JP2011226589A - Tripod type constant velocity universal joint and outside joint member for the same - Google Patents

Tripod type constant velocity universal joint and outside joint member for the same Download PDF

Info

Publication number
JP2011226589A
JP2011226589A JP2010097907A JP2010097907A JP2011226589A JP 2011226589 A JP2011226589 A JP 2011226589A JP 2010097907 A JP2010097907 A JP 2010097907A JP 2010097907 A JP2010097907 A JP 2010097907A JP 2011226589 A JP2011226589 A JP 2011226589A
Authority
JP
Japan
Prior art keywords
constant velocity
joint member
velocity universal
type constant
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010097907A
Other languages
Japanese (ja)
Inventor
Hiroo Morimoto
洋生 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010097907A priority Critical patent/JP2011226589A/en
Publication of JP2011226589A publication Critical patent/JP2011226589A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tripod type constant velocity universal joint and an outside joint member for the same, allowing drastic reduction of weight without strength reduction.SOLUTION: The outside joint member for this tripod type constant velocity universal joint includes three track grooves 26 extending in an axial direction in the inner circumference, and includes roller guide faces 27, 27 facing to each other in an inside wall of each track groove 26. The outside joint member for the tripod type constant velocity universal joint includes a metal cup part 24 formed with the track grooves 26 in the inner circumference. The cup part 24 is formed with a small outside diameter part 41 that is a thin part 40, and the small outside diameter part 41 is covered with an FRP (Fiber Reinforced Plastics) layer 42.

Description

本発明は、自動車のドライブシャフトやプロペラシャフト等に使用されるトリポード型等速自在継手およびトリポード型等速自在継手の外側継手部材に関する。   The present invention relates to a tripod type constant velocity universal joint used for a drive shaft, a propeller shaft, and the like of an automobile, and an outer joint member of a tripod type constant velocity universal joint.

等速自在継手(トリポード型等速自在継手)は、図15と図16に示すように、外側継手部材1と、内側継手部材としてのトリポード部材2と、トルク伝達部材としてのローラ3を主要な構成要素としている。   As shown in FIGS. 15 and 16, the constant velocity universal joint (tripod type constant velocity universal joint) includes an outer joint member 1, a tripod member 2 as an inner joint member, and a roller 3 as a torque transmission member. As a component.

外側継手部材1は一体に形成されたマウス部(カップ部)4と軸部5とからなる。マウス部4は、一端にて開口したカップ状で、内周の円周方向三等分位置に軸方向に延びるトラック溝6が形成してある。各トラック溝6の円周方向で向き合った内側壁にローラ案内面7、7が形成される。   The outer joint member 1 includes a mouth portion (cup portion) 4 and a shaft portion 5 that are integrally formed. The mouse portion 4 has a cup shape opened at one end, and a track groove 6 extending in the axial direction is formed at a position of the inner circumference in the circumferential direction. Roller guide surfaces 7 and 7 are formed on inner walls facing each other in the circumferential direction of each track groove 6.

トリポード部材2はボス8と脚軸9とを備える。ボス8にはシャフト10とトルク伝達可能に結合するスプラインまたはセレーション孔が形成してある。脚軸9はボス8の円周方向三等分位置から半径方向に突出している。トリポード部材2の各脚軸9はローラ3を担持している。脚軸9とローラ3との間には、複数の針状ころ12が総ころ状態で配設されている。   The tripod member 2 includes a boss 8 and a leg shaft 9. The boss 8 is formed with a spline or serration hole that is coupled to the shaft 10 so as to be able to transmit torque. The leg shaft 9 protrudes in the radial direction from the circumferentially divided position of the boss 8. Each leg shaft 9 of the tripod member 2 carries a roller 3. A plurality of needle rollers 12 are disposed between the leg shaft 9 and the roller 3 in a full roller state.

また、前記図15と図16に示すトリポード型等速自在継手では、ローラが一つのいわゆるシングルローラタイプであるが、トリポード型等速自在継手には、内側ローラと外側ローラとのローラが二つのいわゆるダブルローラタイプがある。シングルローラタイプとダブルローラタイプとは車両からの要求に応じて適宜選択している。   The tripod type constant velocity universal joint shown in FIG. 15 and FIG. 16 is a so-called single roller type, but the tripod type constant velocity universal joint has two rollers of an inner roller and an outer roller. There is a so-called double roller type. The single roller type and the double roller type are appropriately selected according to the request from the vehicle.

実開平7−10562号公報Japanese Utility Model Publication No. 7-10562

近年、自動車においては、環境保護及び省エネルギーの観点から、軽量化の要求が高まっている。しかしながら、トリポード型等速自在継手では、外側継手部材を含め、各部品の材料は鋼材である。このため、軽量化を図るためには、可能な限り構成部品を減肉するという方法を提案できる。すなわち、特許文献1に記載のように、外側継手部材1を、外周の断面形状が小径部15と大径部16の繰返しからなる3弁の花冠状としている(図16参照)。   In recent years, in automobiles, there is an increasing demand for weight reduction from the viewpoint of environmental protection and energy saving. However, in the tripod type constant velocity universal joint, the material of each part including the outer joint member is a steel material. For this reason, in order to reduce the weight, it is possible to propose a method of reducing the thickness of components as much as possible. That is, as described in Patent Document 1, the outer joint member 1 has a three-valve corollary shape in which the cross-sectional shape of the outer periphery is a repetition of a small diameter portion 15 and a large diameter portion 16 (see FIG. 16).

しかしながら、図16に示すように花冠状としたとしても、継手機能を損なわせることなく、これ以上の軽量化は困難であった。   However, even if it was made into a flower crown shape as shown in FIG. 16, it was difficult to further reduce the weight without impairing the joint function.

そこで、本発明は斯かる実情を鑑み、強度の低下を伴わず、大幅な軽量化が可能なトリポード型等速自在継手およびトリポード型等速自在継手の外側継手部材を提供しようとするものである。   Therefore, in view of such circumstances, the present invention intends to provide a tripod type constant velocity universal joint and an outer joint member of the tripod type constant velocity universal joint that can be significantly reduced in weight without a decrease in strength. .

本発明のトリポード型等速自在継手の外側継手部材は、内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に互いに対向するローラ案内面を設けたトリポード型等速自在継手の外側継手部材であって、内周に前記トラック溝が形成された金属製のカップ部を備え、このカップ部に薄肉部を構成するための小外径部を形成し、この小外径部をFRP層にて被覆したものである。ここで、FRP(Fiber Reinforced Plastics)とは、繊維でプラスチックを強化したものである。FRPは使用する繊維によって、GFRP(ガラス繊維強化プラスチック)、CFRP(炭素繊維強化プラスチック)、AFRP、KFRP(アラミド繊維強化プラスチック)と呼ばれる。なお、使用する樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂が代表的であるが、ポリプロピレン、ナイロン、ポリカーボネート等の熱可塑性樹脂も使用できる。   The outer joint member of the tripod type constant velocity universal joint of the present invention has a tripod type constant velocity in which three track grooves extending in the axial direction are provided on the inner periphery and roller guide surfaces facing each other are provided on the inner wall of each track groove. An outer joint member of a universal joint, comprising a metal cup part with the track groove formed on the inner periphery, and forming a small outer diameter part for forming a thin part in the cup part. The diameter portion is covered with an FRP layer. Here, FRP (Fiber Reinforced Plastics) is obtained by reinforcing plastic with fibers. FRP is called GFRP (glass fiber reinforced plastic), CFRP (carbon fiber reinforced plastic), AFRP, or KFRP (aramid fiber reinforced plastic) depending on the fiber used. The resin to be used is typically a thermosetting resin such as an unsaturated polyester resin, an epoxy resin, or a phenol resin, but a thermoplastic resin such as polypropylene, nylon, or polycarbonate can also be used.

本発明のトリポード型等速自在継手の外側継手部材によれば、FRP層を構成するFRPは、金属と同等以上の機械的性質を持ち、しかも金属材よりも軽量である。このため、全体を金属(鋼材)にて構成するものに比べて軽量化を図ることができ、しかも、強度的に劣ることがない。また、FRP層は、カップ部の小外径部を被覆するものであり、完成品としての外径寸法を従来と同様に設定できる。   According to the outer joint member of the tripod type constant velocity universal joint of the present invention, the FRP constituting the FRP layer has mechanical properties equal to or higher than that of metal and is lighter than a metal material. For this reason, weight reduction can be attained compared with what comprises the whole with a metal (steel material), and also it is not inferior in intensity | strength. Further, the FRP layer covers the small outer diameter portion of the cup portion, and the outer diameter dimension as a finished product can be set in the same manner as the conventional one.

カップ部の奥側を薄肉部として、開口部側を厚肉部とし、開口部側の厚肉部の外径面に、ブーツ装着用の溝を形成することができる。また、開口部側の厚肉部の外径面とFRP層とでブーツ装着用の溝を形成することができる。   The back side of the cup part can be a thin part, the opening part side can be a thick part, and a groove for mounting a boot can be formed on the outer diameter surface of the thick part on the opening part side. Moreover, the groove | channel for boot mounting can be formed with the outer-diameter surface of the thick part by the side of an opening, and a FRP layer.

合成樹脂剤に浸潤させた繊維をフィラメントワインディング法でマンドレルに巻設して焼き固めてなるFRP製筒体にて、前記FRP層を構成したり、合成樹脂剤に浸潤させた繊維をシート状にしたプリプレグを用いて、シートワインディング法でマンドレルに巻設して焼き固めてなるFRP製筒体にて、前記FRP層を構成したりできる。フィラメントワインディング法とは、樹脂を含浸した繊維(繊維束)を心棒のまわりに巻いて成形し、加熱して硬化させた後に心棒を取り外す方法である。繊維の束でなく、シートを巻きつけるのをシートワインディング法という。   In the FRP cylinder formed by winding the fiber infiltrated with the synthetic resin agent around the mandrel by the filament winding method and baking the fiber, the FRP layer is formed, or the fiber infiltrated with the synthetic resin agent is formed into a sheet shape. The FRP layer can be constituted by an FRP cylinder formed by winding the sheet on a mandrel by a sheet winding method and baking it. The filament winding method is a method in which a fiber (fiber bundle) impregnated with a resin is wound around a mandrel, molded, heated and cured, and then the mandrel is removed. Winding a sheet, not a bundle of fibers, is called sheet winding.

FRP製筒体をカップ部に圧入することができる。このように、FRP製筒体を圧入することによって、小外径部をFRP層にて被覆する状態とできる。   The FRP cylinder can be press-fitted into the cup portion. Thus, by press-fitting the FRP cylinder, the small outer diameter portion can be covered with the FRP layer.

肉厚が相違する複数のFRP層を備えたものであってもよい。このように、肉厚が相違するFRP層を備えたものでは、高強度を必要とする部位に肉厚のFRP層を用いたり、あまり高強度を必要としない部位に薄肉のFRP層を用いたりすることができる。   A plurality of FRP layers having different thicknesses may be provided. As described above, in the case of having FRP layers with different thicknesses, a thick FRP layer is used for a portion that requires high strength, or a thin FRP layer is used for a portion that does not require very high strength. can do.

前記FRP層の繊維の配向角が軸線方向に対して+5°〜+90°、−5°〜−90°の角度で交互に配設される配向角となるように、所定の肉厚となるまで螺旋状に巻設したものとすることができる。   Until the fiber has an orientation angle of + 5 ° to + 90 ° and −5 ° to −90 ° alternately arranged with respect to the axial direction, so that the fiber orientation angle of the FRP layer becomes a predetermined thickness. It can be wound spirally.

