JP7365646B2 - Linear friction welding method and joined structure - Google Patents

Linear friction welding method and joined structure Download PDF

Info

Publication number
JP7365646B2
JP7365646B2 JP2021036522A JP2021036522A JP7365646B2 JP 7365646 B2 JP7365646 B2 JP 7365646B2 JP 2021036522 A JP2021036522 A JP 2021036522A JP 2021036522 A JP2021036522 A JP 2021036522A JP 7365646 B2 JP7365646 B2 JP 7365646B2
Authority
JP
Japan
Prior art keywords
linear friction
friction welding
welding method
joining
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021036522A
Other languages
Japanese (ja)
Other versions
JP2022136753A (en
Inventor
英俊 藤井
好昭 森貞
鉄朗 伊藤
彰 伊藤
良典 南条
高広 和田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2021036522A priority Critical patent/JP7365646B2/en
Publication of JP2022136753A publication Critical patent/JP2022136753A/en
Application granted granted Critical
Publication of JP7365646B2 publication Critical patent/JP7365646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は線形摩擦接合方法及び当該線形摩擦接合方法によって得られる接合構造体に関する。 The present invention relates to a linear friction welding method and a joined structure obtained by the linear friction welding method.

鋼やアルミニウム合金等の金属材料の高強度化に伴い、接合構造物の機械的特性を決定する接合部での強度低下が深刻な問題となっている。これに対し、近年、接合中の最高到達温度が被接合材の融点に達せず、接合部における強度低下が従来の溶融溶接と比較して小さい固相接合法が注目され、急速に実用化が進んでいる。 As the strength of metal materials such as steel and aluminum alloys increases, a decrease in strength at joints, which determines the mechanical properties of jointed structures, has become a serious problem. In contrast, in recent years, solid-phase joining methods have attracted attention and are rapidly being put into practical use, as the maximum temperature during welding does not reach the melting point of the materials to be joined, and the decrease in strength at the joint is smaller than that of conventional fusion welding. It's progressing.

特に、被接合材を当接させた状態で往復運動させて接合する「線形摩擦接合」は、回転する円柱状の被接合材を固定された被接合材に押し当てて接合する摩擦圧接のように被接合材の形状が円柱又は円筒状に限定されない。また、摩擦攪拌接合のように被接合材に圧入するツールを必要としないことから、鋼やチタンのような高融点・高強度金属に対しても容易に適用することができる。 In particular, "linear friction welding", which joins materials by reciprocating them while in contact, is similar to friction welding, which joins rotating cylindrical materials by pressing them against fixed materials. However, the shape of the material to be joined is not limited to a columnar or cylindrical shape. In addition, unlike friction stir welding, it does not require a tool to be press-fitted into the materials to be joined, so it can be easily applied to high-melting-point, high-strength metals such as steel and titanium.

本発明者も線形摩擦接合を用いた金属材の固相接合法について精力的に検討を行っており、例えば、特許文献1(特開2018-122344号公報)において、一方の部材を他方の部材に当接させて被接合界面を形成する第一工程と、被接合界面に対して略垂直に圧力を印加した状態で、一方の部材と他方の部材とを同一軌跡上で繰り返し摺動させ、被接合界面からバリを排出させる第二工程と、摺動を停止して接合面を形成する第三工程と、を有し、圧力を、所望する接合温度における一方の部材及び/又は他方の部材の降伏応力以上かつ引張強度以下に設定すること、を特徴とする線形摩擦接合方法、を提案している。 The present inventor has also been actively studying solid phase joining methods for metal materials using linear friction welding. a first step of forming a welded interface by bringing them into contact with each other, and repeatedly sliding one member and the other member on the same trajectory while applying pressure substantially perpendicularly to the welded interface; It has a second step of discharging burrs from the interface to be joined, and a third step of stopping sliding to form a joining surface, and applying pressure to one member and/or the other member at a desired joining temperature. We are proposing a linear friction welding method characterized by setting the yield stress to be higher than the yield stress and lower than the tensile strength.

上記特許文献1に記載の線形摩擦接合方法においては、線形摩擦接合の印加圧力を増加させると当該摩擦熱は増加するが、軟化した材料はバリとなって連続的に排出されるため、軟化した材料に印加される圧力(バリを排出する力)によって「接合温度」が決定される。つまり、印加圧力を高く設定した場合、より高い強度(降伏強度が高い状態)の被接合材をバリとして排出することができる。ここで、「より降伏強度が高い状態」とは、「より低温の状態」を意味していることから、印加圧力の増加によって「接合温度」が低下することになる。降伏強度と温度の関係は材料によって略一定であることから、極めて正確に接合温度を制御することができる、としている。 In the linear friction welding method described in Patent Document 1, increasing the applied pressure in linear friction welding increases the frictional heat, but since the softened material is continuously discharged as burrs, the softened material The "joining temperature" is determined by the pressure applied to the materials (force to expel burrs). In other words, when the applied pressure is set high, the welded material with higher strength (high yield strength) can be discharged as burrs. Here, "a state with a higher yield strength" means a "state with a lower temperature", and therefore, the "junction temperature" decreases as the applied pressure increases. Since the relationship between yield strength and temperature is approximately constant depending on the material, the bonding temperature can be controlled extremely accurately.

また、特許文献2(特開2018-122342号公報)においては、一方の部材を他方の部材に当接させて被接合界面を形成する第一工程と、被接合界面に対して略垂直に圧力を印加した状態で、一方の部材と他方の部材とを同一軌跡上で繰り返し摺動させ、摺動の方向と略平行及び略垂直に被接合界面からバリを排出させる第二工程と、摺動を停止して接合面を形成する第三工程と、を有し、第二工程において、摺動の方向に対して略垂直の方向から被接合界面を観察し、バリが摺動の方向に対して略平行に排出された瞬間に、第三工程における停止を実行すること、を特徴とする線形摩擦接合方法、を提案している。 Furthermore, in Patent Document 2 (Japanese Unexamined Patent Publication No. 2018-122342), a first step of bringing one member into contact with another member to form a bonded interface, and applying pressure substantially perpendicularly to the bonded interface. a second step in which one member and the other member are repeatedly slid on the same trajectory while applying a In the second step, the interface to be joined is observed from a direction substantially perpendicular to the direction of sliding, and burrs are observed in the direction of sliding. This paper proposes a linear friction welding method characterized by executing the stop in the third step at the moment when the material is discharged substantially in parallel.

上記特許文献2に記載の線形摩擦接合方法においては、摺動の方向に対して略垂直の方向から被接合界面を観察し、摺動の方向に対して略垂直に排出されるバリが当該被接合界面の両端に達した瞬間に摺動を停止することで、摺動の方向に対して略平行にバリが排出された瞬間に摺動を停止する場合と比較して、バリの排出量は若干多くなるものの、より確実に酸化物の除去等を達成することができる、としている。 In the linear friction welding method described in Patent Document 2, the interface to be welded is observed from a direction substantially perpendicular to the direction of sliding, and burrs discharged substantially perpendicular to the direction of sliding are detected at the interface. By stopping sliding the moment it reaches both ends of the bonding interface, the amount of burr discharged is reduced compared to stopping sliding at the moment the burr is discharged approximately parallel to the direction of sliding. Although the amount increases slightly, it is possible to more reliably remove oxides, etc.

