JP4998027B2 - Friction spot welding method - Google Patents

Friction spot welding method Download PDF

Info

Publication number
JP4998027B2
JP4998027B2 JP2007066989A JP2007066989A JP4998027B2 JP 4998027 B2 JP4998027 B2 JP 4998027B2 JP 2007066989 A JP2007066989 A JP 2007066989A JP 2007066989 A JP2007066989 A JP 2007066989A JP 4998027 B2 JP4998027 B2 JP 4998027B2
Authority
JP
Japan
Prior art keywords
metal member
bonded
joining
metal
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007066989A
Other languages
Japanese (ja)
Other versions
JP2008221321A (en
Inventor
俊行 玄道
貢 深堀
慎介 松井
忠俊 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2007066989A priority Critical patent/JP4998027B2/en
Publication of JP2008221321A publication Critical patent/JP2008221321A/en
Application granted granted Critical
Publication of JP4998027B2 publication Critical patent/JP4998027B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、重ね合わされた複数の金属部材のうちの一方側から回転ツールを押し込み、それによって発生する摩擦熱で前記金属部材どうしを接合する方法に関する。   The present invention relates to a method of pressing a rotating tool from one side of a plurality of metal members stacked and joining the metal members with frictional heat generated thereby.

従来から、自動車の燃費改善等の目的で軽量化を図るため、自動車等のボディ材料としてアルミニウム合金材料が多用されつつある。それに伴い、例えばアルミニウム合金等からなる部材と鉄材料等からなる部材とを接合する機会が多くなってきている。   Conventionally, aluminum alloy materials have been widely used as body materials for automobiles and the like in order to reduce the weight for the purpose of improving the fuel consumption of automobiles. Along with this, there are increasing opportunities to join a member made of, for example, an aluminum alloy and a member made of an iron material or the like.

しかしながら、このような異種材料からなる金属部材同士をアーク溶接などの溶融溶接で接合すると、脆弱な金属間化合物が生成されて接合強度が低下する等の問題点があった。このため、従来からリベット等を用いた機械的接合法が多く用いられてきたが、このような方法では、リベット等の副資材が必要なことなどからコスト高になるという問題がある。   However, when metal members made of such dissimilar materials are joined together by fusion welding such as arc welding, there is a problem that a brittle intermetallic compound is generated and joint strength is lowered. For this reason, mechanical joining methods using rivets and the like have been used in the past. However, such methods have a problem in that the cost is increased because secondary materials such as rivets are required.

そこで、異種材料からなる金属部材同士を低コストで接合する方法として、摩擦点接合と呼ばれる接合方法が開発されている。この接合方法は、例えば下記特許文献1に開示されており、図1に示すように、アルミニウム合金板10と鋼板12とを重ね合わせて、この重ね合わせ部分に回転ツール16の先端部を押し込み、この回転ツール16の回転動作および加圧動作により発生する摩擦熱で前記アルミニウム合金板10を軟化および塑性流動させることにより、当該アルミニウム合金板10と前記鋼板12とを融点以下の温度で固相接合するものである。   Therefore, a joining method called friction spot joining has been developed as a method for joining metal members made of different materials at low cost. This joining method is disclosed, for example, in Patent Document 1 below, and as shown in FIG. 1, the aluminum alloy plate 10 and the steel plate 12 are overlapped, and the tip of the rotary tool 16 is pushed into the overlapped portion. The aluminum alloy plate 10 and the steel plate 12 are solid-phase bonded at a temperature equal to or lower than the melting point by softening and plastically flowing the aluminum alloy plate 10 with frictional heat generated by the rotating operation and pressurizing operation of the rotating tool 16. To do.

ここで、特に、前記のように異種材料からなる金属部材を接合する場合には、この金属部材間に水等が混入するとこれら部材間の電位差により少なくとも一方の金属部材が腐食してしまう可能性がある。そこで、このように異種材料の金属部材を接合する場合には、前記電食を回避するためにこれら部材間に流動性を有する絶縁材14を介在させる方法が考えられている。
特開2005−34879号公報
Here, in particular, when joining metal members made of different materials as described above, if water or the like is mixed between the metal members, at least one of the metal members may be corroded due to a potential difference between these members. There is. Therefore, when joining metal members of different materials in this way, a method of interposing a fluid insulating material 14 between these members is considered in order to avoid the electrolytic corrosion.
JP 2005-34879 A

しかしながら、図1に示すように、単純に前記金属部材10,12の間に前記絶縁材14を介在させこれに回転ツール16を押し込んだだけでは、この回転ツール16の加圧動作により前記絶縁材14が接合部分Pから外側に押出されるとともに、この回転ツール16によって前記アルミニウム合金板10に摩擦熱が加えられることで当該アルミニウム合金板10が熱変形することで、図2に示すように、両金属部材10,12の間に前記絶縁材14が介在せず当該金属部材10,12同士が十分に絶縁されない隙間Sが形成されてしまう可能性がある。   However, as shown in FIG. 1, if the insulating material 14 is simply interposed between the metal members 10, 12 and the rotary tool 16 is pushed into the metal member 10, the insulating material is pressed by the rotary tool 16. 14 is pushed out from the joint portion P, and the aluminum alloy plate 10 is thermally deformed by applying frictional heat to the aluminum alloy plate 10 by the rotating tool 16, as shown in FIG. There is a possibility that a gap S is formed between the metal members 10 and 12 so that the insulating material 14 does not intervene and the metal members 10 and 12 are not sufficiently insulated from each other.

本発明は、前記のような事情に鑑みてなされたものであり、金属材料の熱変形をより確実に抑制しつつ金属材料同士を接合することのできる摩擦点接合方法の提供を目的とする。   This invention is made | formed in view of the above situations, and it aims at provision of the friction point joining method which can join metal materials, suppressing the heat deformation of a metal material more reliably.

前記課題を解決するための請求項1に係る発明は、第一金属部材と第二金属部材とを重ね合わせて当該両金属部材を固相状態で接合する方法であって、前記第一金属部材として、前記第二金属部材と固相状態で接合される被接合部分を囲む位置に当該被接合部分近傍の剛性を高めるための剛性部が設けられた金属部材を用い、当該剛性部を有する第一金属部材と前記第二金属部材との間に絶縁性の接着剤を介在させた状態で当該両金属部材を重ね合わせる準備工程と、前記第一金属部材の被接合部分に回転ツールを当接させ、この回転ツールの回転動作および加圧動作により発生する摩擦熱で前記第一金属部材の被接合部分を軟化および塑性流動させることにより前記両金属部材を固相状態で接合する接合工程と、前記両金属部材の固相状態での接合部分以外の部分を前記接着剤により接着する接着工程とを含むとともに、前記第一金属部材として、前記被接合部分を囲む位置に当該第一金属部材の表面から前記第二金属部材と離間する方向に突出するビード部が形成された金属部材を用い、当該ビード部によって前記剛性部を構成し、前記接合工程にて、前記摩擦熱による前記第一金属部材の変形を前記剛性部を構成する前記ビード部により抑制しつつ前記第一金属部材の被接合部分と前記第二金属部材とを固相状態で前記両金属部材を接合することを特徴とする摩擦点接合方法を提供する(請求項1)。
The invention according to claim 1 for solving the above-mentioned problem is a method of superimposing a first metal member and a second metal member and joining the two metal members in a solid state, the first metal member As the second metal member, a metal member provided with a rigid portion for increasing the rigidity in the vicinity of the bonded portion at a position surrounding the bonded portion to be bonded in a solid phase is used. A preparatory step of superimposing the two metal members in a state where an insulating adhesive is interposed between the one metal member and the second metal member; and a rotating tool is brought into contact with the bonded portion of the first metal member A joining step of joining the two metal members in a solid state by softening and plastically flowing a joined portion of the first metal member with frictional heat generated by the rotational operation and pressurizing operation of the rotary tool; Solid state of both metal members With a portion other than the joint portion and a bonding step of bonding by the adhesive, as the first metal member, spaced from the second metal member from the surface of the first metal member to a position surrounding the joint target a metal member having a bead portion is formed protruding in a direction, constitutes the rigid portion by the bead portion at the joining step, constituting the rigid portion the deformation of the first metal member by the frictional heat The friction point joining method is characterized by joining the two metal members in a solid phase state to the joined portion of the first metal member and the second metal member while being suppressed by the bead portion. Item 1).