カップ部の外径面に、前記FRP層の軸方向の抜けを防止するストッパを設けることができる。また、FRP層が被覆されるカップ部の被覆外径面とFRP層の内径面との間に接着剤を介在させてもよく、カップ部の被覆外径面に接着剤が溜まる溜り部を設けてもよい。   A stopper that prevents the FRP layer from coming off in the axial direction can be provided on the outer diameter surface of the cup portion. Further, an adhesive may be interposed between the outer diameter surface of the cup portion coated with the FRP layer and the inner diameter surface of the FRP layer, and a reservoir for collecting the adhesive is provided on the outer diameter surface of the cup portion. May be.

カップ部の被覆外径面に凹凸部が形成されるものであってもよい。この凹凸部としては、ショットピーニングやローレット等にて形成することができる。また、この凹凸部として、鋸歯状であってもよい。   An uneven portion may be formed on the outer surface of the cup portion. This uneven portion can be formed by shot peening or knurling. Further, the uneven portion may have a sawtooth shape.

カップ部は、鍛造にて成形された後、切削加工にて前記薄肉部が形成されている場合や、薄板材のプレス加工品である場合がある。   The cup portion may be formed by forging and then the thin portion is formed by cutting or may be a pressed product of a thin plate material.

例えば、カップ部と、このカップ部に底壁から突設させる軸部とからなり、前記カップ部がプレス加工にて成形され、前記軸部が切削および転造加工にて成形される。カップ部と軸部とが摩擦圧接にて接合されているもの、カップ部と軸部とがレーザ溶接にて接合されているもの、カップ部と軸部とがアーク溶接にて接合されているもの、カップ部と軸部とが塑性結合にて接合されているもの等がある。   For example, the cup portion includes a cup portion and a shaft portion projecting from the bottom wall of the cup portion. The cup portion is formed by press working, and the shaft portion is formed by cutting and rolling. Cup part and shaft part joined by friction welding, cup part and shaft part joined by laser welding, cup part and shaft part joined by arc welding In some cases, the cup portion and the shaft portion are joined by plastic bonding.

本発明の第1のトリポード型等速自在継手は、内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に互いに対向するローラ案内面を設けた外側継手部材と、三本の脚軸を有するトリポード部材と、前記脚軸に回転自在に支持されると共に前記外側継手部材のトラック溝に転動自在に挿入されたローラとを備えたシングルローラタイプのトリポード型等速自在継手であって、前記外側継手部材に前記の外側継手部材を用いたものである。   The first tripod type constant velocity universal joint of the present invention includes an outer joint member provided with three track grooves extending in the axial direction on the inner periphery and provided with roller guide surfaces facing each other on the inner wall of each track groove; A single roller type tripod constant velocity comprising a tripod member having three leg shafts, and a roller rotatably supported by the leg shaft and inserted into a track groove of the outer joint member. A universal joint using the outer joint member as the outer joint member.

本発明の第2のトリポード型等速自在継手は、内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に互いに対向するローラ案内面を設けた外側継手部材と、半径方向に突出した3つの脚軸を備えたトリポード部材と、前記脚軸に外嵌する内側ローラと、前記トラック溝に挿入されると共に前記内側ローラに外嵌する外側ローラとを備え、前記外側ローラが前記脚軸に対して回転自在であると共に前記ローラ案内面に沿って移動可能なダブルローラタイプのトリポード型等速自在継手において、前記外側継手部材に前記の外側継手部材を用いたものである。   The second tripod type constant velocity universal joint of the present invention includes an outer joint member provided with three track grooves extending in the axial direction on the inner periphery and provided with roller guide surfaces facing each other on the inner wall of each track groove; A tripod member having three leg shafts projecting in the radial direction; an inner roller that is externally fitted to the leg shaft; and an outer roller that is inserted into the track groove and is externally fitted to the inner roller. In a double roller type tripod type constant velocity universal joint in which a roller is rotatable with respect to the leg shaft and movable along the roller guide surface, the outer joint member is used as the outer joint member. is there.

本発明のトリポード型等速自在継手の外側継手部材では、全体を金属(鋼材)にて構成するものに比べて軽量化を図ることができ、しかも、強度的に劣ることがない。このため、従来のものと同等の強度を有しかつ軽量である外側継手部材を提供できる。また、完成品としての外径寸法を従来と同様に設定でき、小型化を図ることができる。このため、この外側継手部材を用いたトリポード型等速自在継手は、ドライブシャフトやプロペラシャフト等に使用すれば、重量軽減を有効に図ることが可能なシャフトを構成することができる。   The outer joint member of the tripod type constant velocity universal joint according to the present invention can be reduced in weight as compared with a member composed entirely of metal (steel material) and is not inferior in strength. For this reason, the outer joint member which has the intensity | strength equivalent to the conventional one and is lightweight can be provided. Moreover, the outer diameter dimension as a completed product can be set similarly to the conventional one, and size reduction can be achieved. For this reason, the tripod type constant velocity universal joint using the outer joint member can constitute a shaft capable of effectively reducing the weight when used for a drive shaft, a propeller shaft, or the like.

ブーツ装着用の溝を形成したものでは、ブーツを安定して装着することができ、機能的に安定した等速自在継手を構成することができる。特に、開口部側の厚肉部の外径面に、ブーツ装着用の溝を形成したものでは、剛性が大である部位にブーツを装着することができ、ブーツ固定(装着)が一層安定する。また、FRP層の一部をブーツ装着用の溝の一部と利用するものでは、厚肉部と薄肉部の径差の変化が小さくなり、応力の集中度合いを低減することができる。   In the case where the boot mounting groove is formed, the boot can be mounted stably, and a functionally stable constant velocity universal joint can be formed. In particular, in the case where a groove for mounting a boot is formed on the outer diameter surface of the thick wall portion on the opening side, the boot can be mounted on a portion having high rigidity, and the boot fixing (mounting) is further stabilized. . In addition, when a part of the FRP layer is used as a part of the groove for mounting the boot, the change in the diameter difference between the thick part and the thin part is reduced, and the degree of stress concentration can be reduced.

FRP製筒体を圧入することによって、小外径部をFRP層にて被覆する状態とでき、組立性に優れる。   By press-fitting the FRP cylinder, the small outer diameter portion can be covered with the FRP layer, and the assembly is excellent.

肉厚が相違する複数のFRP層を備えたものであれば、高強度を必要とする部位に肉厚のFRP層を用いたり、あまり高強度を必要としない部位に薄肉のFRP層を用いたりすることができる。このため、FRPによる必要十分な補強効果を得る設計が可能であり、しかも、FRPの使用量を少なく抑えることができ、低コストが可能となる。   If there are multiple FRP layers with different wall thicknesses, use thick FRP layers for parts that require high strength, or use thin FRP layers for parts that do not require very high strength. can do. For this reason, the design which obtains the necessary and sufficient reinforcement effect by FRP is possible, Furthermore, the usage-amount of FRP can be restrained small and low cost becomes possible.

フィラメントワインディング法又はシートワインディング法等にて、安定してFRP層
を成形でき、生産性に優れる。また、繊維の配向角を5°〜+90°、−5°〜−90°の角度で交互に配設される配向角となるように、所定の肉厚となるまで螺旋状に巻設することによって、より強度的に優れたFRP層を構成することができる。
The FRP layer can be stably formed by the filament winding method or the sheet winding method, and the productivity is excellent. Further, the fiber is wound spirally until a predetermined thickness is obtained so that the orientation angles of the fibers are alternately arranged at angles of 5 ° to + 90 ° and −5 ° to −90 °. Thus, an FRP layer having higher strength can be formed.

FRPの強度は含まれる繊維によって異なるが、例えば炭素繊維の場合、鋼の2倍程度の引張り強度であるため、より小径化を図ることが可能である。例えば、CFRPは鋼よりも変形しにくい材料であるため、荷重負荷時の外側継手部材の変形を抑え、等速自在継手の内部部品をより理想的な状態に保つことができ、高トルク負荷時の強度が向上する。FRPは異方性材料であるため、繊維の巻き角や厚さを調整することで使用状況に合わせ、容易に最適強度にチューニングできる。   Although the strength of FRP varies depending on the fibers included, for example, in the case of carbon fibers, since the tensile strength is about twice that of steel, it is possible to further reduce the diameter. For example, CFRP is a material that is harder to deform than steel, so it can suppress the deformation of the outer joint member when a load is applied, and keep the internal parts of the constant velocity universal joint in a more ideal state. The strength of is improved. Since FRP is an anisotropic material, it can be easily tuned to the optimum strength according to the use situation by adjusting the winding angle and thickness of the fiber.

カップ部の外径面にストッパを設けたものでは、FRP層の軸方向の抜けを規制でき、製品として安定する。また、接着剤を用いた場合、FRP製筒体をカップ部に対して安定した接合が可能となる。特に、ストッパと接着剤を併用すれば、FRP製筒体の外側継手部材本体のカップ部に対する抜けや回転を防止でき、FRP製筒体の抜けや回転による等速自在継手における損傷を抑制できる。また、カップ部の被覆外径面に接着剤が溜まる溜り部を設けた場合、接着性の向上を図ることができ、FRP製筒体をカップ部に対して安定した接合が可能となって、製品として安定する。   In the case where the stopper is provided on the outer diameter surface of the cup portion, the FRP layer can be prevented from coming off in the axial direction, and the product is stable. Moreover, when an adhesive is used, the FRP cylinder can be stably joined to the cup portion. In particular, if a stopper and an adhesive are used in combination, it is possible to prevent the FRP cylinder body from being pulled out and rotated with respect to the cup portion of the outer joint member body, and it is possible to suppress damage to the constant velocity universal joint caused by the FRP cylinder body being pulled out and rotated. In addition, when a reservoir portion is provided on the outer diameter surface of the cup portion to store the adhesive, the adhesion can be improved, and the FRP cylinder can be stably bonded to the cup portion. Stable as a product.

カップ部の被覆外径面に凹凸部が形成されるものであれば、接着剤の接着性をより高めることができ、しかも、凹凸部としては、ショットピーニングやローレット等にて形成することができ、生産性に優れる。一方、鋸歯状の凹凸部であれば、この凹凸部(凸歯)がFRP層の内面に食い込むことになって、強固な接合状態を維持できる。   If the concave and convex portions are formed on the outer surface of the cup, the adhesive can be further improved in adhesiveness, and the concave and convex portions can be formed by shot peening or knurling. Excellent in productivity. On the other hand, if it is a serrated uneven part, this uneven part (convex tooth) will bite into the inner surface of an FRP layer, and can maintain a strong joined state.

カップ部は、鍛造にて成形された後、切削加工にて薄肉部が形成されている場合や、薄板材のプレス加工品である場合があり、種々の製造方法によって成形することができる。カップ部と軸部とを別工程で製作した後、これらを組み付けるものでは、形状、大きさの相違する外側継手部材を容易に生産できる。また、同一形状サイズのカップ部に、異なる軸部を組み付けたりできる。すなわち、カップ部の共通化を図ることができる。特に、カップ部がプレス加工品であれば、塑性加工の段階でより製品形状に近いものを成形することができ、旋削等の後加工での取り代を少なくすることができる。これにより、材料の歩留まりが向上する。   The cup part may be formed by forging and then a thin part is formed by cutting or may be a pressed product of a thin plate material, and can be formed by various manufacturing methods. After the cup part and the shaft part are manufactured in separate steps, the outer joint members having different shapes and sizes can be easily produced by assembling them. Further, different shaft portions can be assembled to the cup portion having the same shape and size. That is, the cup part can be shared. In particular, if the cup part is a press-processed product, a product closer to the product shape can be formed at the stage of plastic working, and the machining allowance in post-processing such as turning can be reduced. Thereby, the yield of material improves.