特開2018-122344号公報Japanese Patent Application Publication No. 2018-122344 特開2018-122342号公報Japanese Patent Application Publication No. 2018-122342

しかしながら、線形摩擦接合で形成される接合界面は被接合材同士の摺動面に限られることから、接合面積を拡大することが困難である。継手の強度や信頼性の向上が要求される場合、接合面積の拡大が効果的であるが、従来の線形摩擦接合ではこれを簡便に実現することができない。 However, since the bonding interface formed by linear friction welding is limited to the sliding surface between the materials to be bonded, it is difficult to expand the bonding area. When it is required to improve the strength and reliability of a joint, expanding the joint area is effective, but this cannot be easily achieved with conventional linear friction welding.

また、被接合材の一方が樹脂材の場合、金属材との摺動によって適当な摩擦熱を発生させることが困難であり、線形摩擦接合を用いて良好な樹脂/金属接合部を形成することができない。 In addition, if one of the materials to be joined is a resin material, it is difficult to generate appropriate frictional heat by sliding with the metal material, and it is difficult to form a good resin/metal joint using linear friction welding. I can't.

以上のような従来技術における問題点に鑑み、本発明の目的は、接合面積の拡大が容易な重ね合わせ接合部の形成が可能な線形摩擦接合であって、樹脂材と金属材との接合も可能な線形摩擦接合を提供することにある。また、本発明は、当該線形摩擦接合によって得られる線形摩擦接合部とその他の接合部を有する接合構造体を提供することも目的としている。 In view of the above-mentioned problems in the prior art, an object of the present invention is to provide a linear friction welding method that is capable of forming an overlapping joint portion in which the joining area can be easily expanded, and which is also capable of joining resin materials and metal materials. The objective is to provide a possible linear friction welding. Another object of the present invention is to provide a joined structure having a linear friction joint obtained by the linear friction joining and other joints.

本発明者は上記目的を達成すべく、線形摩擦接合方法について鋭意研究を重ねた結果、線形摩擦接合時に発生する摩擦熱を熱伝導させることで、線形摩擦接合部とは別の接合部を形成すること等が極めて効果的であることを見出し、本発明に到達した。 In order to achieve the above object, the inventor of the present invention has conducted extensive research on linear friction welding methods, and has found that by conducting the frictional heat generated during linear friction welding, a joint separate from the linear friction weld is formed. We have discovered that it is extremely effective to do the following, and have arrived at the present invention.

即ち、本発明は、
一方の部材と他方の部材との線形摩擦接合により摩擦熱を発生させ、
前記摩擦熱の熱伝導により、前記一方の部材及び/又は前記他方の部材の表面を昇温し、
前記表面に第三の部材を当接させることで、前記一方の部材及び/又は前記他方の部材と、少なくとも一つの第三の部材と、を接合すること、
を特徴とする熱伝導型線形摩擦接合方法、を提供する。
That is, the present invention
Frictional heat is generated by linear friction joining between one member and the other,
Raising the temperature of the surface of the one member and/or the other member by heat conduction of the frictional heat,
joining the one member and/or the other member and at least one third member by bringing a third member into contact with the surface;
A heat conduction type linear friction welding method is provided.

本発明の熱伝導型線形摩擦接合方法においては、前記第三の部材と前記一方の部材及び/又は前記他方の部材との前記接合を、重ね合わせ接合とすること、が好ましい。重ね合わせ接合とすることで、接合界面の面積を拡大することが容易であり、所望の接合強度を得ることができる。 In the thermally conductive linear friction welding method of the present invention, it is preferable that the third member and the one member and/or the other member be joined by overlap joining. By using overlap bonding, it is easy to expand the area of the bonding interface, and desired bonding strength can be obtained.

ここで、一方の部材と他方の部材を同じ材質とすれば、1種類の材質からなる部材と第三の部材とが重ね合わせ接合された継手を得ることができる。また、一方の部材と他方の部材を異なる材質とすれば、これらの異材接合と第三の部材の重ね合わせ接合を同時に達成することができる。 Here, if one member and the other member are made of the same material, it is possible to obtain a joint in which a member made of one type of material and a third member are overlapped and joined. Moreover, if one member and the other member are made of different materials, joining of these dissimilar materials and overlapping joining of the third member can be achieved simultaneously.

線形摩擦接合は、被接合材同士を線形摺動させることで摩擦熱を発生させ、当該摺動面からバリを排出することで接合部を形成する固相接合法である。ここで、当該摩擦熱の熱伝導によって一方の部材及び他方の部材が昇温されることから、線形摩擦接合条件や被接合材の材質、大きさ(摩擦面面積や接合面面積等)及び形状等によって、一方の部材及び/又は他方の部材の被接合領域となる表面を、適当な温度に制御することができる。 Linear friction welding is a solid phase welding method in which frictional heat is generated by linearly sliding the materials to be welded together, and a joint is formed by expelling burrs from the sliding surfaces. Here, since the temperature of one member and the other member increases due to the thermal conduction of the frictional heat, the linear friction welding conditions, the material, size (friction surface area, joint surface area, etc.) and shape of the welded materials are required. etc., it is possible to control the surface of one member and/or the other member to be a bonded region to an appropriate temperature.

ここで、適当な表面温度とした一方の部材及び/又は他方の部材の所望の領域に第三の部材を重ね合わせることで、接合部を形成することができる。第三の部材は線形摩擦接合時から所望の領域に当接させておいてもよく、適当なタイミングで当接させてもよい。また、第三の部材は接合する部材と同じ固定治具を用いて被接合領域に当接させてもよく、別の固定治具を用いてもよい。 Here, a joint can be formed by overlapping a third member on a desired region of one member and/or the other member whose surface temperature is set to an appropriate temperature. The third member may be brought into contact with a desired region from the time of linear friction welding, or may be brought into contact with a desired region at an appropriate timing. Further, the third member may be brought into contact with the region to be joined using the same fixing jig as the member to be joined, or a different fixing jig may be used.

