rpm. The relationship between the thickness t and the bonding strength was examined. As a result, as the layer thickness t increased, the bonding strength increased, and when the layer thickness t was about 1.0 mm, a bonding strength exceeding 1000 MPa was obtained. Thereafter, the bonding strength increased as the layer thickness t increased, and when the layer thickness t was about 2 mm, the maximum bonding strength (more than 1200 MPa) was obtained in the friction welding portion 41. Thereafter, the bonding strength gradually decreased as the layer thickness t increased, and when the layer thickness t exceeded about 3 mm, the bonding strength became less than 1000 MPa. Therefore, in order to obtain good bonding strength, it is desirable to set an appropriate layer thickness t, and the layer thickness t is preferably 1 to 3 mm, more preferably 1.5 to 2.5 mm, and particularly preferably about 2 mm. I do. Here, if the layer thickness t is smaller than 1 mm, it is difficult to obtain the effect of absorbing and relaxing the thermal strain, and if the layer thickness t exceeds 3 mm, the bonding portion 41 is not affected even if the bonding portion heat treatment is performed. Cannot be sufficiently strengthened, and the bonding strength is insufficient.
[0033]
The relationship between the joint heat treatment and the joint strength was examined. Specifically, as shown in FIG. 10, the compositions of the base material and the build-up layer are the same as those in FIG. 6, and the pressure P1 is 297 MPa, the pressure P2 is 396 MPa, the number of revolutions is 2000 rpm, and the layer thickness t is It was fixed to 2 mm, and the relationship between the presence or absence of heat treatment of the joint and the joint strength was examined. As a result, the bonding strength of the friction welding portion 41 before heat treatment (without heat treatment) was around 900 MPa (average value of two samples). By subjecting them to heat treatment (1,105 ° C. × 2 hr → 649 ° C. × 24 hr → 760 ° C. × 8 hr), the joint strength of the friction welded joint 41 after heat treatment (with heat treatment) is slightly more than 1200 MPa. (Average value of two samples). That is, it was confirmed that the bonding strength can be improved by 30% or more by the bonding portion heat treatment. Here, the friction-welded portion 41 of the joining member 40 has a strength comparable to that of the base materials of the rotating members 11 and 12 before the heat treatment of the joining portion, for example, about 70% or more of the base material strength, preferably. As long as the has a strength of about 80% or more, the joint heat treatment mainly for diffusing the reinforcing element is not necessarily required.
[0034]
As described above, the embodiments of the present invention are not limited to the above-described embodiments, and it is needless to say that various other embodiments are also possible.
[0035]
【The invention's effect】
In short, according to the joining method by friction welding according to the present invention, even when the members are made of a material having high high-temperature strength, when the joining portions of the members are joined by friction welding, cracks are formed in the friction joining portions. It has an excellent effect of preventing generation.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a preferred embodiment of a joining method by friction welding according to the present invention, and shows a state before butting.
FIG. 2 is a schematic diagram for explaining a preferred embodiment of a joining method by friction welding according to the present invention, and shows a rotating sliding state.
FIG. 3 is a schematic view for explaining a preferred embodiment of a joining method by friction welding according to the present invention, and shows a compression deformation state.
FIG. 4 is a schematic diagram for explaining a preferred embodiment of a joining method by friction welding according to the present invention, and shows a state after joining is completed.
FIG. 5 is a diagram showing an example of a composition of a material constituting a build-up layer.
FIG. 6 is a diagram illustrating a relationship between a first pressure and a bonding strength.
FIG. 7 is a diagram illustrating a relationship between a second pressure and a bonding strength.
FIG. 8 is a diagram showing the relationship between the rotational speed of rotational sliding and the joining strength.
FIG. 9 is a view showing the relationship between the thickness of the build-up layer and the bonding strength.
FIG. 10 is a diagram showing the relationship between the presence / absence of heat treatment of a joint and the joint strength.
FIG. 11 is a schematic view of a conventional joining method by friction welding, showing a state before butting.
FIG. 12 is a schematic view of a conventional joining method by friction welding, showing a rotating sliding state.
FIG. 13 is a schematic view of a conventional joining method by friction welding, showing a compression deformation state.
FIG. 14 is a schematic view of a conventional joining method by friction welding, showing a state after joining is completed.
FIG. 15 is a sectional view taken along line 15-15 of FIG. 14;
FIG. 16 is an enlarged view of a main part A of FIG.
[Explanation of symbols]
11,12 Rotating member (member)
11a, 12a Joining portions 13, 14 Overlay layer 40 Joining member 41 Friction welding joining portion

Claims (6)