カップ部と軸部とは、従来から公知公用の種々の接合方法によって接合でき、安定した接合が可能となる。   A cup part and a shaft part can be joined by various publicly known joining methods so far, and stable joining is possible.

本発明の第1および第2のトリポード型等速自在継手では、軽量化を図った外側継手部材を用いることになって、軽量化を図ることが可能な等速自在継手を提供できる。しかも、従来品に比べて強度的に劣ることもない。   In the first and second tripod type constant velocity universal joints of the present invention, the outer joint member that is reduced in weight is used, so that a constant velocity universal joint that can be reduced in weight can be provided. Moreover, the strength is not inferior to that of the conventional product.

本発明の第1の実施形態を示す外側継手部材を用いたトリポード型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the tripod type constant velocity universal joint using the outer joint member which shows the 1st Embodiment of this invention. 前記図1に示すトリポード型等速自在継手の横断面図である。It is a cross-sectional view of the tripod type constant velocity universal joint shown in FIG. 本発明の第2の実施形態を示す外側継手部材を用いたトリポード型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the tripod type constant velocity universal joint using the outer joint member which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す外側継手部材を用いたトリポード型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the tripod type constant velocity universal joint using the outer joint member which shows the 3rd Embodiment of this invention. 前記図4に示すトリポード型等速自在継手の横断面図である。It is a cross-sectional view of the tripod type constant velocity universal joint shown in FIG. 本発明の第4の実施形態を示す外側継手部材を用いたトリポード型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the tripod type constant velocity universal joint using the outer joint member which shows the 4th Embodiment of this invention. 本発明の第5の実施形態を示す外側継手部材を用いたトリポード型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the tripod type constant velocity universal joint using the outer joint member which shows the 5th Embodiment of this invention. 前記図7に示すトリポード型等速自在継手の横断面図である。It is a cross-sectional view of the tripod type constant velocity universal joint shown in FIG. 本発明の第6の実施形態を示す外側継手部材を用いたトリポード型等速自在継手の縦断面図である。It is a longitudinal cross-sectional view of the tripod type constant velocity universal joint using the outer joint member which shows the 6th Embodiment of this invention. 前記図9に示すトリポード型等速自在継手の横断面図である。FIG. 10 is a cross-sectional view of the tripod type constant velocity universal joint shown in FIG. 9. 本発明の第7の実施形態を示す外側継手部材の縦断面図である。It is a longitudinal cross-sectional view of the outer joint member which shows the 7th Embodiment of this invention. 前記図11に示す外側継手部材の組立前の縦断面図である。It is a longitudinal cross-sectional view before the assembly of the outer joint member shown in the said FIG. 本発明の第8の実施形態を示す外側継手部材の縦断面図である。It is a longitudinal cross-sectional view of the outer joint member which shows the 8th Embodiment of this invention. 前記図13に示す外側継手部材の組立前の縦断面図である。It is a longitudinal cross-sectional view before the assembly of the outer joint member shown in the said FIG. 従来の外側継手部材を用いたトリポード型等速自在継手の横断面図である。It is a cross-sectional view of a tripod type constant velocity universal joint using a conventional outer joint member. 前記図15のトリポード型等速自在継手の横断面図である。FIG. 16 is a cross-sectional view of the tripod type constant velocity universal joint of FIG. 15.

以下本発明の実施の形態を図1〜図14に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1と図2は第1の外側継手部材を用いたトリポード型等速自在継手を示している。トリポード型等速自在継手は、外側継手部材21と、内側継手部材としてのトリポード部材22と、トルク伝達部材としてのローラ23を主要な構成要素としている。   1 and 2 show a tripod type constant velocity universal joint using a first outer joint member. The tripod type constant velocity universal joint includes an outer joint member 21, a tripod member 22 as an inner joint member, and a roller 23 as a torque transmission member as main components.

外側継手部材21は一体に形成されたカップ部(マウス部)24と軸部25とを備える。カップ部24は、一端にて開口したカップ状で、内周の円周方向三等分位置に軸方向に延びるトラック溝26が形成してある。各トラック溝26の円周方向で向き合った内側壁にローラ案内面27、27が形成される。なお、カップ部24と軸部25とは金属製(例えば中炭素鋼等)である。また、軸部25は、カップ部24の底壁24a側の基部25aと、この基部25aから突設される本体部25bと、この本体部25bに連設されるスプライン軸部25cとを備える。   The outer joint member 21 includes a cup portion (mouse portion) 24 and a shaft portion 25 that are integrally formed. The cup portion 24 has a cup shape opened at one end, and is formed with a track groove 26 extending in the axial direction at a position equally divided into three in the circumferential direction on the inner periphery. Roller guide surfaces 27, 27 are formed on the inner walls of each track groove 26 facing in the circumferential direction. In addition, the cup part 24 and the axial part 25 are metal (for example, medium carbon steel etc.). The shaft portion 25 includes a base portion 25a on the bottom wall 24a side of the cup portion 24, a main body portion 25b that protrudes from the base portion 25a, and a spline shaft portion 25c that is connected to the main body portion 25b.

トリポード部材22はボス28と脚軸29とを備える。ボス28の軸心孔には雌スプライン31が形成され、この軸心孔にシャフト30の端部が嵌入される。シャフト30の端部の外周面には雄スプライン30aが設けられている。このため、シャフト30の端部をボス28の軸心孔に嵌入することによって、シャフト30の雄スプライン30aとボス28の雌スプライン31とが嵌合する。なお、シャフト30の雄スプライン30aの端部には、周方向溝33が形成され、この周方向溝33に抜け止めとしての止め輪34が装着される。   The tripod member 22 includes a boss 28 and a leg shaft 29. A female spline 31 is formed in the axial hole of the boss 28, and the end of the shaft 30 is fitted into the axial hole. A male spline 30 a is provided on the outer peripheral surface of the end portion of the shaft 30. For this reason, the male spline 30a of the shaft 30 and the female spline 31 of the boss 28 are fitted by fitting the end of the shaft 30 into the axial hole of the boss 28. A circumferential groove 33 is formed at the end of the male spline 30 a of the shaft 30, and a retaining ring 34 is attached to the circumferential groove 33 as a retaining stopper.

脚軸29はボス28の円周方向三等分位置から半径方向に突出している。トリポード部材22の各脚軸29はローラ23を担持している。脚軸29とローラ23との間には、複数の針状ころ32が総ころ状態で配設されている。   The leg shaft 29 protrudes in the radial direction from the circumferentially divided position of the boss 28. Each leg shaft 29 of the tripod member 22 carries a roller 23. A plurality of needle rollers 32 are disposed between the leg shaft 29 and the roller 23 in a full roller state.

カップ部24は、図2に示すように、外周の断面形状が小径部35と大径部36の繰返しからなる3弁の花冠状としている。そして、このカップ部24に薄肉部40を構成する小外径部41を形成し、この小外径部41をFRP層42にて被覆している。すなわち、各大径部36の外径面に削り取り部(切削や研削等によって成形しても、このカップ部24を形成する際の鍛造時に成形してもよい)を設け、この削り取り部に、短円筒体からなるFRP層42を外嵌(圧入)している。   As shown in FIG. 2, the cup portion 24 has a three-valve corollary shape in which the cross-sectional shape of the outer periphery is a repetition of a small diameter portion 35 and a large diameter portion 36. Then, a small outer diameter portion 41 constituting the thin wall portion 40 is formed in the cup portion 24, and the small outer diameter portion 41 is covered with the FRP layer 42. That is, a scraped portion (either by cutting or grinding or may be molded at the time of forging when forming the cup portion 24) is provided on the outer diameter surface of each large diameter portion 36, An FRP layer 42 made of a short cylinder is externally fitted (press-fit).

このため、カップ部24は、奥側を薄肉部40として、開口部側を厚肉部43としている。開口部側の厚肉部43の外径面に、ブーツ装着用の溝45を形成している。このように、FRP層42が薄肉部40に外嵌(装着)した状態において、FRP層42の外径面42aの外径寸法と、厚肉部43の外径面43aの外径寸法とが略同一に設定され、厚肉部43の外径面とFRP層42の外径面とが連続して同一円筒面上に配設される。また、FRP層42の厚肉部側端縁42bが、厚肉部43の段差部43bに当接している。なお、FRP層42の肉厚としては、例えば、2mm〜3mm程度とされ、薄肉部40の肉厚としては、例えば、2mm〜3mm程度とされ、厚肉部43の肉厚としては、例えば、4mm〜6mm程度とされる。   For this reason, the cup portion 24 has a thin portion 40 on the back side and a thick portion 43 on the opening side. A boot mounting groove 45 is formed on the outer diameter surface of the thick portion 43 on the opening side. Thus, in the state in which the FRP layer 42 is externally fitted (attached) to the thin portion 40, the outer diameter size of the outer diameter surface 42a of the FRP layer 42 and the outer diameter size of the outer diameter surface 43a of the thick portion 43 are as follows. The outer diameter surface of the thick portion 43 and the outer diameter surface of the FRP layer 42 are continuously arranged on the same cylindrical surface. Further, the thick part side edge 42 b of the FRP layer 42 is in contact with the step part 43 b of the thick part 43. The thickness of the FRP layer 42 is, for example, about 2 mm to 3 mm, the thickness of the thin portion 40 is, for example, about 2 mm to 3 mm, and the thickness of the thick portion 43 is, for example, It is set to about 4 mm to 6 mm.

FRP層42は、合成樹脂剤に浸潤させた繊維をフィラメントワインディング法又はシートワインディング法でマンドレルに巻設して焼き固めてなるFRP製筒体Pにて構成している。ここで、FRP(Fiber Reinforced Plastics)とは、繊維でプラスチックを強化したものである。FRPは使用する繊維によって、GFRP(ガラス繊維強化プラスチック)、CFRP(炭素繊維強化プラスチック)、AFRP、KFRP(アラミド繊維強化プラスチック)と呼ばれる。また、合成樹脂剤に浸潤させたFRPを引抜成形法(型の中で樹脂を連続して加熱硬化させる成形法)にて成形したFRP製筒体Pにて、FRP層42を構成できる。さらに、射出成形にてこのようなFRP製筒体Pを構成することも可能である。   The FRP layer 42 is configured by an FRP cylinder P in which fibers infiltrated with a synthetic resin agent are wound around a mandrel by a filament winding method or a sheet winding method and then baked. Here, FRP (Fiber Reinforced Plastics) is obtained by reinforcing plastic with fibers. FRP is called GFRP (glass fiber reinforced plastic), CFRP (carbon fiber reinforced plastic), AFRP, or KFRP (aramid fiber reinforced plastic) depending on the fiber used. Further, the FRP layer 42 can be constituted by an FRP cylinder P formed by drawing FRP infiltrated into a synthetic resin agent by a pultrusion molding method (a molding method in which a resin is continuously heated and cured in a mold). Furthermore, it is also possible to configure such an FRP cylinder P by injection molding.

FRP製筒体の形成に使用する樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂が代表的であるが、ポリプロピレン、ナイロン、ポリカーボネート等の熱可塑性樹脂も使用できる。特に、機械的強度が強く、耐熱性に優れ、耐薬品性、耐水性、耐湿性に優れる等の性質からこのFRP層42にはエポキシ樹脂が好ましい。   The resin used for forming the FRP cylinder is typically a thermosetting resin such as an unsaturated polyester resin, an epoxy resin, or a phenol resin, but a thermoplastic resin such as polypropylene, nylon, or polycarbonate can also be used. In particular, an epoxy resin is preferable for the FRP layer 42 because of its properties such as high mechanical strength, excellent heat resistance, chemical resistance, water resistance, and moisture resistance.