また、本発明の熱伝導型線形摩擦接合方法においては、前記線形摩擦接合の摩擦圧力(線形摩擦接合圧力)によって、前記表面の温度を制御すること、が好ましい。一方の部材と他方の部材とを接合する際の線形摩擦接合温度を決定することができれば、熱伝導によって達成される「表面の温度」を正確に制御することができる。ここで、発明者が鋭意検討を行った結果、線形摩擦接合では、線形摩擦接合の印加圧力を増加させると当該摩擦熱は増加するが、軟化した材料はバリとなって連続的に排出されるため、軟化した材料に印加される圧力(バリを排出する力)によって「接合温度」(摩擦面での温度)が決定されることが明らかとなっている。つまり、印加圧力を高く設定した場合、より高い強度(降伏強度が高い状態)の被接合材をバリとして排出することができる。ここで、「より降伏強度が高い状態」とは、「より低温の状態」を意味していることから、印加圧力の増加によって「接合温度」が低下することになる。降伏強度と温度の関係は材料によって略一定であることから、極めて正確に接合温度を制御することができる。 Further, in the heat conduction type linear friction welding method of the present invention, it is preferable that the temperature of the surface is controlled by the friction pressure of the linear friction welding (linear friction welding pressure). If the linear friction welding temperature at which one member is joined to the other member can be determined, the "surface temperature" achieved by heat conduction can be accurately controlled. As a result of intensive study by the inventor, in linear friction welding, increasing the applied pressure of linear friction welding increases the frictional heat, but the softened material becomes burrs and is continuously discharged. Therefore, it has become clear that the "joining temperature" (temperature at the friction surface) is determined by the pressure applied to the softened material (force to expel burrs). In other words, when the applied pressure is set high, the welded material with higher strength (high yield strength) can be discharged as burrs. Here, "a state with a higher yield strength" means a "state with a lower temperature", and therefore, the "junction temperature" decreases as the applied pressure increases. Since the relationship between yield strength and temperature is approximately constant depending on the material, the bonding temperature can be controlled extremely accurately.

また、本発明の熱伝導型線形摩擦接合方法においては、前記線形摩擦接合の摩擦面積によって、前記表面の温度を制御すること、が好ましい。摩擦面積によって摩擦発熱量を制御することができるため、熱伝導によって達成される「表面の温度」及び「昇温領域」を制御することができる。ここで、摩擦面の直近における部材表面に第三の部材の接合界面を形成する場合、摩擦面積を所望の接合界面面積以上とすることで、良好な接合部を得ることができる。その他、例えば、線形摩擦接合の線形摺動に関する周波数や振幅を増加させると昇温速度が増加し、周波数や振幅を減少させると昇温速度が減少する。 Further, in the heat conduction type linear friction welding method of the present invention, it is preferable that the temperature of the surface is controlled by the friction area of the linear friction welding. Since the amount of frictional heat generation can be controlled by the friction area, the "surface temperature" and "temperature increase area" achieved by heat conduction can be controlled. Here, when forming the joint interface of the third member on the member surface in the vicinity of the friction surface, a good joint can be obtained by making the friction area equal to or larger than the desired joint interface area. In addition, for example, increasing the frequency or amplitude of linear sliding in linear friction welding increases the temperature increase rate, and decreasing the frequency or amplitude decreases the temperature increase rate.

また、本発明の熱伝導型線形摩擦接合方法においては、前記一方の部材及び前記他方の部材を金属部材とし、前記第三の部材を樹脂部材とすること、が好ましい。金属材同士を接合する場合は、状況に応じて、接合の予備処理として酸化皮膜等の表面の不純物を除去したり、適当なインサート材を用いたりする必要がある。これに対し、第三の部材を樹脂部材とすることで、被接合界面を適当な温度に制御することで良好な接合部を得ることができる。また、第三の部材を接合するために接合圧力を印加する場合であっても、当該接合圧力を小さな値とすることができる。 Further, in the heat conduction type linear friction welding method of the present invention, it is preferable that the one member and the other member are metal members, and the third member is a resin member. When joining metal materials, it is necessary to remove surface impurities such as an oxide film as a preliminary treatment for joining, or to use an appropriate insert material, depending on the situation. On the other hand, by using a resin member as the third member, a good joint can be obtained by controlling the temperature of the interface to be joined to an appropriate temperature. Further, even when applying a bonding pressure to bond the third member, the bonding pressure can be set to a small value.

また、本発明の熱伝導型線形摩擦接合方法においては、第三の部材を樹脂部材とする場合、前記表面(一方の部材及び/又は他方の部材の表面)にシランカップリング処理を施すこと、が好ましい。金属部材と樹脂部材の被接合界面にシランカップリング処理を施すことで、接合に寄与する化学結合を増加させることができ、強固な接合界面を形成することができる。 Furthermore, in the thermally conductive linear friction welding method of the present invention, when the third member is a resin member, the surface (the surface of one member and/or the other member) is subjected to a silane coupling treatment; is preferred. By performing silane coupling treatment on the bonded interface between the metal member and the resin member, it is possible to increase the number of chemical bonds that contribute to bonding, and it is possible to form a strong bonded interface.

また、本発明の熱伝導型線形摩擦接合方法においては、前記一方の部材及び/又は前記他方の部材を、鋼、チタン合金、アルミニウム合金及びマグネシウム合金のうちのいずれかとすること、が好ましい。鋼は多種多様な組成を有しており、熱伝導率の範囲も広いことから、適当な熱伝導率を有する鋼を選定することが容易である。また、チタン合金、アルミニウム合金及びマグネシウム合金は軽金属であり、比強度が高いことから、特に樹脂材との重ね合わせ接合を行うことで、軽量化が切望されている輸送用機器等の構造部材として好適に用いることができる。 Moreover, in the thermally conductive linear friction welding method of the present invention, it is preferable that the one member and/or the other member be made of steel, a titanium alloy, an aluminum alloy, or a magnesium alloy. Since steel has a wide variety of compositions and a wide range of thermal conductivity, it is easy to select a steel having an appropriate thermal conductivity. In addition, titanium alloys, aluminum alloys, and magnesium alloys are light metals and have high specific strength, so they can be used as structural members for transportation equipment, etc., which are in desperate need of weight reduction, especially when combined with resin materials. It can be suitably used.

また、本発明の熱伝導型線形摩擦接合方法においては、前記第三の部材を炭素繊維強化樹脂とすること、が好ましい。炭素繊維強化樹脂は炭素繊維と樹脂マトリックスからなる複合材料であり、主として炭素繊維によって強度が発現されている。ここで、基本的に共有結合からなる炭素繊維と金属材を直接接合することはできないため、炭素繊維強化樹脂と金属材との接合において強度を担うのは、樹脂マトリックスと金属材との接合界面となる。その結果、接合面積が小さくなる突合せ接合では十分な接合強度を得ることが極めて難しいが、本発明の熱伝導型線形摩擦接合方法においては重ね合わせ接合部を形成することができる。重ね合わせ接合では任意の接合面積を決定することができることから、第三の部材を炭素繊維強化樹脂とした場合であっても、高い接合強度を有する良好な継手を得ることができる。 Further, in the heat conduction type linear friction welding method of the present invention, it is preferable that the third member is made of carbon fiber reinforced resin. Carbon fiber reinforced resin is a composite material made of carbon fibers and a resin matrix, and its strength is mainly expressed by the carbon fibers. Here, since carbon fibers and metal materials, which basically consist of covalent bonds, cannot be directly bonded, the bonding interface between the resin matrix and metal material is responsible for the strength in bonding carbon fiber reinforced resin and metal materials. becomes. As a result, it is extremely difficult to obtain sufficient joint strength with butt joints where the joint area is small, but with the thermally conductive linear friction welding method of the present invention, it is possible to form overlapping joints. Since an arbitrary bonding area can be determined in overlap bonding, a good joint with high bonding strength can be obtained even when the third member is made of carbon fiber reinforced resin.