本発明によれば、前記第一金属部材と第二金属部材とを前記回転ツールの摩擦熱によって固相接合させるとともに、前記第一金属部材と第二金属部材との間に接着剤を介在させることで、前記固相状態での接合部分以外の部分を当該接着剤によって接着しているので、この第一の金属部材と第二金属部材との接合強度を確保することができる。しかも、前記第一金属部材として、剛性部を有し当該剛性部によって前記回転ツールが当接される被接合部分の周囲の剛性が高められた金属部材を用いているので、この被接合部分近傍が前記回転ツールにより発生する摩擦熱によって大きく熱変形してしまうのを抑制することができる。この結果、前記両金属間に接着剤が介在しない隙間が形成されるのを有効に回避することができ、前記固相状態での接合部分を除く両金属部材間全体に前記接着剤を介在させることができるので、これら金属部材の接合強度を確保することができる。特に、この第一金属部材と第二金属部材とを異種材料で構成した場合には、前記隙間に水等が浸入することにより金属部材が電食してしまうのをより確実に抑制することが可能になる。   According to the present invention, the first metal member and the second metal member are solid-phase bonded by frictional heat of the rotary tool, and an adhesive is interposed between the first metal member and the second metal member. Thus, since the portion other than the joint portion in the solid phase is adhered by the adhesive, the joint strength between the first metal member and the second metal member can be ensured. In addition, as the first metal member, a metal member having a rigid portion and having increased rigidity around the bonded portion with which the rotating tool is brought into contact with the rigid portion is used. Can be prevented from being largely thermally deformed by frictional heat generated by the rotating tool. As a result, it is possible to effectively avoid the formation of a gap in which no adhesive is interposed between the two metals, and the adhesive is interposed between the two metal members excluding the bonded portion in the solid phase. Therefore, the bonding strength of these metal members can be ensured. In particular, when the first metal member and the second metal member are made of different materials, it is possible to more reliably prevent the metal member from being eroded by water entering the gap. become.

また、アルミニウム合金製の板材である第一金属部材と鋼製の板材である第二金属部材とを接合する際に本発明を用いれば、これら異種材料間の電位差による電食を抑制しつつ両金属部材をより確実に接合することができ効果的である(請求項)。
Further, when the present invention is used to join the first metal member, which is a plate material made of aluminum alloy, and the second metal member, which is a plate material made of steel, both of them can be controlled while suppressing electrolytic corrosion due to a potential difference between these different materials. The metal members can be joined more reliably, which is effective (claim 2 ).

また本発明は、第一金属部材と第二金属部材とを重ね合わせて当該両金属部材を固相状態で接合する方法であって、前記第一金属部材として、前記第二金属部材と固相状態で接合される被接合部分を囲む位置に当該被接合部分近傍の剛性を高めるための剛性部が設けられた金属部材を用い、当該剛性部を有する第一金属部材と前記第二金属部材との間に絶縁性の接着剤を介在させた状態で当該両金属部材を重ね合わせる準備工程と、前記第一金属部材の被接合部分に回転ツールを当接させ、この回転ツールの回転動作および加圧動作により発生する摩擦熱で前記第一金属部材の被接合部分を軟化および塑性流動させることにより前記両金属部材を固相状態で接合する接合工程と、前記両金属部材の固相状態での接合部分以外の部分を前記接着剤により接着する接着工程とを含むとともに、前記準備工程にて、前記接着剤を、前記第一金属部材のうち前記被接合部分以外の部分と前記第二金属部材のうち前記該被接合部分と接合される接合部分以外の部分との間に介在させ、前記接合工程にて、前記摩擦熱による前記第一金属部材の変形を前記剛性部により抑制しつつ前記両金属部材を接合することを特徴とする摩擦点接合方法を含む
Further, the present invention is a method of superimposing a first metal member and a second metal member and joining the two metal members in a solid phase state, wherein the second metal member and a solid phase are used as the first metal member. A metal member provided with a rigid portion for increasing the rigidity in the vicinity of the bonded portion at a position surrounding the bonded portion to be bonded in a state, the first metal member having the rigid portion, and the second metal member, A preparatory step in which the two metal members are overlapped with an insulating adhesive interposed therebetween, and a rotating tool abutting on the bonded portion of the first metal member, and the rotating operation and addition of the rotating tool. A joining step of joining the two metal members in a solid state by softening and plastically flowing a portion to be joined of the first metal member by frictional heat generated by pressure operation; and in a solid state of the two metal members Bonding the parts other than the joint part Together and a bonding step of bonding by, at the preparation step, wherein an adhesive bonded to the該被joint portion of the second metal member and the portion other than the joint target of said first metal member The metal member is interposed between portions other than the joint portion to be joined, and in the joining step, the two metal members are joined while the deformation of the first metal member due to the frictional heat is suppressed by the rigid portion. Including a friction point joining method .

このようにすれば、前記回転ツールによって前記第一金属部材に摩擦熱を加える際に、当該摩擦熱が前記接着剤によって奪われてしまうのを抑制することができ、両金属部材を固相接合するために投入するエネルギーを小さくすることが可能となるので、コスト面で有利となる。   In this way, when frictional heat is applied to the first metal member by the rotary tool, the frictional heat can be prevented from being taken away by the adhesive, and both metal members can be solid-phase bonded. Therefore, it is possible to reduce the energy to be input, which is advantageous in terms of cost.

以上のように、本発明によれば、複数の金属部材を接合する摩擦点接合方法において、金属部材の熱変形を抑制して接合強度を確保することができる。   As described above, according to the present invention, in the friction point joining method for joining a plurality of metal members, thermal deformation of the metal members can be suppressed to ensure the joining strength.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。まず、本発明にかかる摩擦点接合方法を実施するために用いられる摩擦点接合装置1の概要を説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, the outline | summary of the friction point joining apparatus 1 used in order to implement the friction point joining method concerning this invention is demonstrated.

図3は、前記摩擦点接合装置1の一例を模式的に示す図である。この図3に示される摩擦点接合装置1は、アルミニウム合金板20(第一金属部材)と鋼板30(第二金属部材に相当)等を接合するための装置であり、前記アルミニウム合金板20と鋼板30とが図示のように重ね合わされた状態でアルミニウム合金板20の被接合部分P1に押し付けられる回転ツール16を有している。前記回転ツール16は中心軸線X回りに回転駆動される略円筒状の部材からなり、前記アルミニウム合金板20と鋼板30のうち融点の低いアルミニウム合金板20の前記被接合部分P1に押し付けられる。前記摩擦点接合装置1は、この回転ツール16を高速で回転させながら被接合部分P1に押し込むことによって摩擦熱を生じさせ、この摩擦熱で前記両金属部材22,30を互いに接合するように構成されている。なお、以下では、アルミニウム合金板20のことを単にアルミ板20と略称する。   FIG. 3 is a diagram schematically illustrating an example of the friction point welding apparatus 1. The friction point joining apparatus 1 shown in FIG. 3 is an apparatus for joining an aluminum alloy plate 20 (first metal member), a steel plate 30 (corresponding to a second metal member), and the like. It has the rotary tool 16 pressed against the to-be-joined part P1 of the aluminum alloy plate 20 in the state where the steel plate 30 is overlapped as shown. The rotary tool 16 is formed of a substantially cylindrical member that is driven to rotate about a central axis X, and is pressed against the joined portion P1 of the aluminum alloy plate 20 having a low melting point, of the aluminum alloy plate 20 and the steel plate 30. The friction spot welding device 1 is configured to generate frictional heat by pushing the rotary tool 16 into the joined portion P1 while rotating the rotary tool 16 at a high speed, and to join the metal members 22 and 30 to each other by the frictional heat. Has been. Hereinafter, the aluminum alloy plate 20 is simply referred to as an aluminum plate 20.

図4に、前記回転ツール16の先端部を拡大して示す。なお、この図4において、左半分は回転ツール16の断面、右半分はその外形を示している。この図4に示すように、回転ツール16の先端部(図では下端部)は、その中心部に突設された小径円筒状のピン部16aと、このピン部16aよりも径方向外側の部分を構成するとともに外側に至るほど底面の高さが低くなるように形成されたショルダ部16bとを有している。前記ピン部16aは、その下端部が前記ショルダ部16bの周縁部の高さよりも所定距離下方に突出するように形成されている。   In FIG. 4, the front-end | tip part of the said rotation tool 16 is expanded and shown. In FIG. 4, the left half shows the cross section of the rotary tool 16, and the right half shows the outer shape. As shown in FIG. 4, the distal end portion (lower end portion in the figure) of the rotary tool 16 has a small-diameter cylindrical pin portion 16a projecting from the center portion thereof, and a portion radially outward from the pin portion 16a. And a shoulder portion 16b formed so that the height of the bottom surface becomes lower toward the outside. The pin portion 16a is formed such that a lower end portion thereof protrudes a predetermined distance below the height of the peripheral edge portion of the shoulder portion 16b.