FRP製筒体Pは、繊維の配向を軸線方向に対して+5°〜+90°、−5°〜−90°の角度で交互に配設される配向角となるように、所定の肉厚となるまで螺旋状に巻設したものである。一般に、FRPは次に記載する特性を有する。耐候性、耐熱性、耐薬品性にすぐれている。電気絶縁性があり電波透過性に優れている。断熱性に優れている。さまざまな形状の製作に対応でき、着色が自由である。軽量かつ強度的に優れている。   The FRP cylinder P has a predetermined wall thickness so that the orientation of the fibers is alternately arranged at an angle of + 5 ° to + 90 ° and −5 ° to −90 ° with respect to the axial direction. It was wound spirally until it became. In general, FRP has the properties described below. Excellent weather resistance, heat resistance, and chemical resistance. It has electrical insulation and excellent radio wave transmission. Excellent heat insulation. It can handle various shapes and can be colored freely. Lightweight and strong.

この場合、FRP層42を構成するFRP製筒体Pを成形し、このFRP製筒体Pを、カップ部24の薄肉部40に圧入することになる。このように、別途FRP製筒体Pを構成して、カップ部24に圧入して装着するようにしたものでは、組立性に優れる。   In this case, the FRP cylinder P constituting the FRP layer 42 is formed, and the FRP cylinder P is press-fitted into the thin portion 40 of the cup portion 24. As described above, the FRP cylinder P is separately configured and press-fitted into the cup portion 24 to be mounted.

ところで、FRP製筒体Pの圧入の締代としては、使用する材質等によって相違するが、軸方向及び周方向にずれず、しかも、過大な圧入入力を必要とせず、圧入によって変形したり、損傷したりしないものとされる。   By the way, the press-fit allowance for the FRP cylinder P varies depending on the material used, etc., but does not shift in the axial direction and the circumferential direction, and does not require excessive press-fitting input, and can be deformed by press-fitting, It is not supposed to be damaged.

本発明の外側継手部材では、FRP層42を構成するFRPは、金属と同等以上の機械的性質を持ち、しかも金属材よりも軽量である。このため、全体を金属(鋼材)にて構成するものに比べて軽量化を図ることができ、しかも、強度的に劣ることがない。このため、従来のものと同等の強度を有しかつ軽量である外側継手部材を提供できる。また、FRP層42は、カップ部24の小外径部41を被覆するものであり、完成品としての外径寸法を従来と同様に設定でき、小型化を図ることができる。   In the outer joint member of the present invention, the FRP constituting the FRP layer 42 has mechanical properties equivalent to or higher than those of metal and is lighter than a metal material. For this reason, weight reduction can be attained compared with what comprises the whole with a metal (steel material), and also it is not inferior in intensity | strength. For this reason, the outer joint member which has the intensity | strength equivalent to the conventional one and is lightweight can be provided. Further, the FRP layer 42 covers the small outer diameter portion 41 of the cup portion 24, and the outer diameter dimension as a finished product can be set in the same manner as the conventional one, and the size can be reduced.

ブーツ装着用の溝45を厚肉部43に形成しているので、ブーツ(図示省略)を安定して装着することができ、機能的に安定した等速自在継手を構成することができる。   Since the boot mounting groove 45 is formed in the thick portion 43, the boot (not shown) can be mounted stably, and a functionally stable constant velocity universal joint can be configured.

フィラメントワインディング法やシートワインディング法等にて、安定してFRP層42を成形でき、生産性に優れる。また、繊維の方向を5°〜+90°、−5°〜−90°の角度で交互に配設される配向角となるように、所定の肉厚となるまで螺旋状に巻設することによって、より強度的に優れたFRP層42を構成することができる。   The FRP layer 42 can be stably formed by the filament winding method, the sheet winding method, etc., and the productivity is excellent. Also, by winding the fibers in a spiral shape until a predetermined thickness is obtained, the orientation angles are alternately arranged at an angle of 5 ° to + 90 ° and −5 ° to −90 °. Thus, the FRP layer 42 having a higher strength can be formed.

FRPの強度は含まれる繊維によって異なるが、例えば炭素繊維の場合、鋼の2倍程度
の引張り強度であるため、より小径化を図ることが可能である。例えば、CFRPは鋼よりも変形しにくい材料であるため、荷重負荷時の外側継手部材の変形を抑え、等速自在継手の内部部品をより理想的な状態に保つことができ、高トルク負荷時の強度が向上する。FRPは異方性材料であるため、繊維の巻き角や厚さを調整することで使用状況に合わせ、容易に最適強度にチューニングできる。
Although the strength of FRP varies depending on the fibers included, for example, in the case of carbon fibers, since the tensile strength is about twice that of steel, it is possible to further reduce the diameter. For example, CFRP is a material that is harder to deform than steel, so it can suppress the deformation of the outer joint member when a load is applied, and keep the internal parts of the constant velocity universal joint in a more ideal state. The strength of is improved. Since FRP is an anisotropic material, it can be easily tuned to the optimum strength according to the use situation by adjusting the winding angle and thickness of the fiber.

FRP層が被覆されるカップ部24の被覆外径面40aとFRP層42の内径面42bとの間に接着剤を介在させてもよい。接着剤としては、金属・樹脂間の接合性の点からエポキシ系やウレタン系等の種々の接着剤を選択できる。   An adhesive may be interposed between the coated outer diameter surface 40a of the cup portion 24 coated with the FRP layer and the inner diameter surface 42b of the FRP layer 42. As the adhesive, various adhesives such as epoxy and urethane can be selected from the viewpoint of bondability between metal and resin.

カップ部24とFRP層42とが接着剤を介して接合したものであれば、FRP層42のカップ部24への嵌め合い関係の隙間として、この隙間に接着剤を介在させることができる。このため、FRP層42の内径面をカップ部24の外径面40aに圧接させる必要がない。すなわち、FRP層42の内径面寸法を高精度に仕上げる必要がなく、生産性に優れる。   If the cup part 24 and the FRP layer 42 are joined via an adhesive, an adhesive can be interposed in the gap as a gap of the fitting relation of the FRP layer 42 to the cup part 24. For this reason, it is not necessary to press the inner diameter surface of the FRP layer 42 to the outer diameter surface 40 a of the cup portion 24. That is, it is not necessary to finish the inner surface dimension of the FRP layer 42 with high accuracy, and the productivity is excellent.

ところで、図3に示す外側継手部材21では、開口部側の厚肉部43の外径面43aとFRP層42とでブーツ装着用の溝45を形成している。すなわち、FRP層42の厚肉部43側の外径部にテーパ部46(外径が薄肉部側から厚肉部側に向かって縮径する)を設け、このテーパ部46の先端46aを、厚肉部43の段差部43bに突き合せている。また、FRP層42の外径面42aの外径寸法を、厚肉部43の外径面43aの外径寸法よりも大きく設定している。そして、厚肉部43の外径面43aの継手開口部側に周方向に延びる凸隆部47が設けられている。これによって、凸隆部47とFRP層42のテーパ部46との間の厚肉部43の外径面43aでもって、前記ブーツ装着用の溝45を形成することができる。このように、図3に示す外側継手部材21では、厚肉部43と薄肉部40の径差の変化が小さくなり、応力の集中度合いを低減することができる。   By the way, in the outer joint member 21 shown in FIG. 3, the boot mounting groove 45 is formed by the outer diameter surface 43 a of the thick portion 43 on the opening side and the FRP layer 42. That is, a tapered portion 46 (the outer diameter is reduced from the thin portion side toward the thick portion side) is provided on the outer diameter portion of the FRP layer 42 on the thick portion 43 side, and the tip 46a of the tapered portion 46 is It is abutted against the stepped portion 43 b of the thick portion 43. Further, the outer diameter dimension of the outer diameter surface 42 a of the FRP layer 42 is set larger than the outer diameter dimension of the outer diameter surface 43 a of the thick portion 43. A protruding ridge 47 extending in the circumferential direction is provided on the joint opening side of the outer diameter surface 43 a of the thick portion 43. Thus, the boot mounting groove 45 can be formed by the outer diameter surface 43 a of the thick portion 43 between the convex portion 47 and the tapered portion 46 of the FRP layer 42. As described above, in the outer joint member 21 shown in FIG. 3, the change in the diameter difference between the thick portion 43 and the thin portion 40 is reduced, and the degree of stress concentration can be reduced.

図4と図5に示す外側継手部材では、肉厚が相違する複数のFRP層42A、42Bを備えたものである。この場合、大径部36全体が同一肉厚の薄肉部40とされ、継手開口側に肉厚寸法が大であるFRP層42Aが装着(外嵌)され、継手奥側に肉厚寸法が小であるFRP層42Bが装着(外嵌)されている。この場合、FRP層42Aの肉厚寸法が例えば、2mm〜3mm程度とされ、FRP層42Bの肉厚寸法が例えば、1mm〜2mm程度とされる。また、大径部36の肉厚寸法としては、例えば、4mm〜6mm程度とされる。   The outer joint member shown in FIGS. 4 and 5 includes a plurality of FRP layers 42A and 42B having different thicknesses. In this case, the entire large-diameter portion 36 is the same thin-walled portion 40, the FRP layer 42A having a large thickness is attached (externally fitted) on the joint opening side, and the thickness is small on the deep side of the joint. The FRP layer 42B is attached (externally fitted). In this case, the thickness dimension of the FRP layer 42A is, for example, about 2 mm to 3 mm, and the thickness dimension of the FRP layer 42B is, for example, about 1 mm to 2 mm. Moreover, as a thickness dimension of the large diameter part 36, it shall be about 4 mm-6 mm, for example.

このように、肉厚が相違するFRP層42を備えたものでは、高強度を必要とする部位に肉厚のFRP層を用いたり、あまり高強度を必要としない部位に薄肉のFRP層を用いたりすることができる。このため、FRPによる必要十分な補強効果を得る設計が可能であり、しかも、FRPの使用量を少なく抑えることができ、低コストが可能となる。   As described above, in the case where the FRP layer 42 having different thicknesses is used, a thick FRP layer is used for a portion that requires high strength, or a thin FRP layer is used for a portion that does not require very high strength. Can be. For this reason, the design which obtains the necessary and sufficient reinforcement effect by FRP is possible, Furthermore, the usage-amount of FRP can be restrained small and low cost becomes possible.

次に、図6に示す外側継手部材21では、カップ部24の外径面40aにFRP層42の軸方向の抜けを防止するストッパ50を設けている。すなわち、図1に示す外側継手部材21において、カップ部24の外径面に周方向凹溝51を設け、この周方向凹溝51に、ストッパ50としての止め輪を装着している。そして、ストッパ50と厚肉部43の段差部43bとの間にFRP層42が介在される。クリップとしては、既存の丸サークリップ、角サークリップ、スナップリング等を用いることができる。なお、この実施形態では、断面扁平のサークリップを用いている。   Next, in the outer joint member 21 shown in FIG. 6, a stopper 50 that prevents the FRP layer 42 from coming off in the axial direction is provided on the outer diameter surface 40 a of the cup portion 24. That is, in the outer joint member 21 shown in FIG. 1, a circumferential groove 51 is provided on the outer diameter surface of the cup portion 24, and a retaining ring as a stopper 50 is attached to the circumferential groove 51. The FRP layer 42 is interposed between the stopper 50 and the stepped portion 43 b of the thick portion 43. As the clip, an existing round circlip, square circlip, snap ring or the like can be used. In this embodiment, a circlip having a flat cross section is used.