また、本発明の熱伝導型線形摩擦接合方法においては、前記一方の部材及び/又は前記他方の部材と前記第三の部材との前記重ね合わせ接合において、接合圧力を印加すること、が好ましい。適当な温度に昇温された被接合界面において、一方の部材及び/又は他方の部材と第三の部材が良好に密着していれば、これらの部材を接合することは可能であるが、接合圧力を印加することで、接合強度を向上させることができる。 Further, in the heat conduction type linear friction welding method of the present invention, it is preferable that a welding pressure is applied during the overlapping joining of the one member and/or the other member and the third member. If one member and/or the other member and the third member are in good contact with each other at the interface to be joined that has been heated to an appropriate temperature, it is possible to join these members. Bonding strength can be improved by applying pressure.

また、本発明は、
一方の部材と他方の部材との線形摩擦接合部と、
前記一方の部材及び/又は前記他方の部材と、第三の部材との接合部と、を有すること、
を特徴とする接合構造体、も提供する。
前記接合部は、重ね合わせ接合部であることが好ましい。
Moreover, the present invention
a linear friction joint between one member and the other member;
having a joint between the one member and/or the other member and a third member;
Also provided is a bonded structure characterized by the following.
Preferably, the joint is a lap joint.

一方の部材と他方の部材は同じ材質であってもよく、異なる材質であってもよい。また、線形摩擦接合部とその他の接合部の数は特に限定されず、複数の線形摩擦接合部と複数の線形摩擦接合部以外の接合部を有していてもよい。また、「線形摩擦接合部」は、一方の部材と他方の部材との線形摩擦接合によって形成されて接合部を広く含み、例えば、突合せ接合部やT字接合部とすることができる。 One member and the other member may be made of the same material or may be made of different materials. Further, the number of linear friction joints and other joints is not particularly limited, and it may have a plurality of linear friction joints and a plurality of joints other than the linear friction joints. In addition, a "linear friction joint" broadly includes a joint formed by linear friction joint between one member and another member, and can be, for example, a butt joint or a T-joint.

本発明の接合構造体においては、前記一方の部材及び前記他方の部材が金属部材であり、前記第三の部材が樹脂部材であること、が好ましい。一般的に、樹脂部材は金属部材よりも強度が低いことから、接合面積の拡大が容易な重ね合わせ接合部によって接合されることで、各用途に応じた所望の強度及び信頼性を担保することができる。 In the bonded structure of the present invention, it is preferable that the one member and the other member are metal members, and the third member is a resin member. Generally, resin parts have lower strength than metal parts, so by joining them using overlap joints that can easily expand the joint area, it is possible to ensure the desired strength and reliability according to each application. I can do it.

また、本発明の接合構造体においては、前記一方の部材及び/又は前記他方の部材が、鋼、チタン合金、アルミニウム合金及びマグネシウム合金のうちのいずれかであること、が好ましい。一方の部材及び/又は他方の部材を鋼とすることで、各種産業界で使用されている種々の構造部材として活用することができる。また、チタン合金、アルミニウム合金及びマグネシウム合金は軽金属であり、比強度が高いことから、特に樹脂材との重ね合わせ接合を行うことで、軽量化が切望されている輸送用機器等の構造部材として好適に用いることができる。 Moreover, in the bonded structure of the present invention, it is preferable that the one member and/or the other member be made of steel, a titanium alloy, an aluminum alloy, or a magnesium alloy. By making one member and/or the other member steel, it can be utilized as various structural members used in various industries. In addition, titanium alloys, aluminum alloys, and magnesium alloys are light metals and have high specific strength, so they can be used as structural members for transportation equipment, etc., which are in desperate need of weight reduction, especially when combined with resin materials. It can be suitably used.

更に、本発明の接合構造体においては、前記第三の部材が炭素繊維強化樹脂であること、が好ましい。炭素繊維強化樹脂を重ね合わせ接合部によって接合することにより、接合面積を調整することができ、強度の高い炭素繊維と樹脂マトリックスからなる炭素繊維強化樹脂であっても、十分な強度と信頼性を有する接合構造体とすることができる。 Furthermore, in the bonded structure of the present invention, it is preferable that the third member is a carbon fiber reinforced resin. By joining carbon fiber-reinforced resins at overlapping joints, the joint area can be adjusted, and even carbon fiber-reinforced resins made of high-strength carbon fibers and a resin matrix can maintain sufficient strength and reliability. It can be a bonded structure having.

本発明の接合構造体は、本発明の熱伝導型線形摩擦接合方法を用いて好適に得ることができる。 The bonded structure of the present invention can be suitably obtained using the heat conduction type linear friction welding method of the present invention.

本発明によれば、接合面積の拡大が容易な重ね合わせ接合部の形成が可能な線形摩擦接合であって、樹脂材と金属材との接合も可能な線形摩擦接合を提供することができる。また、本発明によれば、当該線形摩擦接合によって得られる線形摩擦接合部とその他の接合部を有する接合構造体を提供することもできる。 According to the present invention, it is possible to provide a linear friction welding that can form an overlapping joint portion in which the joining area can be easily expanded, and can also join a resin material and a metal material. Further, according to the present invention, it is also possible to provide a joined structure having a linear friction joint obtained by the linear friction joining and other joints.

一般的な線形摩擦接合中の状況を示す模式図である。FIG. 2 is a schematic diagram showing a situation during general linear friction welding. 本発明の熱伝導型線形摩擦接合の模式図(重ね合わせ接合)である。FIG. 2 is a schematic diagram of heat conduction type linear friction welding (overlap welding) of the present invention. 本発明の熱伝導型線形摩擦接合の模式図(突合せ接合)である。FIG. 2 is a schematic diagram of a thermally conductive linear friction weld (butt joint) of the present invention. 重ね合わせ接合部を有する接合構造体の模式図である。FIG. 2 is a schematic diagram of a bonded structure having overlapping bonded portions. 突合せ接合部のみからなる接合構造体の模式図である。FIG. 2 is a schematic diagram of a joined structure consisting only of butt joints. 実施例1における熱伝導型線形摩擦接合の状況を示す模式図である。FIG. 3 is a schematic diagram showing the state of heat conduction type linear friction welding in Example 1. 周波数15Hzの条件で得られた継手の外観写真である。It is a photograph of the appearance of a joint obtained under the condition of a frequency of 15 Hz. 実施例1及び実施例2で得られた各継手の接合界面強度を示すグラフである。2 is a graph showing the joint interface strength of each joint obtained in Example 1 and Example 2. 実施例3における接合の状況を示す模式図である。FIG. 7 is a schematic diagram showing the state of bonding in Example 3. 実施例3で得られた継手の外観写真である。3 is a photograph of the appearance of a joint obtained in Example 3.

以下、図面を参照しながら本発明の熱伝導型線形摩擦接合方法及び接合構造体の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, typical embodiments of a thermally conductive linear friction welding method and a welded structure of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the following description, the same or equivalent parts are given the same reference numerals, and redundant descriptions may be omitted. Further, since the drawings are for conceptually explaining the present invention, the dimensions of the illustrated components and their ratios may differ from the actual ones.