このような回転ツール16の具体的寸法は、前記アルミ板20や鋼板30の厚さ等によって適宜決定されるが、その好適な値の一例として、ショルダ部16bの直径D1が10mm、ピン部16aの直径D2が2mm、ショルダ部16bの周縁部に対するピン部16aの突出長さhが0.3〜0.35mm、ショルダ部16bの底面の傾斜角θ(ショルダ傾斜角)が5°〜7°とされる。   The specific dimensions of the rotary tool 16 are appropriately determined depending on the thickness of the aluminum plate 20 and the steel plate 30. As an example of a preferable value, the diameter D1 of the shoulder portion 16b is 10 mm, and the pin portion 16a. Diameter D2 is 2 mm, the protrusion length h of the pin portion 16a with respect to the peripheral portion of the shoulder portion 16b is 0.3 to 0.35 mm, and the inclination angle θ (shoulder inclination angle) of the bottom surface of the shoulder portion 16b is 5 ° to 7 °. It is said.

前記アルミ板20および鋼板30を挟んで回転ツール16の反対側には、この回転ツール16と略同径ないしはそれより大径の受け具17が同軸配置されている。この受け具17は、アルミ板20および鋼板30を挟んで回転ツール16に接近する方向(矢印A3)に移動し、少なくとも回転ツール16による押圧が開始されるまでにその先端が鋼板30に当接する。そして回転ツール16による押圧時に、その押圧力に抗してアルミ板20および鋼板30を支持するように構成されている。   On the opposite side of the rotary tool 16 with the aluminum plate 20 and the steel plate 30 in between, a receiving member 17 having the same diameter or larger diameter than the rotary tool 16 is coaxially arranged. The receiving member 17 moves in a direction approaching the rotary tool 16 (arrow A3) with the aluminum plate 20 and the steel plate 30 interposed therebetween, and at least the tip thereof abuts on the steel plate 30 until pressing by the rotary tool 16 is started. . The aluminum plate 20 and the steel plate 30 are supported against the pressing force when pressed by the rotary tool 16.

以上のような回転ツール16や受け具17は、多関節ロボット等からなる図外の駆動制御装置に装着され、その回転速度、押圧位置、加圧力、加圧時間等が適宜制御されるように構成されている。なお図3では省略しているが、予めアルミ板20および鋼板30を固定し、また回転ツール16を押圧したときのアルミ板20の浮き上がりを防止するため、スペーサや浮き上がり防止板等の治具が適宜用いられる。   The rotating tool 16 and the receiving tool 17 as described above are mounted on a drive control device (not shown) composed of an articulated robot or the like so that the rotation speed, pressing position, pressing force, pressing time, and the like are appropriately controlled. It is configured. Although not shown in FIG. 3, in order to prevent the aluminum plate 20 from being lifted when the aluminum plate 20 and the steel plate 30 are fixed in advance and the rotary tool 16 is pressed, a jig such as a spacer or a lift prevention plate is used. Used as appropriate.

次に、以上のような摩擦点接合装置1を用いて行われる本発明の摩擦点接合方法に係る第一の実施形態について説明する。この実施形態では、図3および図5に示すように、アルミ板20として、その表面26から所定の方向に凹む第一凹部22を有する板材を用いる。この第一凹部22は、アルミ板20の表面26をプレス加工することにより形成されている。具体的には、この第一凹部22は、前記アルミ板20の表面26とほぼ平行な方向に延びる第一底面部22aと、この第一底面部22aの外周から前記アルミ板20の表面26に向かって延びる第一外周壁24とを有している。   Next, a first embodiment according to the friction spot welding method of the present invention performed using the friction spot welding apparatus 1 as described above will be described. In this embodiment, as shown in FIGS. 3 and 5, as the aluminum plate 20, a plate material having a first recess 22 that is recessed from the surface 26 in a predetermined direction is used. The first recess 22 is formed by pressing the surface 26 of the aluminum plate 20. Specifically, the first concave portion 22 includes a first bottom surface portion 22a extending in a direction substantially parallel to the surface 26 of the aluminum plate 20, and an outer periphery of the first bottom surface portion 22a to the surface 26 of the aluminum plate 20. And a first outer peripheral wall 24 extending toward the front.

このようなアルミ板20と鋼板30とを接合するには、まず、図5に示すように、前記鋼板30の表面に絶縁性の接着剤40を塗布する。この接着剤40としては、鋼板30に容易に塗布できるような流動性を有するもので、かつ、常温以上の温度で硬化するものが用いられる。例えば、エポキシ樹脂からなり硬化条件が150℃/20minの熱硬化型の接着剤で、170Pa・s程度の粘度を有し、17.8MPa程度の引っ張りせん断接着強さを有するものが挙げられる。   In order to join such an aluminum plate 20 and the steel plate 30, first, as shown in FIG. 5, an insulating adhesive 40 is applied to the surface of the steel plate 30. As the adhesive 40, an adhesive having fluidity that can be easily applied to the steel sheet 30 and is cured at a temperature equal to or higher than normal temperature is used. For example, a thermosetting adhesive made of an epoxy resin and having a curing condition of 150 ° C./20 min and having a viscosity of about 170 Pa · s and a tensile shear adhesive strength of about 17.8 MPa can be mentioned.

次に、図6に示すように、前記接着剤40が塗布された鋼板30に前記アルミ板20を重ね合わせる。このとき、アルミ板20を、前記第一凹部22がアルミ板20の表面26から鋼板30側に向かって凹むように載置する。また、アルミ板20を鋼板30側に押圧して、第一凹部22の第一底面部22a(被接合部分P1)と鋼板30との間の接着剤40を外側に押出し、この第一底面部22aが直接鋼板30に接触するように重ね合わせる。これにより、前記アルミ板20のうち前記第一凹部22の第一底面部22a以外の部分と鋼板30との間には、接着剤40が介在した状態となる(準備工程)。   Next, as shown in FIG. 6, the aluminum plate 20 is overlaid on the steel plate 30 to which the adhesive 40 is applied. At this time, the aluminum plate 20 is placed so that the first recess 22 is recessed from the surface 26 of the aluminum plate 20 toward the steel plate 30 side. Moreover, the aluminum plate 20 is pressed to the steel plate 30 side, the adhesive 40 between the 1st bottom face part 22a (to-be-joined part P1) of the 1st recessed part 22 and the steel plate 30 is extruded outside, This 1st bottom face part. Overlap so that 22a directly contacts the steel plate 30. Thereby, it will be in the state where adhesive 40 intervened between portions other than the 1st bottom face part 22a of the 1st crevice 22 among the aluminum plates 20, and steel plate 30 (preparation process).

次に、図3に示すように、前記回転ツール16を軸周り(矢印A1方向)に回転させつつ、矢印A2のように前記アルミ板20に接近させ、この回転ツール16の下端部を前記アルミ板20の第一凹部22の第一底面部22aに当接させる。また、これに合わせて、前記受け具17を矢印A3のように鋼板30に接近させ、アルミ板20および鋼板30を前記回転ツールとの間で挟むようにして支持する。   Next, as shown in FIG. 3, while rotating the rotary tool 16 around the axis (in the direction of arrow A1), the rotary tool 16 is brought close to the aluminum plate 20 as indicated by arrow A2, and the lower end of the rotary tool 16 is moved to the aluminum plate. It is made to contact | abut to the 1st bottom face part 22a of the 1st recessed part 22 of the board 20. FIG. In accordance with this, the support 17 is brought close to the steel plate 30 as indicated by an arrow A3, and the aluminum plate 20 and the steel plate 30 are supported by being sandwiched between the rotary tools.

そして、前記のように回転ツール16と受け具17との間でアルミ板20および鋼板30を挟んだ状態で、高速で回転する回転ツール16を前記第一凹部22の第一底面部22aに対し所定深さまで押し込み、これに応じて発生する摩擦熱によってこの第一底面部22aと鋼板30とを接合させる(接合工程)。この接合工程は、より詳しくは、以下に説明する第一押圧工程、第二押圧工程、第三押圧工手の3つの工程に分けられる。   Then, as described above, the rotary tool 16 that rotates at high speed with the aluminum plate 20 and the steel plate 30 sandwiched between the rotary tool 16 and the receiving member 17 is placed on the first bottom surface portion 22a of the first recess 22. The first bottom surface portion 22a and the steel plate 30 are joined by pressing to a predetermined depth and the frictional heat generated accordingly (joining step). More specifically, this joining process is divided into three processes, a first pressing process, a second pressing process, and a third pressing worker described below.