FRP層42は、継手開口側への軸方向移動が厚肉部43の段差部43bに規制され、継手奥側への軸方向移動がストッパ50に規制される。FRP層42の軸方向の抜けを規制でき、製品として安定する。また、特に、接着剤と併用すれば、FRP製筒体Pをカップ部24に対して安定した接合が可能となって、製品として安定する。すなわち、FRP製筒体Pのカップ部24に対する抜けや回転を防止でき、FRP製筒体Pの抜けや回転による等速自在継手における損傷を抑制できる。   In the FRP layer 42, axial movement toward the joint opening side is restricted by the step portion 43 b of the thick portion 43, and axial movement toward the joint back side is restricted by the stopper 50. The axial removal of the FRP layer 42 can be restricted, and the product is stable. In particular, if it is used in combination with an adhesive, the FRP cylinder P can be stably joined to the cup portion 24, and the product is stable. That is, the FRP tubular body P can be prevented from being pulled out and rotated with respect to the cup portion 24, and damage to the constant velocity universal joint due to the FRP tubular body P being detached and rotated can be suppressed.

図7と図8とに示す外側継手部材では、カップ部24の被覆外径面40aに接着剤が溜まる溜り部55を設けたものである。すなわち、被覆外径面40aの厚肉部43側に、断面扁平矩形の周方向溝を設け、この周方向溝でもって溜り部55を構成している。   In the outer joint member shown in FIGS. 7 and 8, a reservoir portion 55 in which an adhesive is accumulated is provided on the coated outer diameter surface 40 a of the cup portion 24. That is, a circumferential groove having a flat rectangular cross section is provided on the side of the thick portion 43 of the coated outer diameter surface 40a, and the pool portion 55 is configured by the circumferential groove.

ところで、接着剤を用いる場合において、FRP製筒体Pを圧入するものであれば、この圧入によって、外径面40aのFRP製筒体Pの内径面との界面に接着剤が残留しにくい。このため、接着性に劣ることになる。そのため、接着剤を用いる場合、外径面40aに接着剤が溜まる溜り部55を設けるのが好ましい。このように、溜り部55を設ければ、圧入の際に予め接着剤を流し込んでおくことで、接着剤の機能を十分発揮させることができる。これによって、FRP製筒体Pのカップ部24に対する抜けや回転を防止でき、FRP製筒体Pの抜けや回転による等速自在継手における損傷を抑制できる。   By the way, in the case of using an adhesive, if the FRP cylinder P is press-fitted, the press-fitting makes it difficult for the adhesive to remain at the interface between the outer diameter surface 40a and the inner diameter surface of the FRP cylinder P. For this reason, it will be inferior to adhesiveness. Therefore, when an adhesive is used, it is preferable to provide a reservoir 55 in which the adhesive accumulates on the outer diameter surface 40a. Thus, if the reservoir 55 is provided, the adhesive function can be sufficiently exhibited by pouring the adhesive in advance during press-fitting. As a result, the FRP cylinder P can be prevented from being pulled out and rotated with respect to the cup portion 24, and damage to the constant velocity universal joint due to the FRP cylinder P being detached or rotated can be suppressed.

なお、この場合の溜り部55は、断面扁平矩形の周方向溝にて構成しているが、このような形状に限らず、接着剤を溜めることができて、カップ部24の強度を低下させない範囲で種々変更できる。また、溜り部55の大きさ(容量)、配置位置等も、接着剤を溜めることができて、カップ部24の強度を低下させない範囲で種々変更できる。   In this case, the reservoir 55 is configured by a circumferential groove having a flat rectangular cross section. However, the reservoir 55 is not limited to such a shape, and an adhesive can be accumulated, and the strength of the cup 24 is not reduced. Various changes can be made within the range. Further, the size (capacity), the arrangement position, and the like of the reservoir portion 55 can be variously changed within a range in which the adhesive can be accumulated and the strength of the cup portion 24 is not reduced.

接着剤を用いる場合、カップ部24の被覆外径面40aに、凹凸部を設けるようにするのが好ましい。凹凸部を形成する場合、ショットピーニング処理やローレット加工等にて形成することができる。ショットピーニングとは、小さな鋼球(ショット)を構造材や機械部品の表面に噴射して、表面層に圧縮残留応力を生じさせると共に軽い加工硬化をおこさせ、応力や疲れによる破壊強度を増す加工である。ローレット加工とは、素材を旋盤で回転させ専用の工具(刃)を押しつけて溝をつける加工である。このように、凹凸部を設けることによって、接着剤の接着効果を高めることができる。   When using an adhesive, it is preferable to provide an uneven portion on the outer diameter surface 40a of the cup portion 24. When forming an uneven part, it can be formed by shot peening or knurling. Shot peening is a process in which small steel balls (shots) are sprayed onto the surface of structural materials and machine parts to generate compressive residual stress in the surface layer and light work hardening, increasing the fracture strength due to stress and fatigue. It is. The knurling process is a process of making a groove by rotating a material with a lathe and pressing a dedicated tool (blade). Thus, the adhesive effect of an adhesive agent can be improved by providing an uneven part.

図9と図10に示す外側継手部材では、カップ部24の被覆外径面40aに、鋸歯状の凹凸部56が形成されている。すなわち、軸方向に延びる断面三角形状の凸歯が周方向に沿って配設されてなる。このような凹凸部56であれば、凹凸部56の凸歯56aがFRP層42の内径面に食い込むことになって、強固な接合状態を維持できる。   In the outer joint member shown in FIGS. 9 and 10, a sawtooth uneven portion 56 is formed on the coated outer diameter surface 40 a of the cup portion 24. That is, convex teeth having a triangular cross section extending in the axial direction are arranged along the circumferential direction. With such a concavo-convex portion 56, the convex teeth 56 a of the concavo-convex portion 56 bite into the inner diameter surface of the FRP layer 42, and a strong bonded state can be maintained.

図11に示す外側継手部材と図13に示す外側継手部材とは、図12と図14に示すように、それぞれ、カップ部24と軸部25とが別個に成形され、その後、これらを組み付けるものである。図12に示す外側継手部材では、カップ部24は、周壁60とこの周壁60の継手奥側を塞ぐ底壁61とからなり、周壁60に、小外径部41を形成して薄肉部40を形成している。このため、薄肉部40にFRP層42を形成し、厚肉部43にブーツ装着用の溝45を設けている。   As shown in FIGS. 12 and 14, the outer joint member shown in FIG. 11 and the outer joint member shown in FIG. 13 are formed by separately forming the cup portion 24 and the shaft portion 25 and then assembling them. It is. In the outer joint member shown in FIG. 12, the cup portion 24 includes a peripheral wall 60 and a bottom wall 61 that closes the joint back side of the peripheral wall 60, and a small outer diameter portion 41 is formed on the peripheral wall 60 to form the thin portion 40. Forming. For this reason, the FRP layer 42 is formed in the thin portion 40 and the boot mounting groove 45 is provided in the thick portion 43.

軸部25は、基盤部62と、この基盤部62から突設される軸部本体63とを備える。軸部本体63は、基部63aと、スプライン軸部63bとからなる。そして、図11に示すように、軸部25の基盤部62がカップ部24の底壁61裏面に接合される。接合手段としては、摩擦圧接、レーザ溶接、アーク溶接等を採用できる。   The shaft portion 25 includes a base portion 62 and a shaft portion main body 63 projecting from the base portion 62. The shaft portion main body 63 includes a base portion 63a and a spline shaft portion 63b. As shown in FIG. 11, the base portion 62 of the shaft portion 25 is joined to the back surface of the bottom wall 61 of the cup portion 24. As the joining means, friction welding, laser welding, arc welding, or the like can be employed.

摩擦圧接法とは、接合する部材(たとえば金属や樹脂など)を高速で擦り合わせ、 そのとき生じる摩擦熱によって部材を軟化させると同時に圧力を加えて接合する方法である。摩擦圧接には、次に記載する利点がある。比較的簡単な作業で寸法精度の高い製品が得られる。従って、仕上げ加工を施した部材の組み立て接合が行える。接合結果に高い再現性がある。用途に応じて種々の異種材料(ステンレスと軟鋼、ステンレスと銅など)を組み合わせて接合できるため、優れた性能の製品が得られる。アーク溶接では接合が難しい一部の材料についても、摩擦圧接で接合できる。鍛造などに比べて振動、騒音が少ない。スパッタ、ヒューム等が生じないので、他の工作機械と組み合わせた一貫ラインが編成できる。   The friction welding method is a method in which members to be joined (for example, metal, resin, etc.) are rubbed together at high speed, and the members are softened by the frictional heat generated at the same time, and at the same time, pressure is applied to join them. The friction welding has the following advantages. A product with high dimensional accuracy can be obtained by a relatively simple operation. Therefore, assembly and joining of the finished members can be performed. There is a high reproducibility in joining results. Since various dissimilar materials (stainless steel and mild steel, stainless steel and copper, etc.) can be combined and bonded according to the application, a product with excellent performance can be obtained. Some materials that are difficult to join by arc welding can also be joined by friction welding. Less vibration and noise than forging. Since no spatter, fume, etc. occur, an integrated line combined with other machine tools can be knitted.

レーザ溶接とは、レーザ光を熱源として主として金属に集光した状態で照射し、金属を局部的に溶融・凝固させることによって接合する方法のことである。レーザ溶接は次の利点がある。高速深溶込み溶接が可能である。溶接熱影響が非常に少ない。溶接変形が少ない。   Laser welding is a method of joining by irradiating a laser beam mainly on a metal as a heat source and locally melting and solidifying the metal. Laser welding has the following advantages. High speed deep penetration welding is possible. Very little welding heat effect. There is little welding deformation.

アーク溶接とは、金属材料(母材)と溶接棒との間にアークを発生させる溶接法である。溶着効率・溶接性が良い、設備費が安く、手軽に溶接できる溶接部分の小さい面積を高温度にすることが出来るので厚板でも容易に溶接できる。   Arc welding is a welding method in which an arc is generated between a metal material (base material) and a welding rod. Welding efficiency and weldability are good, equipment costs are low, and a small area of the welded portion that can be easily welded can be raised to a high temperature, so even thick plates can be easily welded.

次に図13に示す外側継手部材では、カップ部24と軸部25とを塑性結合にて接合している。すなわち、図14に示すように、カップ部24の底壁61に貫通孔65を設け、軸部25の基盤部62の外周面に軸方向に延びる多数の凸部66を周方向に沿って配設する。そして、軸部25の基盤部62を底壁61の貫通孔65に圧入する。この場合、例えば、軸方向に沿う凸部と凹部とからなるスプラインを形成する。そして、スプラインの凸部を硬化処理して、この凸部を前記凸部66とする。この熱硬化処理としては、高周波焼入れや浸炭焼入れ等の種々の熱処理を採用することができる。ここで、高周波焼入れとは、高周波電流の流れているコイル中に焼入れに必要な部分を入れ、電磁誘導作用により、ジュール熱を発生させて、伝導性物体を加熱する原理を応用した焼入れ方法である。また、浸炭焼入れとは、低炭素材料の表面から炭素を浸入/拡散させ、その後に焼入れ行う方法である。   Next, in the outer joint member shown in FIG. 13, the cup portion 24 and the shaft portion 25 are joined by plastic bonding. That is, as shown in FIG. 14, a through hole 65 is provided in the bottom wall 61 of the cup portion 24, and a large number of convex portions 66 extending in the axial direction are arranged along the circumferential direction on the outer peripheral surface of the base portion 62 of the shaft portion 25. Set up. Then, the base portion 62 of the shaft portion 25 is press-fitted into the through hole 65 of the bottom wall 61. In this case, for example, a spline composed of convex portions and concave portions along the axial direction is formed. And the convex part of a spline is hardened and this convex part is made into the said convex part 66. FIG. As this thermosetting treatment, various heat treatments such as induction hardening and carburizing and quenching can be employed. Here, induction hardening is a hardening method that applies the principle of heating a conductive object by placing Joule heat in a coil through which high-frequency current flows, and generating Joule heat by electromagnetic induction. is there. The carburizing and quenching is a method in which carbon is infiltrated / diffused from the surface of the low carbon material and then quenched.