(1)熱伝導型線形摩擦接合方法
図1に一般的な線形摩擦接合中の状況を示す模式図を示す。線形摩擦接合は被接合材同士を線形運動で擦りあわせた際に生じる摩擦熱を主な熱源とする固相接合である。線形摩擦接合においては、昇温によって軟化した材料を被接合界面からバリとして排出することで、被接合界面に形成していた酸化被膜を除去し、新生面同士を当接させることで接合部が形成する。
(1) Heat conduction type linear friction welding method Figure 1 shows a schematic diagram showing the situation during general linear friction welding. Linear friction welding is a solid phase welding that uses the frictional heat generated when the materials to be joined are rubbed together in linear motion as the main heat source. In linear friction welding, the material softened by temperature rise is discharged as burrs from the interface to be joined, thereby removing the oxide film that had formed on the interface, and forming a joint by bringing the newly formed surfaces into contact with each other. do.

図2に、本発明の熱伝導型線形摩擦接合の模式図(重ね合わせ接合)を示す。ここでは、一方の部材2と他方の部材4とを線形摩擦接合によって突合せ接合すると共に、一方の部材2と第三の部材6とを重ね合わせ接合する場合について説明する。 FIG. 2 shows a schematic diagram of the heat conduction type linear friction welding (overlap welding) of the present invention. Here, a case will be described in which one member 2 and the other member 4 are butt-joined by linear friction welding, and one member 2 and the third member 6 are overlap-joined.

一方の部材2と他方の部材4とを線形摩擦接合する方法は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の線形摩擦接合装置を用いた線形摩擦接合方法を用いることができる。また、一方の部材2と他方の部材4の材質、サイズ及び大きさも、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の線形摩擦接合方法で接合できるものであればよい。 The method of linearly friction welding one member 2 and the other member 4 is not particularly limited as long as it does not impair the effects of the present invention, and linear friction welding methods using various conventionally known linear friction welding devices may be used. be able to. Further, the materials, sizes, and dimensions of one member 2 and the other member 4 are not particularly limited as long as they do not impair the effects of the present invention, and may be any material that can be joined by a conventionally known linear friction welding method.

本発明の熱伝導型線形摩擦接合においては、一方の部材2と他方の部材4とを被接合界面8で当接させ、被接合界面8に対して接合圧力P1を印加した状態で線形摺動させることで、被接合界面8に摩擦熱を発生させる。ここで、第三の部材6は一方の部材2の任意の表面に重ね合わせ、重ね合わせ被接合界面10を形成し、線形摩擦接合による摩擦熱が熱伝導し、重ね合わせ被接合界面10を昇温することで、一方の部材2と第三の部材6との重ね合わせ接合が達成される。なお、図2においては、一方の部材2及び第三の部材6が固定され、他方の部材4が振動する場合を示している。 In the heat conduction type linear friction welding of the present invention, one member 2 and the other member 4 are brought into contact with each other at the welded interface 8, and linear sliding is performed while applying a welding pressure P1 to the welded interface 8. By doing so, frictional heat is generated at the welded interface 8. Here, the third member 6 is superimposed on an arbitrary surface of the one member 2 to form an overlapping welded interface 10, and the frictional heat due to linear friction welding is thermally conducted and rises up the overlapping welded interface 10. By heating, overlapping bonding between the one member 2 and the third member 6 is achieved. Note that FIG. 2 shows a case where one member 2 and the third member 6 are fixed, and the other member 4 vibrates.

一方の部材2と第三の部材6との重ね合わせ接合においては、重ね合わせ被接合界面10に対して略垂直方向に重ね合わせ接合圧力P2を印加することが好ましい。接合圧力P2を印加することを目的とした押圧機構を設けてもよく、例えば、一方の部材2と第三の部材6を一つの固定治具で把持することで接合圧力P2を発現させてもよい。 In the overlapping joining of the one member 2 and the third member 6, it is preferable to apply the overlapping joining pressure P2 in a substantially perpendicular direction to the overlapping and joining interface 10. A pressing mechanism may be provided for the purpose of applying the bonding pressure P2. For example, the bonding pressure P2 may be expressed by gripping one member 2 and the third member 6 with one fixing jig. good.

重ね合わせ被接合界面10は、線形摩擦接合によって発生する摩擦熱の熱伝導によって昇温される。即ち、重ね合わせ被接合界面10の温度は、一方の部材2と他方の部材4とを接合する線形摩擦接合の接合条件(接合圧力、振幅、周波数及び寄り代等)、一方の部材2と他方の部材4の摩擦面積、重ね合わせ被接合界面10と被接合界面8との距離、一方の部材2と他方の部材4の熱伝導率、及び固定治具のサイズや熱伝導率等によって制御することができる。 The temperature of the overlapping and welded interface 10 is increased by thermal conduction of frictional heat generated by linear frictional welding. That is, the temperature of the superimposed and welded interface 10 depends on the joining conditions (joining pressure, amplitude, frequency, approach distance, etc.) of linear friction welding that joins one member 2 and the other member 4, and the one member 2 and the other member 4. The friction area of the members 4, the distance between the overlapped interface 10 and the interface 8, the thermal conductivity of one member 2 and the other member 4, the size and thermal conductivity of the fixing jig, etc. be able to.

図3に、本発明の熱伝導型線形摩擦接合の模式図(突合せ接合)を示す。ここでは、一方の部材2と他方の部材4とを線形摩擦接合によって突合せ接合すると共に、一方の部材2と第三の部材6とを突合せ接合する場合について説明する。一方の部材2と第三の部材6とを突き合せる端部は、例えば、一方の部材2に凹部、第三の部材6に凸部を設け、互いに嵌合させておいてもよい。 FIG. 3 shows a schematic diagram of the heat conduction type linear friction welding (butt welding) of the present invention. Here, a case will be described in which one member 2 and the other member 4 are butt-joined by linear friction welding, and one member 2 and the third member 6 are butt-joined. For example, one member 2 may be provided with a concave portion and the third member 6 may be provided with a convex portion at the ends where one member 2 and the third member 6 are brought into contact with each other, and the two members may be fitted with each other.

図3に示す態様においては、線形摩擦接合における被接合界面8で発生する摩擦熱の熱伝導により、一方の部材2と第三の部材6とが当接した被接合界面12が昇温され、一方の部材2と第三の部材6とが接合されることになる。なお、図3においては、一方の部材2及び第三の部材6が固定され、他方の部材4が振動する場合を示している。 In the embodiment shown in FIG. 3, the temperature of the welded interface 12 where one member 2 and the third member 6 are in contact is raised due to the thermal conduction of frictional heat generated at the welded interface 8 in linear friction welding. One member 2 and third member 6 will be joined. Note that FIG. 3 shows a case where one member 2 and the third member 6 are fixed, and the other member 4 vibrates.

被接合界面12では一方の部材2と第三の部材6とが摺動しておらず、昇温と押圧によって接合が達成されるため、例えば、被接合界面12を形成する一方の部材2及び/又は第三の部材6の端面にシランカップリング処理等を施している場合、当該処理表面が除去されることなく、良好な接合界面を得ることができる。 At the interface 12 to be joined, the one member 2 and the third member 6 are not sliding, and the joining is achieved by raising the temperature and pressing. /Or in the case where the end face of the third member 6 is subjected to silane coupling treatment or the like, a good bonding interface can be obtained without removing the treated surface.