まず、第一押圧工程では、図7に示すように、回転ツール16を、予め設定された第一回転速度で回転させながら、第一加圧時間の間、第一加圧力でアルミ板20の第一凹部22の第一底面部22aに対し押圧接触させる。これら第一回転速度、第一加圧時間、および第一加圧力の各値は、この第一凹部22の第一底面部22aに対する回転ツール16の押し込み深さが、そのピン部16aの先端部およびショルダ部16bの周縁部が前記第一凹部22の第一底面部22aに接触する一方でショルダ部16bの径方向内側領域がこの第一底面部22aに接触しない程度の深さとなるように決定される。具体的には、例えば第一回転速度が1500rpm以上3500rpm以下、第一加圧時間が0.2秒以上2.0秒以下、第一加圧力が2.45kN以上3.43kN以下にそれぞれ設定されることが好ましい。   First, in the first pressing step, as shown in FIG. 7, while the rotary tool 16 is rotated at a preset first rotational speed, the aluminum plate 20 is pressed with a first pressurizing force during a first pressurizing time. The first recess 22 is pressed against the first bottom surface 22a. The values of the first rotation speed, the first pressurizing time, and the first pressurizing force are determined based on whether the depth of pushing the rotary tool 16 against the first bottom surface portion 22a of the first recess 22 is the tip of the pin portion 16a. The peripheral portion of the shoulder portion 16b is in contact with the first bottom surface portion 22a of the first concave portion 22, while the radially inner region of the shoulder portion 16b is determined to have a depth that does not contact the first bottom surface portion 22a. Is done. Specifically, for example, the first rotation speed is set to 1500 rpm to 3500 rpm, the first pressurization time is set to 0.2 seconds to 2.0 seconds, and the first pressure is set to 2.45 kN to 3.43 kN. It is preferable.

前記のように回転ツール16が中心軸線X回りに回転しながら第一凹部22の第一底面部22aに対し押圧接触すると、この回転ツール16におけるピン部16aの下端部およびショルダ部16bの周縁部の2箇所の接触部位と前記第一凹部22の第一底面部22aとの間で摩擦熱が発生する。そして、この摩擦熱は、前記2箇所の接触部位の間の部分(ショルダ部16bの底面が接触していない部分)を含んだ第一凹部22の第一底面部22a全体に速やかに拡散され、この第一底面部22a全体を速やかに軟化させる。ここで、前記第一底面部22aと前記鋼板30との間には前記接着剤40が介在していないので、前記摩擦熱が接着剤40によって奪われてしまうのを回避される。従って、摩擦熱を効果的に第一底面部22aに加えることができ、より少ないエネルギーで第一底面部22aのアルミニウム合金を軟化させることができる。また、前記第一回転速度、第一加圧時間、および第一加圧力を前記のような値に設定しておけば、アルミ板20をせん断破壊することなく良好に軟化させることができる。   As described above, when the rotary tool 16 rotates around the central axis X and presses against the first bottom surface portion 22a of the first recess 22, the lower end portion of the pin portion 16a and the peripheral portion of the shoulder portion 16b in the rotary tool 16 are contacted. The frictional heat is generated between the two contact sites and the first bottom surface portion 22 a of the first recess 22. The frictional heat is quickly diffused throughout the first bottom surface portion 22a of the first recess 22 including the portion between the two contact portions (the portion where the bottom surface of the shoulder portion 16b is not in contact), The entire first bottom surface portion 22a is quickly softened. Here, since the adhesive 40 is not interposed between the first bottom surface portion 22 a and the steel plate 30, the frictional heat is prevented from being taken away by the adhesive 40. Therefore, frictional heat can be effectively applied to the first bottom surface portion 22a, and the aluminum alloy of the first bottom surface portion 22a can be softened with less energy. Moreover, if the first rotation speed, the first pressurizing time, and the first pressurizing force are set to the above values, the aluminum plate 20 can be favorably softened without shearing.

さらに、この第一押圧工程の初期段階において、ショルダ部16bの周縁部よりも所定長さhだけ突出した細径のピン部16aが、ショルダ部16bよりも先に前記第一凹部22の第一底面部22aに当接することにより、小さな摩擦抵抗で回転ツール16の位置決めがなされ、中心軸線Xに垂直な方向の回転振れが抑制される。   Further, in the initial stage of the first pressing step, the pin portion 16a having a small diameter protruding by a predetermined length h from the peripheral edge portion of the shoulder portion 16b has a first portion of the first recess 22 before the shoulder portion 16b. By abutting against the bottom surface portion 22a, the rotary tool 16 is positioned with a small frictional resistance, and rotational runout in the direction perpendicular to the central axis X is suppressed.

続く第二押圧工程では、図8に示すように、回転ツール16を、第二回転速度で回転させながら、第二加圧時間の間、前記第一加圧力よりも大きい第二加圧力で前記第一凹部22の第一底面部22aに押し込む。この第二押圧工程では、前記第一押圧工程のときよりも加圧力が増大されることで、回転ツール16のピン部16aおよびショルダ部16bが前記第一凹部22の第一底面部22aに対し徐々に深く入り込み、これらピン部16aやショルダ部16bの面全体が第一凹部22の第一底面部22aに接触する。これに伴い、この第一底面部22aにてアルミニウム合金の軟化に加えて塑性流動が生じる(図では模式的にこの塑性流動を破線Qで示している)。   In the subsequent second pressing step, as shown in FIG. 8, the rotating tool 16 is rotated at the second rotation speed while the second pressing pressure is greater than the first pressing force during the second pressurizing time. Push into the first bottom surface 22 a of the first recess 22. In this second pressing step, the pressing force is increased more than in the first pressing step, so that the pin portion 16a and the shoulder portion 16b of the rotary tool 16 are made to the first bottom surface portion 22a of the first concave portion 22. The surface gradually enters deeper, and the entire surface of the pin portion 16 a and the shoulder portion 16 b contacts the first bottom surface portion 22 a of the first recess 22. Along with this, plastic flow occurs in addition to the softening of the aluminum alloy at the first bottom surface portion 22a (this plastic flow is schematically shown by a broken line Q in the figure).

このとき、径方向外側に至るほど高さが低くなるように傾斜したショルダ部16bの底面により、軟化したアルミニウム合金が回転ツール16の直下部分である第一凹部22の第一底面部22aから外側へ流出することが抑制されるため、前記塑性流動Qはこの第一底面部22aにおいて集中的に発生することになる。なお、アルミ板20の表面には不図示の酸化膜が形成されているが、この酸化膜は前記塑性流動Qが生じる部分において破壊されるため、前記第一底面部22aではアルミニウム合金の新生面が露出する。   At this time, the softened aluminum alloy is outside from the first bottom surface portion 22a of the first recess 22 which is a portion immediately below the rotary tool 16 by the bottom surface of the shoulder portion 16b inclined so as to decrease in height toward the radially outer side. Therefore, the plastic flow Q is intensively generated at the first bottom surface portion 22a. Note that an oxide film (not shown) is formed on the surface of the aluminum plate 20, but this oxide film is broken at the portion where the plastic flow Q occurs, so that a new surface of the aluminum alloy is formed on the first bottom surface portion 22a. Exposed.

前記第二回転速度、第二加圧時間、および第二加圧力の各値は、前記第一凹部22の第一底面部22aに対する回転ツール16の押し込み深さが、そのピン部16aおよびショルダ部16bの面全体が前記第一底面部22aに接触し得る程度でかつこの第一底面部22aが過度に薄くなって引きちぎられることがない程度の深さとなるように決定される。具体的には、例えば第二回転速度が2000rpm以上3000rpm以下、第二加圧時間が1.0秒以上2.0秒以下、第二加圧力が3.92kN以上5.88kN以下にそれぞれ設定されることが好ましい。   The values of the second rotational speed, the second pressurizing time, and the second pressure force are determined by the depth of the rotation of the rotary tool 16 with respect to the first bottom surface portion 22a of the first concave portion 22, the pin portion 16a and the shoulder portion. The depth is determined so that the entire surface of 16b can be in contact with the first bottom surface portion 22a and the first bottom surface portion 22a is too thin to be torn off. Specifically, for example, the second rotation speed is set to 2000 rpm to 3000 rpm, the second pressurization time is set to 1.0 second to 2.0 seconds, and the second applied pressure is set to 3.92 kN to 5.88 kN, respectively. It is preferable.