底壁61の貫通孔65側においては熱硬化処理を行わない未硬化部(未焼き状態)とする。凸部66と底壁61の未硬化部との硬度差は、例えば、HRCで20ポイント以上とする。さらに、具体的には、凸部66の表面の硬度を50HRC以上とし、未硬化部の硬度を10HRCから30HRC程度とする。   On the through-hole 65 side of the bottom wall 61, an uncured portion (unburned state) in which no thermosetting treatment is performed. The hardness difference between the convex portion 66 and the uncured portion of the bottom wall 61 is, for example, 20 points or more in HRC. Furthermore, specifically, the hardness of the surface of the convex portion 66 is 50 HRC or more, and the hardness of the uncured portion is about 10 HRC to 30 HRC.

この際、凸部66の突出方向中間部位が、凹部形成前の凹部形成面(この場合、底壁61の貫通孔65の内径面)の位置に対応する。すなわち、図14に示すように、底壁61の貫通孔65の内径面の内径寸法dを、凸部66の最大外径、つまりスプラインの凸部である前記凸部66の頂部を結ぶ円の直径寸法(外接円直径)Dよりも小さく、凸部間の谷底(スプラインの凹部の底)を結ぶ円の直径寸法D1よりも大きく設定される。すなわち、D<d<D1とされる。このため、凸部66は、少なくとも頂点から突出方向中間部位までが底壁61の貫通孔65の内径面に圧入される。   At this time, the projecting direction intermediate portion of the convex portion 66 corresponds to the position of the concave portion forming surface (in this case, the inner diameter surface of the through hole 65 of the bottom wall 61) before the concave portion is formed. That is, as shown in FIG. 14, the inner diameter dimension d of the inner diameter surface of the through-hole 65 of the bottom wall 61 is the maximum outer diameter of the convex portion 66, that is, the circle connecting the tops of the convex portions 66 that are the convex portions of the spline. It is set smaller than the diameter dimension (circumscribed circle diameter) D and larger than the diameter dimension D1 of a circle connecting the valley bottoms between the convex portions (the bottoms of the concave portions of the splines). That is, D <d <D1. For this reason, the convex portion 66 is press-fitted into the inner diameter surface of the through hole 65 of the bottom wall 61 at least from the apex to the intermediate portion in the protruding direction.

凸部66を構成するスプラインは、従来からの公知公用の手段である転造加工、切削加工、プレス加工、引き抜き加工等の種々の加工方法によって、形成することがきる。また、熱硬化処理としては、高周波焼入れ、浸炭焼入れ等の種々の熱処理を採用することができる。なお、スプラインを形成することによって構成された凸部66の圧入開始端は、軸部軸線方向に対して直交する平坦面とされる。   The splines constituting the convex portions 66 can be formed by various processing methods such as rolling, cutting, pressing, drawing, etc., which are conventional publicly known means. Moreover, various heat processing, such as induction hardening and carburizing hardening, can be employ | adopted as a thermosetting process. In addition, the press-fitting start end of the convex portion 66 configured by forming the spline is a flat surface orthogonal to the axial direction of the shaft portion.

次に、カップ部24と軸部25とを一体化する方法を説明する。まず、カップ部24の軸心と軸部25の軸心とを合わせた状態とする。この状態で、カップ部24に対して、軸部25を挿入(圧入)していく。この際、貫通孔65の内径面の径寸法dと、凸部66の直径寸法Dと、スプラインの凹部の直径寸法D1とが前記のような関係であり、しかも、凸部66の硬度が貫通孔65の内径面の硬度よりも20ポイント以上大きいので、軸部25をカップ部24の貫通孔65に圧入していけば、この凸部66が貫通孔65の内径面に食い込んでいき、凸部66が、この凸部66が嵌合する凹部67を、軸方向に沿って形成していくことになる。   Next, a method for integrating the cup portion 24 and the shaft portion 25 will be described. First, the axial center of the cup portion 24 and the axial center of the shaft portion 25 are brought into a combined state. In this state, the shaft portion 25 is inserted (press-fitted) into the cup portion 24. At this time, the diameter dimension d of the inner diameter surface of the through hole 65, the diameter dimension D of the convex portion 66, and the diameter dimension D1 of the concave portion of the spline are as described above, and the hardness of the convex portion 66 is through. Since the hardness of the inner diameter surface of the hole 65 is 20 points or more, if the shaft portion 25 is press-fitted into the through hole 65 of the cup portion 24, the convex portion 66 will bite into the inner diameter surface of the through hole 65, The part 66 forms the recessed part 67 with which this convex part 66 fits along an axial direction.

例えば、この圧入は、軸部25の基盤部62の先端面62aが、底壁61の内面61aに一致する状態まで行われる。これによって、凸部66と、これに嵌合する凹部67との嵌合接触部位の全体が密着している。すなわち、相手側の凹部形成面(この場合、カップ部24の貫通孔65の内径面)に凸部66の形状の転写を行うことになる。この際、凸部66が貫通孔65の内径面に食い込んでいくことによって、貫通孔65が僅かに拡径した状態となって、凸部31の軸方向の移動を許容し、軸方向の移動が停止すれば、貫通孔65が元の径に戻ろうとして縮径することになる。言い換えれば、凸部66の圧入時に貫通孔65が径方向に弾性変形し、この弾性変形分の予圧が凸部66の歯面(凹部嵌合部位の表面)に付与される。このため、凸部66の凹部嵌合部位の全体がその対応する凹部67に対して密着する凹凸嵌合構造Mを確実に形成することができる。   For example, this press-fitting is performed until the tip end surface 62 a of the base portion 62 of the shaft portion 25 coincides with the inner surface 61 a of the bottom wall 61. Thereby, the whole fitting contact site | part of the convex part 66 and the recessed part 67 fitted to this is closely_contact | adhered. That is, the shape of the convex portion 66 is transferred to the counterpart concave surface (in this case, the inner diameter surface of the through-hole 65 of the cup portion 24). At this time, the convex portion 66 bites into the inner diameter surface of the through hole 65, so that the through hole 65 is slightly expanded in diameter, allowing the convex portion 31 to move in the axial direction and moving in the axial direction. If this stops, the diameter of the through hole 65 is reduced to return to the original diameter. In other words, the through-hole 65 is elastically deformed in the radial direction when the convex portion 66 is press-fitted, and a preload corresponding to this elastic deformation is applied to the tooth surface of the convex portion 66 (surface of the concave portion fitting portion). For this reason, the concave / convex fitting structure M in which the entire concave portion fitting portion of the convex portion 66 is in close contact with the corresponding concave portion 67 can be reliably formed.

なお、軸部25を圧入していけば、はみ出し部が形成されることになる。ここで、はみ出し部とは、凸部66が嵌入(嵌合)する凹部の容量の材料分であって、形成される凹部から押し出されたもの、凹部を形成するために切削されたもの、又は押し出されたものと切削されたものの両者等から構成される。   If the shaft portion 25 is press-fitted, a protruding portion is formed. Here, the protruding portion is the material content of the concave portion into which the convex portion 66 is fitted (fitted), and is extruded from the formed concave portion, cut to form the concave portion, or It consists of both extruded and cut.

軸部25を貫通孔65に圧入すれば、貫通孔65の内径面に凸部66に密着嵌合する凹部を軸方向に沿って形成することができる。しかも、凹凸嵌合構造Mは、凸部66と凹部67との嵌合接触部位の全体が密着しているので、この嵌合構造Mにおいて、径方向及び円周方向においてガタが生じる隙間が形成されない。   If the shaft portion 25 is press-fitted into the through hole 65, a concave portion that closely fits the convex portion 66 can be formed on the inner diameter surface of the through hole 65 along the axial direction. Moreover, since the entire fitting contact portion between the convex portion 66 and the concave portion 67 is in close contact with the concave-convex fitting structure M, a gap in which play occurs in the radial direction and the circumferential direction is formed in the fitting structure M. Not.

ところで、各実施形態におけるFRP層におけるFRPとして、前記したように、GFRP(ガラス繊維強化プラスチック)、CFRP(炭素繊維強化プラスチック)、AFRP、KFRP(アラミド繊維強化プラスチック)を用いることができ、このように、繊維の種類によって、特性の相違するFRP層を構成することができる。すなわち、GFRPは、材料が安価でいろいろな形状になじみやすいので、形状の自由度が高い。また硬化時間が比較的短いため、短納期で製作できる利点がある。CFRPは、GFRPより高価であるが、強度の面で優れており、積層数を薄くすることによって重さを軽くすることができる。強度を必要とし、なおかつ重量を軽くしたい制作物に向いている。AFRP、KFRPは、切断されにくく、最も優れた強度を発揮する。しかしながら、繊維の持つ「切れにくい」という特性が、自由な形状の成形を困難にし、後加工がしにくいという面もある。   By the way, as described above, GFRP (glass fiber reinforced plastic), CFRP (carbon fiber reinforced plastic), AFRP, KFRP (aramid fiber reinforced plastic) can be used as the FRP in the FRP layer in each embodiment. In addition, FRP layers having different characteristics can be formed depending on the type of fiber. In other words, GFRP has a high degree of freedom in shape because the material is inexpensive and easy to adapt to various shapes. Moreover, since the curing time is relatively short, there is an advantage that it can be manufactured with a short delivery time. Although CFRP is more expensive than GFRP, it is superior in strength and can be reduced in weight by reducing the number of layers. Suitable for products that require strength and want to reduce weight. AFRP and KFRP are not easily cut and exhibit the most excellent strength. However, the characteristic that the fiber is “not easily cut” makes it difficult to form a free shape and is difficult to perform post-processing.

カップ部24は、鍛造にて成形された後、切削加工にて薄肉部が形成されている場合や、薄板材のプレス加工品である場合があり、種々の製造方法によって成形することができる。また、カップ部24と軸部25とからなり、カップ部24と軸部25とを別工程で製作した後、これらを組み付けるものでは、形状、大きさの相違する外側継手部材21を容易に生産できる。また、同一形状サイズのカップ部に、異なる軸部25を組み付けたりできる。すなわち、カップ部24の共通化を図ることができる。特に、カップ部24がプレス加工品であれば、塑性加工の段階でより製品形状に近いものを成型することができ、旋削等の後加工での取り代を少なくすることができる。これにより、材料の歩留まりが向上する。   The cup portion 24 may be formed by forging and then a thin portion is formed by cutting, or may be a pressed product of a thin plate material, and can be formed by various manufacturing methods. In addition, the cup part 24 and the shaft part 25 are composed of the cup part 24 and the shaft part 25 which are manufactured in separate processes, and then assembled together to easily produce the outer joint member 21 having a different shape and size. it can. Further, different shaft portions 25 can be assembled to the cup portion having the same shape and size. That is, the cup part 24 can be shared. In particular, if the cup portion 24 is a press-worked product, a product closer to the product shape can be formed at the stage of plastic working, and the machining allowance in post-processing such as turning can be reduced. Thereby, the yield of material improves.

しかも、カップ部24と軸部25とは、従来から公知公用の種々の接合方法によって接合でき、安定した接合が可能となる。   In addition, the cup portion 24 and the shaft portion 25 can be joined by various known publicly-known joining methods so that stable joining is possible.