(2)接合構造体
本発明の接合構造体に関して、重ね合わせ接合部を有する場合及び突合せ接合部のみからなる場合の模式図を図4及び図5にそれぞれ示す。なお、これらの接合構造体では3つの部材が接合された場合を示しているが、本発明の接合構造体はこれに限られず、線形摩擦接合部と熱伝導による昇温を利用して接合された接合部を有していればよい。
(2) Joined Structure Regarding the joined structure of the present invention, schematic diagrams are shown in FIGS. 4 and 5, respectively, when it has an overlapping joint and when it consists of only a butt joint. Note that although these bonded structures show cases in which three members are bonded, the bonded structure of the present invention is not limited to this, and may be bonded using a linear friction joint and temperature increase due to heat conduction. It suffices as long as it has a joint part that is

図4においては、一方の部材2と他方の部材4が線形摩擦接合界面20を介して接合され、第三の部材6と一方の部材2とが重ね合わせ接合界面22を介して接合されている。ここで、重ね合わせ接合界面22は面積の拡大が容易であることから、例えば、第三の部材6が強度の高い炭素繊維と樹脂マトリックスからなる炭素繊維強化樹脂であっても、十分な強度と信頼性を有する接合構造体とすることができる。 In FIG. 4, one member 2 and the other member 4 are joined via a linear friction bonding interface 20, and a third member 6 and one member 2 are bonded via an overlap bonding interface 22. . Here, since the area of the overlapping bonding interface 22 can be easily expanded, for example, even if the third member 6 is made of carbon fiber reinforced resin made of high strength carbon fiber and a resin matrix, it has sufficient strength. A reliable bonded structure can be obtained.

図5においては、一方の部材2と他方の部材4が線形摩擦接合界面20を介して接合され、第三の部材6と一方の部材2とが突合せ接合界面24を介して接合されている。ここで、突合せ接合界面24は昇温と接合圧力の印加によって形成されたものであり、例えば、シランカップリング処理等を施している場合であっても、当該処理表面が除去されることなく、良好な接合界面が形成されている。 In FIG. 5, one member 2 and the other member 4 are joined via a linear friction welding interface 20, and a third member 6 and one member 2 are joined via a butt joining interface 24. Here, the butt joint interface 24 is formed by raising the temperature and applying a joining pressure, and for example, even when a silane coupling treatment is performed, the treated surface is not removed. A good bonding interface is formed.

一方の部材2及び/又は他方の部材4は、本発明の効果を損なわない限りにおいて特に限定されず、線形摩擦接合によって接合が可能な従来公知の種々の構造材を用いることができるが、鋼、チタン合金、アルミニウム合金及びマグネシウム合金のうちのいずれかであること、が好ましい。一方の部材2及び/又は他方の部材4を鋼とすることで、各種産業界で使用されている種々の構造部材として活用することができる。また、チタン合金、アルミニウム合金及びマグネシウム合金は軽金属であり、比強度が高いことから、特に樹脂材との重ね合わせ接合を行うことで、軽量化が切望されている輸送用機器等の構造部材として好適に用いることができる。 One member 2 and/or the other member 4 are not particularly limited as long as they do not impair the effects of the present invention, and various conventionally known structural materials that can be joined by linear friction welding can be used. , titanium alloy, aluminum alloy, and magnesium alloy. By making one member 2 and/or the other member 4 of steel, they can be utilized as various structural members used in various industries. In addition, titanium alloys, aluminum alloys, and magnesium alloys are light metals and have high specific strength, so they can be used as structural members for transportation equipment, etc., which are in desperate need of weight reduction, especially when combined with resin materials. It can be suitably used.

第三の部材6についても、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の構造材とすることができるが、炭素繊維強化樹脂とすることが好ましい。炭素繊維強化樹脂を重ね合わせ接合部によって接合することにより、接合面積を調整することができ、強度の高い炭素繊維と樹脂マトリックスからなる炭素繊維強化樹脂であっても、十分な強度と信頼性を有する接合構造体とすることができる。 The third member 6 is also not particularly limited as long as it does not impair the effects of the present invention, and may be made of various conventionally known structural materials, but is preferably made of carbon fiber reinforced resin. By joining carbon fiber-reinforced resins at overlapping joints, the joint area can be adjusted, and even carbon fiber-reinforced resins made of high-strength carbon fibers and a resin matrix can maintain sufficient strength and reliability. It can be a bonded structure having.

以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 Although typical embodiments of the present invention have been described above, the present invention is not limited to these, and various design changes are possible, and all such design changes are included within the technical scope of the present invention. It will be done.

≪実施例1≫
図6に示す態様で、アルミニウム合金(A6061-T6)板同士を線形摩擦接合すると同時に、一方のアルミニウム合金板と炭素繊維強化樹脂(CFRP,炭素繊維20wt%添加ポリアミド6)板を重ね合わせ接合した。ここで、重ね合わせ接合界面を形成するアルミニウム合金板の表面には、シランカップリング処理を施した。シランカップリング剤はOFS-6040(3-Glycidoxypropyl trimethoxysilane,Epoxy functional)であり、アルミニウム合金板の表面にエポキシ基を導入することができる。
≪Example 1≫
In the manner shown in Fig. 6, aluminum alloy (A6061-T6) plates were linearly friction welded together, and at the same time, one aluminum alloy plate and a carbon fiber reinforced resin (CFRP, polyamide 6 with 20 wt% carbon fiber addition) plate were overlapped and bonded. . Here, the surface of the aluminum alloy plate forming the overlap bonding interface was subjected to silane coupling treatment. The silane coupling agent is OFS-6040 (3-Glycidoxypropyl trimethoxysilane, epoxy functional), which can introduce epoxy groups into the surface of the aluminum alloy plate.

アルミニウム合金板と炭素繊維強化樹脂の形状及びサイズは図6に示すとおりであり(単位はmm)、線形摩擦接合条件は、印加圧力を50MPa、振幅を2mm、周波数を15~50Hz、寄り代を3mmとした。炭素繊維強化樹脂はアルミニウム合金板の表面に当接させた状態で、固定治具を用いて当該アルミニウム合金板と一体に固定した。線形摩擦接合においては、炭素繊維強化樹脂と当接させたアルミニウム合金板を固定側とし、他方のアルミニウム合金板を振動側とした。 The shapes and sizes of the aluminum alloy plate and carbon fiber reinforced resin are as shown in Figure 6 (unit: mm), and the linear friction bonding conditions were: applied pressure of 50 MPa, amplitude of 2 mm, frequency of 15 to 50 Hz, and offset margin. It was set to 3 mm. The carbon fiber reinforced resin was fixed integrally with the aluminum alloy plate using a fixing jig while being in contact with the surface of the aluminum alloy plate. In linear friction welding, the aluminum alloy plate in contact with the carbon fiber reinforced resin was used as the stationary side, and the other aluminum alloy plate was used as the vibration side.