続く第三押圧工程では、図9に示すように、回転ツール16を、第3回転速度で回転させながら、第3加圧時間の間、前記第二加圧力よりも小さい第3加圧力で前記第一凹部22の第一底面部22aに対し押圧接触させる。この第三押圧工程では、前記第二押圧工程のときよりも加圧力が低減されることで、回転ツール16が前記第二押圧工程完了時の深さよりも深く押し込まれず、そのときと同じ位置で前記第一凹部22の第一底面部22aを押圧し続けることとなる。これにより、この第一底面部22aが過度に薄くなって引きちぎられることが回避されるとともに、回転ツール16の押圧力を受ける前記第一凹部22の第一底面部22aの温度が前記第二押圧工程のときと同程度に維持され、良好な塑性流動が長時間に亘って行われる。   In the subsequent third pressing step, as shown in FIG. 9, the rotating tool 16 is rotated at the third rotation speed while the third pressing force is lower than the second pressing force during the third pressurizing time. The first recess 22 is pressed against the first bottom surface 22a. In the third pressing step, the pressing force is reduced as compared with the second pressing step, so that the rotary tool 16 is not pushed deeper than the depth at the completion of the second pressing step, and at the same position as that time. The first bottom surface 22a of the first recess 22 will continue to be pressed. Thereby, it is avoided that the first bottom surface portion 22a is excessively thin and torn off, and the temperature of the first bottom surface portion 22a of the first concave portion 22 that receives the pressing force of the rotary tool 16 is set to the second pressing force. It is maintained at the same level as in the process, and good plastic flow is performed for a long time.

前記第3回転速度、第3加圧時間、および第3加圧力の各値の具体例としては、第3回転速度が1500rpm以上3500rpm以下、第3加圧時間が0.5秒以上2.5秒以下、第3加圧力が0.49kN以上1.47kN以下にそれぞれ設定されることが好ましい。   As specific examples of each value of the third rotation speed, the third pressurization time, and the third pressurizing value, the third rotation speed is 1500 rpm or more and 3500 rpm or less, and the third pressurization time is 0.5 second or more and 2.5. The second applied pressure is preferably set to 0.49 kN or more and 1.47 kN or less.

前記第二押圧工程および第三押圧工程では、前記鋼板30とアルミ板20の前記第一凹部22の第一底面部22aの新生面(塑性流動時に酸化被膜が破壊されることにより形成された新生面)とが接触することにより、これらアルミ板20と鋼板30との合わせ面どうしが強固に固相接合される。このように、本実施形態では、前記アルミ板20の第一凹部22の第一底面部22aが被接合部分P1として前記鋼板30と固相接合される。   In the second pressing step and the third pressing step, a new surface of the first bottom surface portion 22a of the first concave portion 22 of the steel plate 30 and the aluminum plate 20 (new surface formed by breaking the oxide film during plastic flow). , The mating surfaces of the aluminum plate 20 and the steel plate 30 are firmly solid-phase bonded. Thus, in this embodiment, the 1st bottom face part 22a of the 1st recessed part 22 of the said aluminum plate 20 is solid-phase-bonded with the said steel plate 30 as the to-be-joined part P1.

ここで、前記第一押圧工程から第三押圧工程の間、アルミ板20には回転ツール16による摩擦熱が加えられる。特に、回転ツール16が押圧される第一凹部22の第一底面部22aの周囲には比較的大きな摩擦熱が伝達されるため、この周囲のアルミ板20は熱変形しようとする。しかしながら、前記のように、第一凹部22の第一底面部22aの周囲にはアルミ板20の表面26に向かって延びる第一外周壁24が形成されており、この第一外周壁24によって第一底面部22aの周囲の剛性が十分に高められている。従って、この第一底面部22aの周囲の部分は、前記摩擦熱が加えられた際にもその熱変形が十分に抑制されることになる。   Here, during the first pressing process to the third pressing process, frictional heat from the rotary tool 16 is applied to the aluminum plate 20. In particular, since relatively large frictional heat is transmitted around the first bottom surface portion 22a of the first recess 22 against which the rotary tool 16 is pressed, the surrounding aluminum plate 20 tends to be thermally deformed. However, as described above, the first outer peripheral wall 24 extending toward the surface 26 of the aluminum plate 20 is formed around the first bottom surface portion 22 a of the first recess 22, and the first outer peripheral wall 24 allows the first outer peripheral wall 24 to The rigidity around the bottom surface portion 22a is sufficiently increased. Therefore, the thermal deformation of the portion around the first bottom surface portion 22a is sufficiently suppressed even when the frictional heat is applied.

また、前記第二押圧工程等では第一凹部22の第一底面部22aに回転ツール16により高い押圧力が加えられ、この第一底面部22aの周囲はこの押圧力を受けて前記接着剤40を押出しながら変形しようとする。しかしながら、前記のように、この第一底面部22aの周囲は十分な剛性を有しているので、この押圧力による変形が抑制され前記接着剤40の外側への押出しも抑制されることになる。このように、本実施形態では、前記回転ツール16によって摩擦熱および押圧力が加えられた際にも、前記第一凹部22の周囲のアルミ板20はほとんど変形することなく前記鋼板30との間に接着剤40を介在させた状態を維持する。   Further, in the second pressing step or the like, a high pressing force is applied to the first bottom surface portion 22a of the first recess 22 by the rotary tool 16, and the periphery of the first bottom surface portion 22a receives the pressing force and receives the adhesive 40. Try to deform while extruding. However, as described above, since the periphery of the first bottom surface portion 22a has sufficient rigidity, deformation due to the pressing force is suppressed, and extrusion of the adhesive 40 to the outside is also suppressed. . As described above, in this embodiment, even when frictional heat and pressing force are applied by the rotary tool 16, the aluminum plate 20 around the first recess 22 is hardly deformed with the steel plate 30. The state where the adhesive 40 is interposed is maintained.

前記第三押圧工程が完了してアルミ板20と鋼板30との固相状態での接合が終了すると、回転ツール16と受け具17とがアルミ板20および鋼板30から離される。ここで、図9に示すように、アルミ板20の第一凹部22には、その第一底面部22aにショルダ部16bおよびピン部16aの痕が残るとともに上方に突出するバリRが形成されている。このバリRは、アルミ板20と鋼板30との間に適正な接合が行われたとき、適度な径方向厚みをもって全周に亘り略均一に形成されることになる。   When the third pressing step is completed and the joining of the aluminum plate 20 and the steel plate 30 in the solid phase is completed, the rotary tool 16 and the receiving member 17 are separated from the aluminum plate 20 and the steel plate 30. Here, as shown in FIG. 9, the first concave portion 22 of the aluminum plate 20 is formed with burrs R protruding upward while leaving marks on the shoulder portion 16b and the pin portion 16a on the first bottom surface portion 22a. Yes. When appropriate joining is performed between the aluminum plate 20 and the steel plate 30, the burr R is formed substantially uniformly over the entire circumference with an appropriate radial thickness.

次に、前記アルミ板20と鋼板30とを、その間に接着剤40を介在させた状態で所定の容器に搬入し、当該接着剤40に熱風をあてる。そして、前記接着剤40を硬化させて前記固相状態での接合部分P以外の部分のアルミ板20と鋼板30とを接着する(接着工程)。   Next, the aluminum plate 20 and the steel plate 30 are carried into a predetermined container with the adhesive 40 interposed therebetween, and hot air is applied to the adhesive 40. And the said adhesive agent 40 is hardened and the aluminum plate 20 and steel plates 30 of parts other than the junction part P in the said solid-phase state are adhere | attached (adhesion process).

以上のようにして、アルミ板20と鋼板30とを接合部分Pにて固相接合するとともに、この接合部分P以外の部分を接着剤40により接着することで、これらアルミ板20と鋼板30とを一体に接合する。   As described above, the aluminum plate 20 and the steel plate 30 are solid-phase bonded at the bonding portion P, and the portions other than the bonding portion P are bonded by the adhesive 40, so that the aluminum plate 20 and the steel plate 30 are bonded together. Are joined together.