このように、本発明のトリポード型等速自在継手では、軽量化を図った外側継手部材を用いることになって、軽量化を図ることが可能な等速自在継手を提供できる。しかも、従来品に比べて強度的に劣ることもない。このため、本発明の外側継手部材21を用いたトリポード型等速自在継手を、ドライブシャフトやプロペラシャフト等に使用すれば、重量軽減を有効に図ることが可能なものを構成することができる。   Thus, the tripod type constant velocity universal joint of the present invention can provide a constant velocity universal joint that can be reduced in weight by using an outer joint member that is reduced in weight. Moreover, the strength is not inferior to that of the conventional product. For this reason, if the tripod type constant velocity universal joint using the outer joint member 21 of the present invention is used for a drive shaft, a propeller shaft, or the like, it is possible to constitute a structure capable of effectively reducing the weight.

なお、前記各実施形態では、外側継手部材は、ローラが1個のシングルローラタイプのトリポード型等速自在継手であったが、外側継手部材としては、ローラが内側ローラと外側ローラとの2個のダブルローラタイプのトリポード型等速自在継手に用いることができる。このようなダブルローラタイプのトリポード型等速自在継手の外側継手部材であっても、前記各実施形態の外側継手部材と同様の作用効果を奏することができる。   In each of the above embodiments, the outer joint member is a single roller type tripod type constant velocity universal joint with one roller. However, as the outer joint member, there are two rollers, an inner roller and an outer roller. It can be used for a double roller type tripod type constant velocity universal joint. Even the outer joint member of such a double roller type tripod type constant velocity universal joint can achieve the same effects as the outer joint member of each of the above embodiments.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、FRP層42の肉厚や軸方向長さとしては、カップ部24の材質、肉厚、外径寸法、FRP層42の材質等に基づいて、形成される外側継手部材としての強度を考慮して種々選択できる。また、図1等においては、開口部側(入口側)を厚肉部43としていたが、逆に、開口部側(入口側)を薄肉部として、この薄肉部にFRP層42を設けるようにしてもよい。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the thickness and the axial length of the FRP layer 42 may be cups. Various selections can be made in consideration of the strength of the outer joint member to be formed based on the material of the portion 24, the thickness, the outer diameter, the material of the FRP layer 42, and the like. Further, in FIG. 1 and the like, the opening side (inlet side) is the thick part 43, but conversely, the opening side (inlet side) is the thin part and the FRP layer 42 is provided on this thin part. May be.

FRP層42をFRP製筒体Pにて構成する場合、長尺状のFRP製筒体を成形した後、この長尺状のFRP製筒体を所定寸に切断してFRP製筒体Pを製作するようにすることができる。このような製法では、所定寸のFRP製筒体Pを個々に成形するより複数個分のFRP製筒体Pを一度に成形することができ、生産性に優れる。なお、このように長尺状のFRP製筒体を成形する場合、所定寸に切断した際に無駄な部分が生じなく、かつ、たわまない範囲とするのが好ましい。   When the FRP layer 42 is constituted by the FRP cylinder P, after the long FRP cylinder is formed, the long FRP cylinder is cut into a predetermined size to obtain the FRP cylinder P. You can make it. In such a manufacturing method, it is possible to form a plurality of FRP cylinders P at a time rather than individually molding FRP cylinders P having a predetermined size, and the productivity is excellent. In addition, when shape | molding a long FRP cylinder body in this way, it is preferable to set it as the range which does not produce a useless part when it cut | disconnects to a predetermined dimension, and does not bend.

図13と図14に示すように、カップ部24と軸部25とを塑性結合にて接合する場合、凸部66の断面形状として、断面三角形状、台形形状、半円形状、半楕円形状、矩形形状等の種々の形状のものを採用でき、凸部66の面積、数、周方向配設ピッチ等も任意に変更できる。すなわち、スプラインを形成し、このスプラインの凸部(凸歯)をもって凹凸嵌合構造Mの凸部66とする必要はなく、キーのようなものであってもよく、曲線状の波型の合わせ面を形成するものであってもよい。要は、軸方向に沿って配設される凸部66を相手側に圧入し、この凸部66にて凸部66に密着嵌合する凹部67を相手側に形成することができて、凸部66とこれに嵌合する凹部66との嵌合接触部位の全体が密着すればよい。   As shown in FIGS. 13 and 14, when the cup portion 24 and the shaft portion 25 are joined by plastic bonding, the cross-sectional shape of the convex portion 66 is a cross-sectional triangle shape, a trapezoidal shape, a semicircular shape, a semi-elliptical shape, Various shapes such as a rectangular shape can be adopted, and the area and number of the protrusions 66, the circumferential arrangement pitch, and the like can be arbitrarily changed. That is, it is not necessary to form a spline and use the convex portion (convex tooth) of this spline as the convex portion 66 of the concave-convex fitting structure M, and it may be a key, and it is a curved corrugated combination. A surface may be formed. In short, the convex portion 66 arranged along the axial direction can be press-fitted into the mating side, and the concave portion 67 can be formed on the mating side with the convex portion 66 so as to be tightly fitted. The entire fitting contact portion between the portion 66 and the recess 66 fitted thereto may be in close contact.

凸部66の圧入始端部のみが、凹部67が形成される部位より硬度が高ければよいので、凸部66の全体の硬度を高くする必要がない。凸部66側と、凸部66にて形成される凹部形成面側との硬度差としては、HRCで20ポイント以上とするのが好ましいが、凸部31が圧入可能であれば20ポイント未満であってもよい。   Since only the press-fitting start end portion of the convex portion 66 only needs to be harder than the portion where the concave portion 67 is formed, it is not necessary to increase the overall hardness of the convex portion 66. The hardness difference between the convex portion 66 side and the concave portion forming surface formed by the convex portion 66 is preferably 20 points or more in HRC, but less than 20 points if the convex portion 31 can be press-fitted. There may be.

凸部66の端面(圧入始端)は前記実施形態では軸方向に対して直交する面であったが、軸方向に対して、所定角度で傾斜するものであってもよい。この場合、内径側から外径側に向かって反凸部側に傾斜しても凸部側に傾斜してもよい。   Although the end surface (press-fit start end) of the convex portion 66 is a surface orthogonal to the axial direction in the embodiment, it may be inclined at a predetermined angle with respect to the axial direction. In this case, it may be inclined from the inner diameter side toward the outer diameter side toward the anti-convex portion side or inclined toward the convex portion side.

21 外側継手部材
22 トリポード部材
23 ローラ
24 カップ部
24a 底壁
25 軸部
29 脚軸
40a 被覆外径面
40 薄肉部
41 小外径部
42、42A、42B FRP層
42a 外径面
43 厚肉部
43a 外径面
45 溝
50 ストッパ
55 溜り部
P FRP製筒体
21 outer joint member 22 tripod member 23 roller 24 cup portion 24a bottom wall 25 shaft portion 29 leg shaft 40a covering outer diameter surface 40 thin portion 41 small outer diameter portions 42, 42A, 42B FRP layer 42a outer diameter surface 43 thick portion 43a Outer diameter surface 45 Groove 50 Stopper 55 Reservoir portion P FRP cylinder

Claims (23)