図7に、周波数15Hzの条件で得られた継手の外観写真を示す。アルミニウム合金同士の線形摩擦接合部と、アルミニウム合金と炭素繊維強化樹脂との重ね合わせ接合部が形成されていることが分かる。なお、炭素繊維強化樹脂に当接させたアルミニウム合金板については、重ね合わせ接合に寄与していない領域は切断している。 FIG. 7 shows a photograph of the appearance of the joint obtained under the condition of a frequency of 15 Hz. It can be seen that a linear friction joint between the aluminum alloys and an overlap joint between the aluminum alloy and the carbon fiber reinforced resin are formed. Note that for the aluminum alloy plate that was brought into contact with the carbon fiber reinforced resin, areas that did not contribute to overlapping bonding were cut off.

≪実施例2≫
線形摩擦接合にチタン合金(Ti-6Al-4V)を用いたこと以外は、実施例1と同様にして、チタン合金板同士を線形摩擦接合すると同時に、一方のチタン合金板と炭素繊維強化樹脂(CFRP,炭素繊維20wt%添加ポリアミド6)板を重ね合わせ接合した。
≪Example 2≫
Titanium alloy plates were linearly friction welded together in the same manner as in Example 1, except that titanium alloy (Ti-6Al-4V) was used for linear friction welding, and at the same time one titanium alloy plate and carbon fiber reinforced resin ( CFRP and 20wt% carbon fiber-added polyamide 6) plates were overlapped and bonded.

実施例1及び実施例2で得られた各継手について引張試験を行い、測定された試験荷重を接合面積で除して、接合界面強度を算出した。得られた結果を図8に示す。比較として、実施例1と同様のシランカップリング処理を用い、摩擦攪拌接合(FSW)によってチタン合金(Ti-6Al-4V)板と炭素繊維強化樹脂(CFRP,炭素繊維20wt%添加ポリアミド6)板を重ね合わせ接合した場合に得られる接合界面強度も合わせて示す。図8に示すように、本願発明の熱伝導型線形摩擦接合によって得られる重ね合わせ接合部は、摩擦攪拌接合によって得られる重ね合わせ接合部と比較しても、十分に高い接合界面強度を有していることが分かる。 A tensile test was conducted on each joint obtained in Example 1 and Example 2, and the joint interface strength was calculated by dividing the measured test load by the joint area. The results obtained are shown in FIG. For comparison, a titanium alloy (Ti-6Al-4V) plate and a carbon fiber reinforced resin (CFRP, polyamide 6 with 20 wt% carbon fiber added) plate were fabricated by friction stir welding (FSW) using the same silane coupling treatment as in Example 1. The bonding interface strength obtained when these are overlapped and bonded is also shown. As shown in FIG. 8, the lap joint obtained by thermally conductive linear friction welding of the present invention has sufficiently high joint interface strength compared to the lap joint obtained by friction stir welding. I can see that

ここで、図8に示す接合界面強度に大きな差は認められないが、アルミニウム合金板の場合及びチタン合金板の場合共に、線形摩擦接合の周波数の低下に伴って接合面積が増加していた。これは、周波数が低いほど摩擦による昇温速度が小さくなり、接合時間が長くなった結果である。接合時間が長くなることで摩擦熱がより広範囲に伝導し、接合面積が拡大されたものと考えられる(なお、振幅を低下させても接合時間が長くなる。)。また、アルミニウム合金とチタン合金の熱伝導率はそれぞれ180W/m・K、7.2 W/m・Kであり、熱伝導率の高いアルミニウム合金では、線形摩擦接合条件が同じ場合はチタン合金の場合の約2倍の接合面積となっていた。 Here, although no large difference was observed in the bonding interface strength shown in FIG. 8, the bonding area increased as the frequency of linear friction welding decreased in both cases of the aluminum alloy plate and the titanium alloy plate. This is because the lower the frequency, the lower the rate of temperature rise due to friction, and the longer the bonding time. It is thought that as the bonding time increases, the frictional heat is conducted over a wider area, expanding the bonding area (note that even if the amplitude is reduced, the bonding time becomes longer). In addition, the thermal conductivity of aluminum alloy and titanium alloy is 180 W/m・K and 7.2 W/m・K, respectively, and aluminum alloy with high thermal conductivity has a higher thermal conductivity than titanium alloy under the same linear friction welding conditions. The bonding area was approximately twice that of the case.

なお、比較として行った摩擦攪拌接合の条件は、ツールの回転速度を300rpm、ツールの移動速度(接合速度)を100mm/min、ツールの前進角を3°とし、突起部のない平滑な底面を有する直径15mmの円柱状の超硬合金製摩擦攪拌接合用ツールを用いて摩擦攪拌接合を施した。接合部にはアルゴンガスをフローさせ、ツール底面を純チタン板の表面から0.9mm挿入した。 The conditions for friction stir welding performed for comparison were: the rotation speed of the tool was 300 rpm, the moving speed of the tool (welding speed) was 100 mm/min, the advancing angle of the tool was 3°, and the bottom surface was smooth with no protrusions. Friction stir welding was performed using a cylindrical cemented carbide friction stir welding tool with a diameter of 15 mm. Argon gas was flowed through the joint, and the bottom of the tool was inserted 0.9 mm from the surface of the pure titanium plate.

≪実施例3≫
図9に示す態様で、チタン合金(Ti-6Al-4V)板同士を線形摩擦接合すると同時に、一方のチタン合金板と炭素繊維強化樹脂(CFRP,炭素繊維20wt%添加ポリアミド6)板を突合せ接合した。ここで、突合せ接合界面を形成するチタン合金板の表面には、実施例1と同様のシランカップリング処理を施した。線形摩擦接合条件は、印加圧力を50MPa、振幅を2mm、周波数を15Hz、寄り代を1.5mmとした。
≪Example 3≫
In the manner shown in Fig. 9, titanium alloy (Ti-6Al-4V) plates are linearly friction welded, and at the same time, one titanium alloy plate and a carbon fiber reinforced resin (CFRP, polyamide 6 with 20 wt% carbon fiber) plate are butt welded. did. Here, the same silane coupling treatment as in Example 1 was performed on the surface of the titanium alloy plate forming the butt joint interface. The linear friction welding conditions were as follows: applied pressure was 50 MPa, amplitude was 2 mm, frequency was 15 Hz, and offset was 1.5 mm.

得られた継手の正面からの外観写真を図10に示す。チタン合金板同士が線形摩擦接合されていることに加え、チタン合金板と炭素繊維強化樹脂が突合せ接合されていることが分かる。チタン合金板と炭素繊維強化樹脂の接合は、線形摩擦接合部からの熱伝導と、線形摩擦接合によって印加される接合圧力によって形成されたものである。 A photograph of the front appearance of the obtained joint is shown in FIG. It can be seen that in addition to linear friction welding of the titanium alloy plates, the titanium alloy plates and carbon fiber reinforced resin are butt welded. The bond between the titanium alloy plate and the carbon fiber reinforced resin is formed by heat conduction from the linear friction bond and bonding pressure applied by the linear friction bond.