このように、本実施形態によれば、前記アルミ板20と鋼板30とを前記回転ツール16によって固相接合させるとともに、この固相状態での接合部分P以外の部分を接着剤40によって接着しているので、アルミ板20と鋼板30との接合強度を確保することができる。しかも、前記アルミ板20は、鋼板30と固相接合される被接合部分P1を囲む位置に、この被接合部分P1の周囲の剛性を高めるための剛性部24を有しているので、この被接合部分P1近傍が前記回転ツール16により発生する摩擦熱によって大きく熱変形してしまうのが抑制される。すなわち、前記アルミ板20と鋼板30との間に隙間が形成されるのを有効に回避することができ、前記固相接合される部分を除くアルミ板20と鋼板30との間全体に前記絶縁材である接着剤40を介在させることができるので、このアルミ板20と鋼板30との接合強度を確保することが可能となる。特に、前記実施形態のように材質の異なるアルミ板20と鋼板30とを接合する場合には、前記隙間に水等が浸入するのを回避することができ、これらアルミ板20および鋼板30等の電食を効果的に抑制することが可能となる。   As described above, according to the present embodiment, the aluminum plate 20 and the steel plate 30 are solid-phase bonded by the rotary tool 16, and portions other than the bonding portion P in the solid-phase state are bonded by the adhesive 40. Therefore, the joining strength between the aluminum plate 20 and the steel plate 30 can be ensured. Moreover, the aluminum plate 20 has a rigid portion 24 for increasing the rigidity around the bonded portion P1 at a position surrounding the bonded portion P1 to be solid-phase bonded to the steel plate 30. It is suppressed that the vicinity of the joining portion P1 is largely thermally deformed by the frictional heat generated by the rotary tool 16. That is, it is possible to effectively avoid the formation of a gap between the aluminum plate 20 and the steel plate 30, and the insulation between the aluminum plate 20 and the steel plate 30 except for the portion to be solid-phase bonded. Since the adhesive 40, which is a material, can be interposed, it is possible to ensure the bonding strength between the aluminum plate 20 and the steel plate 30. In particular, when the aluminum plate 20 and the steel plate 30 of different materials are joined as in the above-described embodiment, it is possible to prevent water or the like from entering the gap, such as the aluminum plate 20 and the steel plate 30. It becomes possible to suppress electric corrosion effectively.

また、前記実施形態のように、アルミ板20の形状変化により前記剛性部24を形成するようにすれば、この剛性部24を容易にアルミ板20に設けることが可能となる。   Further, if the rigid portion 24 is formed by changing the shape of the aluminum plate 20 as in the embodiment, the rigid portion 24 can be easily provided on the aluminum plate 20.

また、アルミ板20として、鋼板30側に凹む第一凹部22を有するアルミ板20を用い、この第一凹部22の第一底面部22aを鋼板30と固相接合する被接合部分P1として、この被接合部分P1と鋼板30とを固相接合すれば、この第一凹部22の第一底面部22aからアルミ板20の表面26に延びる第一外周壁24を剛性部として機能させることができ、前記被接合部分P1の周囲の剛性を容易に高めることが可能となる。そして、前記回転ツール16による摩擦熱を第一凹部22の内にとどめることができるので、この第一凹部22の周囲の熱変形をより確実に抑制することが可能となる。   Further, as the aluminum plate 20, the aluminum plate 20 having the first concave portion 22 recessed on the steel plate 30 side is used, and the first bottom surface portion 22 a of the first concave portion 22 is used as the joined portion P 1 to be solid-phase bonded to the steel plate 30. If the bonded portion P1 and the steel plate 30 are solid-phase bonded, the first outer peripheral wall 24 extending from the first bottom surface portion 22a of the first recess 22 to the surface 26 of the aluminum plate 20 can function as a rigid portion, It is possible to easily increase the rigidity around the joined portion P1. And since the frictional heat by the said rotary tool 16 can be kept in the 1st recessed part 22, it becomes possible to suppress the thermal deformation around this 1st recessed part 22 more reliably.

また、接着剤40をアルミ板20と鋼板30のうち前記接合部分P以外の部分に介在するよう鋼板30に塗布すれば、この接合部分Pにおいてアルミ板20と鋼板30とを直接接触させた状態で固相接合することができるので、前記回転ツール16の摩擦熱が、前記接着剤40に奪われるのを回避して、より少ないエネルギーで効率よくアルミ板20と鋼板30とを固相接合することができる。   In addition, when the adhesive 40 is applied to the steel plate 30 so as to be interposed between the aluminum plate 20 and the steel plate 30 other than the joint portion P, the aluminum plate 20 and the steel plate 30 are in direct contact with each other at the joint portion P. Therefore, the aluminum plate 20 and the steel plate 30 can be efficiently solid-phase bonded with less energy by avoiding the frictional heat of the rotary tool 16 being taken away by the adhesive 40. be able to.

次に、本発明の第二の実施形態について説明する。本実施形態では、図11に示すように、鋼板として、第二凹部52を有する鋼板50を用いる。この第二凹部52は、鋼板50の表面56から前記アルミ板20と離間する方向に凹み、鋼板50の表面56とほぼ平行な方向に延びる第二底面部52aと、この第二底面部52aの外周から前記鋼板50の表面56に向かって延びる第二外周壁54とを有している。この第二外周壁54は、前記アルミ板20の第一凹部22の第一外周壁24を囲むような位置に設けられている。   Next, a second embodiment of the present invention will be described. In this embodiment, as shown in FIG. 11, a steel plate 50 having a second recess 52 is used as the steel plate. The second recess 52 is recessed in a direction away from the aluminum plate 20 from the surface 56 of the steel plate 50, and extends in a direction substantially parallel to the surface 56 of the steel plate 50, and the second bottom surface portion 52a. And a second outer peripheral wall 54 extending from the outer periphery toward the surface 56 of the steel plate 50. The second outer peripheral wall 54 is provided at a position surrounding the first outer peripheral wall 24 of the first recess 22 of the aluminum plate 20.

本実施形態では、前記準備工程にて、前記鋼板50の第二凹部52の第二底面部52aと前記アルミ板20の第一凹部22の第一底面部22aとを接触させ、この接触部分以外の部分に前記接着剤40を介在させるように接着剤40を塗布する。具体的には、アルミ板20の表面26と鋼板50の表面56との間および前記第一凹部22の第一外周壁24と前記第二凹部52の第二外周壁54との間に接着剤40を介在させる。   In the present embodiment, in the preparation step, the second bottom surface portion 52a of the second concave portion 52 of the steel plate 50 and the first bottom surface portion 22a of the first concave portion 22 of the aluminum plate 20 are brought into contact with each other. The adhesive 40 is applied so that the adhesive 40 is interposed in the portion. Specifically, the adhesive between the surface 26 of the aluminum plate 20 and the surface 56 of the steel plate 50 and between the first outer peripheral wall 24 of the first recess 22 and the second outer peripheral wall 54 of the second recess 52. 40 is interposed.

そして、前記接合工程にて、前記第一凹部22の第一底面部22aを回転ツール16によって押圧し、この第一凹部22の第一底面部22aと前記鋼板50の第二凹部52の第二底面部52aとを固相接合する。このとき、第一凹部22の周囲の接着剤40は、図12に示すように、前記第一凹部22の第一外周壁24と前記第二凹部52の第二外周壁54とで挟持されることで、前記回転ツール16の押圧力を受けた際にも外側に押出されることなくこの第一凹部22の周囲に残留することになる。   And in the said joining process, the 1st bottom face part 22a of the said 1st recessed part 22 is pressed with the rotary tool 16, and the 2nd recessed part 52 of the 1st bottom face part 22a of this 1st recessed part 22 and the said steel plate 50 is 2nd. Solid phase bonding is performed with the bottom surface portion 52a. At this time, the adhesive 40 around the first recess 22 is sandwiched between the first outer peripheral wall 24 of the first recess 22 and the second outer peripheral wall 54 of the second recess 52 as shown in FIG. As a result, even when the pressing force of the rotary tool 16 is received, it remains around the first recess 22 without being pushed outward.

このように、本実施形態によれば、前記第一凹部22の第一外周壁24の周囲を第二凹部52の第二外周壁54で囲むことで、この周囲におけるアルミ板20と鋼板50との間に接着剤40をより確実に介在させることができるので、アルミ板20と鋼板50との接合強度をより確実に確保することができる。さらに、接合する金属材料が前記のように異なる場合には、前記第一凹部22の第一外周壁24の周囲に水等が浸入にして電食してしまうのをより確実に回避することが可能となる。   Thus, according to this embodiment, by surrounding the first outer peripheral wall 24 of the first recess 22 with the second outer peripheral wall 54 of the second recess 52, the aluminum plate 20 and the steel plate 50 in the periphery Since the adhesive 40 can be more reliably interposed between the two, the bonding strength between the aluminum plate 20 and the steel plate 50 can be more reliably ensured. Furthermore, when the metal materials to be joined are different as described above, it is possible to more reliably avoid water and the like from entering the periphery of the first outer peripheral wall 24 of the first recess 22 and causing electrolytic corrosion. It becomes.