内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に互いに対向するローラ案内面を設けたトリポード型等速自在継手の外側継手部材であって、
内周に前記トラック溝が形成された金属製のカップ部を備え、このカップ部に薄肉部を構成するための小外径部を形成し、この小外径部をFRP層にて被覆したことを特徴とするトリポード型等速自在継手の外側継手部材。
An outer joint member of a tripod type constant velocity universal joint provided with three track grooves extending in the axial direction on the inner periphery and provided with roller guide surfaces facing each other on the inner wall of each track groove,
A metal cup portion having the track groove formed on the inner periphery, a small outer diameter portion for forming a thin wall portion formed on the cup portion, and the small outer diameter portion covered with an FRP layer. An outer joint member of a tripod type constant velocity universal joint.
カップ部の奥側を薄肉部として、開口部側を厚肉部としたことを特徴とする請求項1に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of a tripod type constant velocity universal joint according to claim 1, wherein the back side of the cup part is a thin part and the opening part side is a thick part. 開口部側の厚肉部の外径面に、ブーツ装着用の溝を形成したことを特徴とする請求項1又は請求項2に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of a tripod type constant velocity universal joint according to claim 1 or 2, wherein a groove for mounting a boot is formed on the outer diameter surface of the thick portion on the opening side. 開口部側の厚肉部の外径面とFRP層の外径面とでブーツ装着用の溝を形成したことを特徴とする請求項1又は請求項2に記載のトリポード型等速自在継手の外側継手部材。   The tripod type constant velocity universal joint according to claim 1 or 2, wherein a groove for mounting a boot is formed by the outer diameter surface of the thick wall portion on the opening side and the outer diameter surface of the FRP layer. Outer joint member. 合成樹脂剤に浸潤させた繊維をフィラメントワインディング法でマンドレルに巻設して焼き固めてなるFRP製筒体にて、前記FRP層を構成したことを特徴とする請求項1〜請求項4のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   5. The FRP layer is constituted by an FRP cylinder formed by winding a fiber infiltrated with a synthetic resin agent around a mandrel by a filament winding method and baking the fiber. 5. An outer joint member of the tripod type constant velocity universal joint according to claim 1. 合成樹脂剤に浸潤させた繊維をシート状にしたプリプレグを用いて、シートワインディング法でマンドレルに巻設して焼き固めてなるFRP製筒体にて、前記FRP層を構成したことを特徴とする請求項1〜請求項4のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The FRP layer is composed of an FRP cylinder formed by winding a sheet of fiber infiltrated into a synthetic resin agent into a mandrel using a sheet winding method and then hardening the mandrel. The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 4. FRP製筒体をカップ部に圧入したことを特徴とする請求項5又は請求項6に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of a tripod type constant velocity universal joint according to claim 5 or 6, wherein an FRP cylinder is press-fitted into the cup portion. 肉厚が相違する複数のFRP層を備えることを特徴とする請求項1〜請求項7のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of a tripod type constant velocity universal joint according to any one of claims 1 to 7, further comprising a plurality of FRP layers having different thicknesses. 前記FRP層の繊維の配向角が軸線方向に対して+5°〜+90°、−5°〜−90°の角度で交互に配設される配向角となるように、所定の肉厚となるまで螺旋状に巻設したことを特徴とする請求項1〜請求項8のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   Until the fiber has an orientation angle of + 5 ° to + 90 ° and −5 ° to −90 ° alternately arranged with respect to the axial direction, so that the fiber orientation angle of the FRP layer becomes a predetermined thickness. The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 8, wherein the outer joint member is wound spirally. カップ部の外径面に、前記FRP層の軸方向の抜けを防止するストッパを設けたことを特徴とする請求項1〜請求項9のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The tripod type constant velocity universal joint according to any one of claims 1 to 9, wherein a stopper is provided on the outer diameter surface of the cup portion to prevent the FRP layer from coming off in the axial direction. Outer joint member. FRP層が被覆されるカップ部の被覆外径面とFRP層の内径面との間に接着剤を介在させたことを特徴とする請求項1〜請求項10のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。 The tripod according to any one of claims 1 to 10, wherein an adhesive is interposed between a coated outer diameter surface of the cup portion covered with the FRP layer and an inner diameter surface of the FRP layer. Outer joint member of type constant velocity universal joint. カップ部の被覆外径面に接着剤が溜まる溜り部を設けたことを特徴とする請求項11に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of a tripod type constant velocity universal joint according to claim 11, wherein a reservoir portion in which an adhesive is accumulated is provided on a coated outer diameter surface of the cup portion. カップ部の被覆外径面にショットピーニングによる凹凸部が形成されていることを特徴とする請求項1〜請求項12のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   13. An outer joint member of a tripod type constant velocity universal joint according to any one of claims 1 to 12, wherein an uneven portion by shot peening is formed on a coated outer diameter surface of the cup portion. カップ部の被覆外径面にローレットによる凹凸部が形成されていることを特徴とする請求項1〜請求項12のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 12, wherein an uneven portion by knurling is formed on a coated outer diameter surface of the cup portion. カップ部の被覆外径面に鋸歯状の凹凸部が形成されていることを特徴とする請求項1〜請求項12のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 12, wherein a serrated uneven portion is formed on an outer surface of the cup portion. カップ部は、鍛造にて成形された後、切削加工にて前記薄肉部が形成されていることを特徴とする請求項1〜請求項15のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The tripod type constant velocity universal joint according to any one of claims 1 to 15, wherein the cup portion is formed by forging and then the thin portion is formed by cutting. Outside joint member. カップ部は、薄板材のプレス加工品であることを特徴とする請求項1〜請求項15のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 15, wherein the cup portion is a pressed product of a thin plate material. カップ部と、このカップ部に底壁から突設させる軸部とからなり、前記カップ部がプレス加工にて成形され、前記軸部が切削および転造加工にて成形され、カップ部と軸部とが摩擦圧接にて接合されていることを特徴とする請求項1〜請求項17のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The cup portion and a shaft portion projecting from the bottom wall of the cup portion, the cup portion is formed by press working, the shaft portion is formed by cutting and rolling, and the cup portion and the shaft portion. The outer joint member of a tripod type constant velocity universal joint according to any one of claims 1 to 17, wherein the outer joint member is joined by friction welding. カップ部と、このカップ部に底壁から突設させる軸部とからなり、前記カップ部がプレス加工にて成形され、前記軸部が切削および転造加工にて成形され、カップ部と軸部とがレーザ溶接にて接合されていることを特徴とする請求項1〜請求項17のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The cup portion and a shaft portion projecting from the bottom wall of the cup portion, the cup portion is formed by press working, the shaft portion is formed by cutting and rolling, and the cup portion and the shaft portion. The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 17, wherein and are joined by laser welding. カップ部と、このカップ部に底壁から突設させる軸部とからなり、前記カップ部がプレス加工にて成形され、前記軸部が切削および転造加工にて成形され、カップ部と軸部とがアーク溶接にて接合されていることを特徴とする請求項1〜請求項17のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The cup portion and a shaft portion projecting from the bottom wall of the cup portion, the cup portion is formed by press working, the shaft portion is formed by cutting and rolling, and the cup portion and the shaft portion. The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 17, wherein and are joined by arc welding. カップ部と、このカップ部に底壁から突設させる軸部とからなり、前記カップ部がプレス加工にて成形され、前記軸部が切削および転造加工にて成形され、カップ部と軸部とが塑性結合にて接合されていることを特徴とする請求項1〜請求項17のいずれか1項に記載のトリポード型等速自在継手の外側継手部材。   The cup portion and a shaft portion projecting from the bottom wall of the cup portion, the cup portion is formed by press working, the shaft portion is formed by cutting and rolling, and the cup portion and the shaft portion. The outer joint member of the tripod type constant velocity universal joint according to any one of claims 1 to 17, wherein and are joined by plastic bonding. 内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に互いに対向するローラ案内面を設けた外側継手部材と、三本の脚軸を有するトリポード部材と、前記脚軸に回転自在に支持されると共に前記外側継手部材のトラック溝に転動自在に挿入されたローラとを備えたシングルローラタイプのトリポード型等速自在継手であって、 前記外側継手部材に前記請求項1〜請求項21のいずれか1項に記載の外側継手部材を用いたことを特徴とするトリポード型等速自在継手。   An outer joint member provided with three track grooves extending in the axial direction on the inner periphery and provided with roller guide surfaces facing each other on the inner side wall of each track groove, a tripod member having three leg shafts, and the leg shaft A single-roller type tripod type constant velocity universal joint provided with a roller rotatably supported by the outer joint member and inserted into a track groove of the outer joint member. A tripod type constant velocity universal joint using the outer joint member according to any one of claims 1 to 21. 内周に軸線方向に延びる三本のトラック溝を設けると共に各トラック溝の内側壁に互いに対向するローラ案内面を設けた外側継手部材と、半径方向に突出した3つの脚軸を備えたトリポード部材と、前記脚軸に外嵌する内側ローラと、前記トラック溝に挿入されると共に前記内側ローラに外嵌する外側ローラとを備え、前記外側ローラが前記脚軸に対して回転自在であると共に前記ローラ案内面に沿って移動可能なダブルローラタイプのトリポード型等速自在継手において、
前記外側継手部材に前記請求項1〜請求項21のいずれか1項に記載の外側継手部材を用いたことを特徴とするトリポード型等速自在継手。
Tripod member having three track grooves extending in the axial direction on the inner periphery and an outer joint member having roller guide surfaces facing each other on the inner wall of each track groove, and three leg shafts projecting in the radial direction And an inner roller that is externally fitted to the leg shaft, and an outer roller that is inserted into the track groove and is externally fitted to the inner roller, wherein the outer roller is rotatable with respect to the leg shaft and In the double roller type tripod type constant velocity universal joint that can move along the roller guide surface,
A tripod type constant velocity universal joint, wherein the outer joint member according to any one of claims 1 to 21 is used as the outer joint member.
JP2010097907A 2010-04-21 2010-04-21 Tripod type constant velocity universal joint and outside joint member for the same Pending JP2011226589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010097907A JP2011226589A (en) 2010-04-21 2010-04-21 Tripod type constant velocity universal joint and outside joint member for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010097907A JP2011226589A (en) 2010-04-21 2010-04-21 Tripod type constant velocity universal joint and outside joint member for the same

Publications (1)

Publication Number Publication Date
JP2011226589A true JP2011226589A (en) 2011-11-10

Family

ID=45042155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010097907A Pending JP2011226589A (en) 2010-04-21 2010-04-21 Tripod type constant velocity universal joint and outside joint member for the same

Country Status (1)

Country Link
JP (1) JP2011226589A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097821A1 (en) * 2012-12-19 2014-06-26 Ntn株式会社 Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
WO2015194302A1 (en) * 2014-06-16 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
WO2015194305A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Method for manufacturing outer joint member for constant-velocity universal joint and outer joint member
WO2015194304A1 (en) * 2014-06-17 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
JP2016003694A (en) * 2014-06-16 2016-01-12 Ntn株式会社 Method of manufacturing outer joint member of constant velocity universal joint, and outer joint member
WO2016076051A1 (en) * 2014-11-11 2016-05-19 Ntn株式会社 Tripod-type constant velocity universal joint and manufacturing method for tripod member thereof
JP2020148282A (en) * 2019-03-14 2020-09-17 Ntn株式会社 Outside joint member for constant velocity universal joint
CN114458700A (en) * 2022-01-19 2022-05-10 台州品佳汽配有限公司 Movable three-ball pin and processing technology thereof
JP2022136753A (en) * 2021-03-08 2022-09-21 国立大学法人大阪大学 Linear friction bonding method and bonding structure

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2937587A4 (en) * 2012-12-19 2016-09-14 Ntn Toyo Bearing Co Ltd Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
JP2014119096A (en) * 2012-12-19 2014-06-30 Ntn Corp Process of manufacture of outside joint member of constant velocity universal joint and outside joint member
CN104884832A (en) * 2012-12-19 2015-09-02 Ntn株式会社 Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
WO2014097821A1 (en) * 2012-12-19 2014-06-26 Ntn株式会社 Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
US9505081B2 (en) 2012-12-19 2016-11-29 Ntn Corporation Manufacturing method for outer joint member of constant velocity universal joint and outer joint member
US10514070B2 (en) 2014-06-16 2019-12-24 Ntn Corporation Method for manufacturing outer joint member for constant velocity universal joint, shaft member and outer joint member
WO2015194302A1 (en) * 2014-06-16 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
JP2016003694A (en) * 2014-06-16 2016-01-12 Ntn株式会社 Method of manufacturing outer joint member of constant velocity universal joint, and outer joint member
JP2016003693A (en) * 2014-06-16 2016-01-12 Ntn株式会社 Method of manufacturing outer joint member of constant velocity universal joint, and outer joint member
EP3156677A4 (en) * 2014-06-16 2018-02-21 NTN Corporation Manufacturing method for constant velocity universal joint outer joint member and outer joint member
CN106460946A (en) * 2014-06-16 2017-02-22 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
JP2016003711A (en) * 2014-06-17 2016-01-12 Ntn株式会社 Method of manufacturing outer joint member of constant velocity universal joint, and outer joint member
CN106460945A (en) * 2014-06-17 2017-02-22 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
WO2015194304A1 (en) * 2014-06-17 2015-12-23 Ntn株式会社 Manufacturing method for constant velocity universal joint outer joint member and outer joint member
EP3159564A4 (en) * 2014-06-17 2017-11-29 NTN Corporation Manufacturing method for constant velocity universal joint outer joint member and outer joint member
US10213868B2 (en) 2014-06-17 2019-02-26 Ntn Corporation Manufacturing method for constant velocity universal joint outer joint member and outer joint member
WO2015194305A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Method for manufacturing outer joint member for constant-velocity universal joint and outer joint member
US10539193B2 (en) 2014-06-18 2020-01-21 Ntn Corporation Method for manufacturing outer joint member for constant-velocity universal joint and outer joint member
JP2016090028A (en) * 2014-11-11 2016-05-23 Ntn株式会社 Tripod-type constant velocity universal joint and manufacturing method of tripod member of tripod-type constant velocity universal joint
WO2016076051A1 (en) * 2014-11-11 2016-05-19 Ntn株式会社 Tripod-type constant velocity universal joint and manufacturing method for tripod member thereof
JP2020148282A (en) * 2019-03-14 2020-09-17 Ntn株式会社 Outside joint member for constant velocity universal joint
JP2022136753A (en) * 2021-03-08 2022-09-21 国立大学法人大阪大学 Linear friction bonding method and bonding structure
JP7365646B2 (en) 2021-03-08 2023-10-20 国立大学法人大阪大学 Linear friction welding method and joined structure
CN114458700A (en) * 2022-01-19 2022-05-10 台州品佳汽配有限公司 Movable three-ball pin and processing technology thereof

Similar Documents

Publication Publication Date Title
JP2011226589A (en) Tripod type constant velocity universal joint and outside joint member for the same
JP2003004060A (en) Coupling and power transmission shaft and method of manufacturing coupling
JP4846103B2 (en) Fiber reinforced resin pipe and power transmission shaft using the same
JP5867773B2 (en) Manufacturing method of power transmission shaft
US20140357384A1 (en) Spacer for a driveshaft assembly
JP2017082811A (en) Rack bar and manufacturing method of rack bar
CN106715931B (en) Power transmission shaft
WO2019035395A1 (en) Power transmission shaft
WO2010061707A1 (en) Outer joint member for constant velocity universal joint
JP2016183738A (en) Power transmission shaft
JP7217587B2 (en) power transmission shaft
KR101523617B1 (en) Drive Shaft Assembly adopting CFRP
JP2011017413A (en) Shaft for power transmission shaft
JP2016098945A (en) Power transmission shaft
JP5410163B2 (en) Drive shaft and drive shaft assembly method
US20030157988A1 (en) Fiber reinforced plastic propeller shaft
US20190085891A1 (en) Rotational driving force transmission mechanism
CN113942248B (en) Manufacturing method of composite material transmission shaft and composite material transmission shaft
JP2011017414A (en) Shaft for power transmission shaft
JP2011220351A (en) Power transmission shaft
WO2016125517A1 (en) Power transmission shaft
JP2011106566A (en) Shaft structure for power transmission, intermediate shaft, and outside joint member
JP2003184854A (en) Propeller shaft and method of manufacturing the same and shaft made of frp
JP2011080557A (en) Constant velocity universal joint and outside joint member of constant velocity universal joint
JP2011052720A (en) Frp driving shaft