2・・・一方の部材、
4・・・他方の部材、
6・・・第三の部材、
8・・・被接合界面、
10・・・重ね合わせ被接合界面、
12・・・被接合界面、
20・・・線形摩擦接合界面、
22・・・重ね合わせ接合界面、
24・・・突合せ接合界面。
2...One member,
4...other member,
6...Third member,
8... Bonded interface,
10... overlapped interface to be joined,
12... bonded interface,
20...Linear friction bonding interface,
22... overlap bonding interface,
24...Butt joint interface.

Claims (9)

一方の部材と他方の部材との線形摩擦接合により摩擦熱を発生させ、
前記摩擦熱の熱伝導により、前記一方の部材及び/又は前記他方の部材の表面を昇温し、
前記表面に第三の部材を当接させることで、前記一方の部材及び/又は前記他方の部材と、少なくとも一つの第三の部材と、を接合すること、
を特徴とする熱伝導型線形摩擦接合方法。
Frictional heat is generated by linear friction joining between one member and the other,
Raising the temperature of the surface of the one member and/or the other member by heat conduction of the frictional heat,
joining the one member and/or the other member and at least one third member by bringing a third member into contact with the surface;
A thermally conductive linear friction welding method featuring:
前記第三の部材と、前記一方の部材及び/又は前記他方の部材と、の前記接合を、重ね合わせ接合とすること、
を特徴とする請求項1に記載の熱伝導型線形摩擦接合方法。
The joining of the third member and the one member and/or the other member is an overlapping joining;
The thermally conductive linear friction welding method according to claim 1, characterized in that:
前記線形摩擦接合の摩擦圧力によって、前記表面の温度を制御すること、
を特徴とする請求項1又は2に記載の熱伝導型線形摩擦接合方法。
controlling the temperature of the surface by the friction pressure of the linear friction welding;
The thermally conductive linear friction welding method according to claim 1 or 2, characterized in that:
前記線形摩擦接合の摩擦面積によって、前記表面の温度を制御すること、
を特徴とする請求項1~3のうちのいずれかに記載の熱伝導型線形摩擦接合方法。
controlling the temperature of the surface by the friction area of the linear friction weld;
The thermally conductive linear friction welding method according to any one of claims 1 to 3, characterized in that:
前記一方の部材及び前記他方の部材を金属部材とし、
前記第三の部材を樹脂部材とすること、
を特徴とする請求項1~4のうちのいずれかに記載の熱伝導型線形摩擦接合方法。
The one member and the other member are metal members,
The third member is a resin member;
The thermally conductive linear friction welding method according to any one of claims 1 to 4, characterized in that:
前記表面にシランカップリング処理を施すこと、
を特徴とする請求項5に記載の熱伝導型線形摩擦接合方法。
applying silane coupling treatment to the surface;
The thermally conductive linear friction welding method according to claim 5.
前記一方の部材及び/又は前記他方の部材を、鋼、チタン合金、アルミニウム合金及びマグネシウム合金のうちのいずれかとすること、
を特徴とする請求項1~6のうちのいずれかに記載の熱伝導型線形摩擦接合方法。
The one member and/or the other member are made of steel, titanium alloy, aluminum alloy, and magnesium alloy;
The thermally conductive linear friction welding method according to any one of claims 1 to 6, characterized in that:
前記第三の部材を炭素繊維強化樹脂とすること、
を特徴とする請求項1~7のうちのいずれかに記載の熱伝導型線形摩擦接合方法。
The third member is made of carbon fiber reinforced resin;
The thermally conductive linear friction welding method according to any one of claims 1 to 7, characterized in that:
前記一方の部材及び/又は前記他方の部材と、前記第三の部材と、の前記重ね合わせ接合において、接合圧力を印加すること、
を特徴とする請求項に記載の熱伝導型線形摩擦接合方法。
Applying a joining pressure in the overlapping joining of the one member and/or the other member and the third member;
The thermally conductive linear friction welding method according to claim 2 , characterized in that:
JP2021036522A 2021-03-08 2021-03-08 Linear friction welding method and joined structure Active JP7365646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021036522A JP7365646B2 (en) 2021-03-08 2021-03-08 Linear friction welding method and joined structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021036522A JP7365646B2 (en) 2021-03-08 2021-03-08 Linear friction welding method and joined structure

Publications (2)

Publication Number Publication Date
JP2022136753A JP2022136753A (en) 2022-09-21
JP7365646B2 true JP7365646B2 (en) 2023-10-20

Family

ID=83311872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021036522A Active JP7365646B2 (en) 2021-03-08 2021-03-08 Linear friction welding method and joined structure

Country Status (1)

Country Link
JP (1) JP7365646B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126968A (en) 2001-10-19 2003-05-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for direct acting friction welding
JP2011226589A (en) 2010-04-21 2011-11-10 Ntn Corp Tripod type constant velocity universal joint and outside joint member for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003126968A (en) 2001-10-19 2003-05-08 Ishikawajima Harima Heavy Ind Co Ltd Method and device for direct acting friction welding
JP2011226589A (en) 2010-04-21 2011-11-10 Ntn Corp Tripod type constant velocity universal joint and outside joint member for the same

Also Published As

Publication number Publication date
JP2022136753A (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP5817140B2 (en) Method of joining metal member and resin member
JP5468350B2 (en) Dissimilar metal plate joining method
US8397976B2 (en) Method for cohesively bonding metal to a non-metallic substrate using capacitors
CN104994987B (en) Utilize the combined drive moving axis and its manufacturing method of agitating friction welding
JP2011116127A (en) Method for joining metal and plastic workpieces
JP2007030043A (en) Method for welding and joining at least two workpieces
EP3078480B1 (en) Method for connecting a surface-structured workpiece and a plastic workpiece
KR102529491B1 (en) A friction rivet for joining different materials
JP2672182B2 (en) Joining method for steel-based materials and aluminum-based materials
JP2009279640A (en) Joined body and its manufacturing method
JP2008161942A (en) Friction stir welding of metal matrix composite members
JP6819958B2 (en) Linear friction stir welding method
JP4998027B2 (en) Friction spot welding method
JP7365646B2 (en) Linear friction welding method and joined structure
KR101047877B1 (en) Dissimilar welding method using hybrid friction stir welding system
JP3445579B2 (en) Bonding structure between dissimilar metal hollow members and bonding method thereof
CN112317947A (en) Continuous driving friction welding method for aluminum bar and steel bar with outer conical end face
WO2021095528A1 (en) Dissimilar material solid phase bonding method, dissimilar material solid phase bonded structure, and dissimilar material solid phase bonding device
Thapliyal Ultrasonic welding—a modern welding technology for metals and plastics
JP2002096182A (en) Bonding method, revolving tool and joining body by friction heating
Baboi et al. Evaluation of amplitude stepping in ultrasonic welding
JP6688755B2 (en) Metal thin plate joining method and metal thin plate joining structure
WO2022210048A1 (en) Linear friction-joining method and linear friction-joining structure
Baboi et al. Effect of buffer sheets on the shear strength of ultrasonic welded aluminum joints
Mehta et al. Welding and joining of shape memory alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230929

R150 Certificate of patent or registration of utility model

Ref document number: 7365646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150