ここで、前記アルミ板の形状としては、前記に限らい。
Here, the shape of the aluminum plate, has a limited above.

13および図14に示すように、その表面66から鋼板30と離間する方向に突出するビード部64が剛性部として形成されたアルミ板60を用いるのが好ましい。このビード部64は、例えば、被接合部分P1の全周を囲むような形状とすればよい。このような場合には、このビード部64に囲まれた被接合部分P1に回転ツール16を押圧して摩擦熱を加えることで、図15に示すように、このビード部64によってアルミ板60の変形を抑制しつつ鋼板30と固相接合させることができる。また、図16に示すように、被接合部分P1を囲む位置に、互いに離間した状態で複数のビード部74が形成されたアルミ板70を用いてもよい。
As shown in FIGS. 13 and 14, the bead portion 64 is preferably Ru with aluminum plate 60 formed as a rigid portion protruding in a direction away from the steel plate 30 from the surface 66. For example, the bead portion 64 may have a shape surrounding the entire periphery of the bonded portion P1. In such a case, the rotating tool 16 is pressed against the joined portion P1 surrounded by the bead portion 64 to apply frictional heat, whereby the bead portion 64 causes the aluminum plate 60 to be pressed as shown in FIG. The steel plate 30 can be solid-phase bonded while suppressing deformation. Further, as shown in FIG. 16, an aluminum plate 70 in which a plurality of bead portions 74 are formed in a state of being separated from each other at a position surrounding the bonded portion P1 may be used.

また、前記接着剤40の種類は前記に限らず、常温で硬化するものを用いてもよい。例えば、室温/24hで硬化するエポキシ樹脂からなるものであって、80Pa・s(27℃)程度の粘度を有し、29.4MPa程度の引っ張りせん断接着強さを有するものを用いてもよい。このように常温硬化型の接着剤を用いる場合には、前記接着工程において接着剤40に熱風等を当てる工程を省略することができる。また、このように比較的粘度が低い接着剤を用いた場合には、この接着剤が前記回転ツール16による押圧力によって接合部分Pから外側に押出される可能性が高くなるため、前記のように接着剤が押出されるのを抑制することのできる本発明に係る摩擦点接合方法が特に有効となる。   Further, the type of the adhesive 40 is not limited to the above, and an adhesive that cures at room temperature may be used. For example, an epoxy resin that cures at room temperature / 24 h and has a viscosity of about 80 Pa · s (27 ° C.) and a tensile shear bond strength of about 29.4 MPa may be used. Thus, when using a room temperature curing adhesive, the step of applying hot air or the like to the adhesive 40 in the bonding step can be omitted. Further, when such an adhesive having a relatively low viscosity is used, there is a high possibility that the adhesive will be pushed outward from the joint portion P by the pressing force of the rotary tool 16, as described above. The friction point joining method according to the present invention, which can suppress the adhesive from being extruded, is particularly effective.

また、前記実施形態では、アルミ板と鋼板とを接合する例を示したが、本発明の摩擦点接合方法は、金属部材どうしであれば前記のような金属部材の組み合わせに限らず適用可能である。例えば、回転ツール16が押し込まれる側の金属部材(第一金属部材)としてマグネシウム合金を使用することが可能である。   Moreover, in the said embodiment, although the example which joins an aluminum plate and a steel plate was shown, the friction point joining method of this invention is applicable not only to the combination of the above metal members as long as it is metal members. is there. For example, a magnesium alloy can be used as the metal member (first metal member) on the side into which the rotary tool 16 is pushed.

従来の摩擦点接合方法を説明するための説明図である。It is explanatory drawing for demonstrating the conventional friction point joining method. 従来の摩擦点接合方法による接合状態を示す断面図である。It is sectional drawing which shows the joining state by the conventional friction point joining method. 本発明にかかる摩擦点接合方法に好適な装置の一例を模式的に示す図である。It is a figure which shows typically an example of an apparatus suitable for the friction point joining method concerning this invention. 図3に示す装置の回転ツールの先端部を拡大して示す図である。It is a figure which expands and shows the front-end | tip part of the rotation tool of the apparatus shown in FIG. 本発明の第一の実施形態に係る摩擦点接合方法の準備工程において、鋼板の表面の接着剤を塗布した状況を示す断面図である。It is sectional drawing which shows the condition which apply | coated the adhesive agent of the surface of a steel plate in the preparatory process of the friction point joining method which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る摩擦点接合方法の準備工程において、鋼板とアルミ板とを重ね合わせた状況を示す断面図である。It is sectional drawing which shows the condition which piled up the steel plate and the aluminum plate in the preparatory process of the friction point joining method which concerns on 1st embodiment of this invention. 摩擦点接合方法における第一押圧工程を説明するための断面図である。It is sectional drawing for demonstrating the 1st press process in a friction point joining method. 摩擦点接合方法における第二押圧工程を説明するための断面図である。It is sectional drawing for demonstrating the 2nd press process in a friction point joining method. 摩擦点接合方法における第三押圧工程を説明するための断面図である。It is sectional drawing for demonstrating the 3rd press process in a friction point joining method. 摩擦点接合方法における固相状体での接合が完了したときの状況を説明するための断面図である。It is sectional drawing for demonstrating the condition when joining by the solid-phase body in the friction point joining method is completed. 本発明の第二の実施形態に係る摩擦点接合方法を説明するための断面図である。It is sectional drawing for demonstrating the friction point joining method which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る摩擦点接合方法による固相状態での接合が完了したときの状況を説明するための断面図である。It is sectional drawing for demonstrating the condition when the joining in the solid-phase state by the friction point joining method which concerns on 2nd embodiment of this invention is completed. 本発明の他の実施形態に係る摩擦点接合方法を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the friction point joining method which concerns on other embodiment of this invention. 図13に示す本発明の他の実施形態に係る摩擦点接合方法を説明するための断面図である。It is sectional drawing for demonstrating the friction point joining method which concerns on other embodiment of this invention shown in FIG. 図13に示す本発明の他の実施形態に係る摩擦点接合方法による固相状態での接合が完了したときの状況を説明するための断面図である。It is sectional drawing for demonstrating the condition when joining in the solid-phase state by the friction point joining method which concerns on other embodiment of this invention shown in FIG. 13 is completed. 本発明の他の実施形態に係る摩擦点接合方法を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the friction point joining method which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

1 摩擦点接合装置
16 回転ツール
20 アルミニウム合金板(第一金属部材)
22 第一凹部
22a 第一底面部
24 第一外周壁
26 表面
30 鋼板(第一の実施形態に係る第二金属部材)
40 接着剤
50 鋼板(第二の実施形態に係る第二金属部材)
52 第二凹部
52a 第二底面部
54 第二外周壁
56 表面
60 アルミニウム合金板の他の例(第一金属部材)
64 ビード部
P1 被接合部分
P 接合部分
1 Friction spot welding device 16 Rotating tool 20 Aluminum alloy plate (first metal member)
22 1st recessed part 22a 1st bottom face part 24 1st outer peripheral wall 26 Surface 30 Steel plate (2nd metal member which concerns on 1st embodiment)
40 Adhesive 50 Steel plate (second metal member according to the second embodiment)
52 2nd recessed part 52a 2nd bottom face part 54 2nd outer peripheral wall 56 Surface 60 Other examples (1st metal member) of an aluminum alloy plate
64 Bead part P1 Joined part P Joined part

Claims (4)