部材同士の接合部を摩擦圧接により接合する方法において、上記各部材の少なくとも一方の接合部に、各部材の母材と略同等の組成を有し、かつ、各部材の母材よりも高温強度が低い材料で構成される肉盛層を形成し、それらの各部材の接合部同士を摺動させ、その摺動による摩擦熱で肉盛層を介して部材同士の接合部を摩擦圧接接合することを特徴とする摩擦圧接による接合方法。In the method of joining the joined portions of the members by friction welding, at least one of the joined portions has a composition substantially equal to the base material of each member, and has a higher temperature strength than the base material of each member. Layer is formed of a material having a low thickness, the joints of the respective members are slid, and the joints of the members are friction-welded through the overlay by frictional heat generated by the sliding. A joining method by friction welding. 部材同士の接合部を摩擦圧接により接合する方法において、上記各部材の接合部に、各部材の母材と略同等の組成を有し、かつ、各部材の母材よりも高温強度が低い材料で構成される肉盛層をそれぞれ形成し、それらの各部材の肉盛層同士を突き合わせると共に、少なくとも一方の部材を他方の部材に向かって押し付けながら回転摺動させ、その回転摺動による摩擦熱で肉盛層同士を摩擦圧接接合することを特徴とする摩擦圧接による接合方法。In the method of joining the joined portions of the members by friction welding, the joined portion of each member has a composition substantially equal to the base material of each member, and has a lower high-temperature strength than the base material of each member. Are formed, and the cladding layers of the respective members are abutted against each other, and at least one of the members is rotated and slid while being pressed against the other member. A joining method by friction welding, wherein the build-up layers are joined by friction welding with heat. 上記摩擦圧接接合後、少なくとも摩擦圧接接合部及びその近傍部に熱処理を施して上記各部材と接合部との間で元素の拡散を生じさせる請求項1又は2記載の摩擦圧接による接合方法。3. The joining method by friction welding as claimed in claim 1, wherein after the friction welding, at least the friction welding section and the vicinity thereof are subjected to a heat treatment to cause diffusion of elements between the respective members and the joining section. 上記各部材が、Ni基合金、耐熱鋼、又はTi基合金である請求項1から3いずれかに記載の摩擦圧接による接合方法。The joining method by friction welding according to any one of claims 1 to 3, wherein each of the members is a Ni-based alloy, a heat-resistant steel, or a Ti-based alloy. 上記各部材がNi基合金であり、上記肉盛層が、各部材の母材と略同等の組成を有し、かつ、Ti含有量が0〜6wt%、Al含有量が0〜3wt%の材料である請求項1から4いずれかに記載の摩擦圧接による接合方法。Each of the members is a Ni-based alloy, and the cladding layer has a composition substantially equal to that of the base material of each member, and has a Ti content of 0 to 6 wt% and an Al content of 0 to 3 wt%. The joining method by friction welding according to any one of claims 1 to 4, which is a material. 請求項1から5いずれかに記載の摩擦圧接による接合方法を用いて肉盛層同士を摩擦圧接接合したことを特徴とする接合部材。A joining member, wherein the build-up layers are joined by friction welding using the joining method by friction welding according to any one of claims 1 to 5.
JP2003095635A 2003-03-31 2003-03-31 Friction pressure joining method Pending JP2004298935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003095635A JP2004298935A (en) 2003-03-31 2003-03-31 Friction pressure joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003095635A JP2004298935A (en) 2003-03-31 2003-03-31 Friction pressure joining method

Publications (1)

Publication Number Publication Date
JP2004298935A true JP2004298935A (en) 2004-10-28

Family

ID=33407921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003095635A Pending JP2004298935A (en) 2003-03-31 2003-03-31 Friction pressure joining method

Country Status (1)

Country Link
JP (1) JP2004298935A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
KR20200069879A (en) * 2018-12-07 2020-06-17 정승혜 Butt welding of high-tensile nickel alloy using friction welding
CN112975108A (en) * 2021-02-09 2021-06-18 中国航空制造技术研究院 Friction welding method with interlayer material added

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123402A1 (en) * 2007-03-29 2008-10-16 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
US7967182B2 (en) 2007-03-29 2011-06-28 Fukui Prefectural Government Dissimilar metal joint product and joining method therefor
KR20200069879A (en) * 2018-12-07 2020-06-17 정승혜 Butt welding of high-tensile nickel alloy using friction welding
KR102126518B1 (en) * 2018-12-07 2020-06-24 정승혜 Butt welding of high-tensile nickel alloy using friction welding
CN112975108A (en) * 2021-02-09 2021-06-18 中国航空制造技术研究院 Friction welding method with interlayer material added
CN112975108B (en) * 2021-02-09 2022-09-20 中国航空制造技术研究院 Friction welding method with interlayer material added

Similar Documents

Publication Publication Date Title
JPH106042A (en) Friction-pressure-welding method for titanium aluminide-made turbine rotor
US8784065B2 (en) Friction welding of titanium aluminide turbine to titanium alloy shaft
US7543379B2 (en) Method of manufacturing an article by applying heat and pressure, a method of connecting a pipe to a sealed assembly and a connector for use therein
WO2023020169A1 (en) Inertia friction welding device and method for aeroengine compressor disk assembly
US7841506B2 (en) Method of manufacture of dual titanium alloy impeller
JP2014534079A (en) Method of joining or repairing superalloy structures using resistance brazing of convex parts and corresponding superalloy components
JP2014532566A (en) Projection resistance welding of superalloys
JPH11320132A (en) Joining method for titanium-aluminum alloy member and constructive steel member, and joined part
JP2004298935A (en) Friction pressure joining method
US20080000558A1 (en) Friction welding
CN215824522U (en) Inertia friction welding device for aero-engine compressor disc assembly
JP2000312981A (en) Coating method of cylinder inner face
KR101771158B1 (en) Manufacturing method of exhaust valve spindle using high-efficiency friction welding
JPH02160188A (en) Method for joining intermetallic compound of ti-al system and ti-based alloy
JPS58141880A (en) Joining method of sintered hard alloy
JP4753430B2 (en) Friction welding method of steel and aluminum alloy
CN108480838B (en) Diffusion welding connection method adopting Ti foil and titanium-based brazing filler metal foil as intermediate layer
JP4090840B2 (en) Propeller shaft friction welding method
JP2005271015A (en) Friction welding method of steel tube and aluminum alloy hollow member
JP2000015462A (en) Friction welded member, and its manufacture
JP3464563B2 (en) Method for producing composite
JP2545048B2 (en) Solid phase bonding method
CN114807581B (en) Electron beam welding method, welded rotor and gas turbine engine
JP2005271016A (en) Friction welding method of steel tube and aluminum alloy hollow member
JP7365646B2 (en) Linear friction welding method and joined structure