第一金属部材と第二金属部材とを重ね合わせて当該両金属部材を固相状態で接合する方法であって、
前記第一金属部材として、前記第二金属部材と固相状態で接合される被接合部分を囲む位置に当該被接合部分近傍の剛性を高めるための剛性部が設けられた金属部材を用い、
当該剛性部を有する第一金属部材と前記第二金属部材との間に絶縁性の接着剤を介在させた状態で当該両金属部材を重ね合わせる準備工程と、
前記第一金属部材の被接合部分に回転ツールを当接させ、この回転ツールの回転動作および加圧動作により発生する摩擦熱で前記第一金属部材の被接合部分を軟化および塑性流動させることにより前記両金属部材を固相状態で接合する接合工程と、
前記両金属部材の固相状態での接合部分以外の部分を前記接着剤により接着する接着工程とを含むとともに、
前記第一金属部材として、前記被接合部分を囲む位置に当該第一金属部材の表面から前記第二金属部材と離間する方向に突出するビード部が形成された金属部材を用い、
当該ビード部によって前記剛性部を構成し、
前記接合工程にて、前記摩擦熱による前記第一金属部材の変形を前記剛性部を構成する前記ビード部により抑制しつつ前記第一金属部材の被接合部分と前記第二金属部材とを固相状態で接合することを特徴とする摩擦点接合方法。
It is a method of overlapping the first metal member and the second metal member and joining the two metal members in a solid phase state,
As the first metal member, a metal member provided with a rigid portion for increasing the rigidity in the vicinity of the bonded portion at a position surrounding the bonded portion bonded to the second metal member in a solid phase state,
A preparatory step of superimposing the two metal members in a state in which an insulating adhesive is interposed between the first metal member having the rigid portion and the second metal member;
A rotating tool is brought into contact with a portion to be joined of the first metal member, and the portion to be joined of the first metal member is softened and plastically flowed by frictional heat generated by a rotating operation and a pressing operation of the rotating tool. A joining step of joining the metal members in a solid phase;
A bonding step of bonding a portion other than the bonding portion in the solid state of both metal members with the adhesive,
As the first metal member, a metal member in which a bead portion protruding in a direction away from the second metal member from the surface of the first metal member is formed at a position surrounding the bonded portion,
The rigid part is constituted by the bead part,
In the joining step, the deformation of the first metal member due to the frictional heat is suppressed by the bead portion constituting the rigid portion , and the bonded portion of the first metal member and the second metal member are solid-phased. A friction point joining method characterized by joining in a state .
請求項1に記載の摩擦点接合方法において、  In the friction point joining method according to claim 1,
前記第一金属部材としてアルミニウム合金製の板材を用い、前記第二金属部材として鋼製の板材を用いることを特徴とする摩擦点接合方法。  A friction point joining method, wherein an aluminum alloy plate is used as the first metal member, and a steel plate is used as the second metal member.
請求項1または2に記載の摩擦点接合方法において、  In the friction point joining method according to claim 1 or 2,
前記準備工程にて、前記接着剤を、前記第一金属部材のうち前記被接合部分以外の部分と前記第二金属部材のうち前記被接合部分と接合される部分以外の部分との間に介在させることを特徴とする摩擦点接合方法。  In the preparation step, the adhesive is interposed between a portion of the first metal member other than the bonded portion and a portion of the second metal member other than the portion bonded to the bonded portion. A friction point joining method characterized by comprising:
第一金属部材と第二金属部材とを重ね合わせて当該両金属部材を固相状態で接合する方法であって、It is a method of overlapping the first metal member and the second metal member and joining the two metal members in a solid phase state,
前記第一金属部材として、前記第二金属部材と固相状態で接合される被接合部分を囲む位置に当該被接合部分近傍の剛性を高めるための剛性部が設けられた金属部材を用い、  As the first metal member, a metal member provided with a rigid portion for increasing the rigidity in the vicinity of the bonded portion at a position surrounding the bonded portion bonded to the second metal member in a solid phase state,
当該剛性部を有する第一金属部材と前記第二金属部材との間に絶縁性の接着剤を介在させた状態で当該両金属部材を重ね合わせる準備工程と、  A preparatory step of superimposing the two metal members in a state in which an insulating adhesive is interposed between the first metal member having the rigid portion and the second metal member;
前記第一金属部材の被接合部分に回転ツールを当接させ、この回転ツールの回転動作および加圧動作により発生する摩擦熱で前記第一金属部材の被接合部分を軟化および塑性流動させることにより前記両金属部材を固相状態で接合する接合工程と、  A rotating tool is brought into contact with a portion to be joined of the first metal member, and the portion to be joined of the first metal member is softened and plastically flowed by frictional heat generated by a rotating operation and a pressing operation of the rotating tool. A joining step of joining the metal members in a solid phase;
前記両金属部材の固相状態での接合部分以外の部分を前記接着剤により接着する接着工程とを含むとともに、  A bonding step of bonding a portion other than the bonding portion in the solid state of both metal members with the adhesive,
前記準備工程にて、前記接着剤を、前記第一金属部材のうち前記被接合部分以外の部分と前記第二金属部材のうち前記被接合部分と接合される部分以外の部分との間に介在させ、  In the preparation step, the adhesive is interposed between a portion of the first metal member other than the bonded portion and a portion of the second metal member other than the portion bonded to the bonded portion. Let
前記接合工程にて、前記摩擦熱による前記第一金属部材の変形を前記剛性部により抑制しつつ前記両金属部材を接合することを特徴とする摩擦点接合方法。  In the joining step, the two metal members are joined while the deformation of the first metal member due to the frictional heat is suppressed by the rigid portion.
JP2007066989A 2007-03-15 2007-03-15 Friction spot welding method Expired - Fee Related JP4998027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066989A JP4998027B2 (en) 2007-03-15 2007-03-15 Friction spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066989A JP4998027B2 (en) 2007-03-15 2007-03-15 Friction spot welding method

Publications (2)

Publication Number Publication Date
JP2008221321A JP2008221321A (en) 2008-09-25
JP4998027B2 true JP4998027B2 (en) 2012-08-15

Family

ID=39840515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066989A Expired - Fee Related JP4998027B2 (en) 2007-03-15 2007-03-15 Friction spot welding method

Country Status (1)

Country Link
JP (1) JP4998027B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160184921A1 (en) * 2014-12-26 2016-06-30 Toyota Jidosha Kabushiki Kaisha Friction stir spot welding structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5531573B2 (en) * 2008-12-09 2014-06-25 日本軽金属株式会社 Method for joining resin member and metal member, method for manufacturing liquid cooling jacket, and liquid cooling jacket
JP2011005507A (en) * 2009-06-23 2011-01-13 Yamanoi Seiki Kk Method and device for joining metallic members and structure in joined part of metallic members
JP5817140B2 (en) * 2011-02-21 2015-11-18 昭和電工株式会社 Method of joining metal member and resin member
JP2014054672A (en) * 2013-10-21 2014-03-27 Yamanoi Seiki Kk Method for joining metal member
JP6458539B2 (en) * 2015-02-20 2019-01-30 スズキ株式会社 Method for producing a laminated structure of three or more layers using a friction stir welding tool and a laminated structure produced by the method
JP6344261B2 (en) * 2015-02-20 2018-06-20 スズキ株式会社 Method for producing a laminated structure of three or more layers using a friction stir welding tool and a laminated structure produced by the method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4134837B2 (en) * 2003-07-15 2008-08-20 マツダ株式会社 Friction welding method and friction welding structure
JP2006026721A (en) * 2004-07-21 2006-02-02 Mitsubishi Heavy Ind Ltd Passage built-in mount and its production method
JP4507835B2 (en) * 2004-11-04 2010-07-21 マツダ株式会社 Friction spot welding method and structure obtained thereby
US7240821B2 (en) * 2005-07-21 2007-07-10 The Boeing Company Method for joining at least two adjoining work-pieces by friction stir and/or friction stir spot welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160184921A1 (en) * 2014-12-26 2016-06-30 Toyota Jidosha Kabushiki Kaisha Friction stir spot welding structure
US9868176B2 (en) * 2014-12-26 2018-01-16 Toyota Jidosha Kabushiki Kaisha Friction stir spot welding structure

Also Published As

Publication number Publication date
JP2008221321A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4998027B2 (en) Friction spot welding method
JP4886277B2 (en) Material joining method
JP5399206B2 (en) Metal member joining method and metal joined body
JP4591547B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
EP1995015B1 (en) Method of joining materials
US8317079B2 (en) Clinching method and tool for performing the same
JP4314985B2 (en) Spot welding method for metal parts
JP4413677B2 (en) Point joining method for dissimilar metal parts
JP2009226446A (en) Spot welding method of dissimilar plates
JP2007301578A (en) Method for joining materials
JP4755887B2 (en) Material joining method
JP2007160342A (en) Friction spot welding method and friction spot welding structure
JP2008137048A (en) Friction spot welding method
JP2009082977A (en) Friction point welding method
WO2022045014A1 (en) Method for joining dissimilar materials, and rivet used for same
JP4453506B2 (en) Friction spot welding method
JP2009113077A (en) Friction spot joining method
EP3406390B1 (en) Method for joining thin metal sheets
JP2006095585A (en) Friction point welding method
JP2020163467A (en) Spot welding method for aluminum material
JP4505855B2 (en) Rotating tool for friction welding equipment
JP2019001029A (en) Binding method of metal component and resin component, and metal component and resin component used in method
JP4491782B2 (en) Friction welding method and friction welding apparatus
JP2022136753A (en) Linear friction bonding method and bonding structure
JP2023089462A (en) Joining method of dissimilar metals, joint body and joining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R150 Certificate of patent or registration of utility model

Ref document number: 4998027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees