JPH11320132A - Joining method for titanium-aluminum alloy member and constructive steel member, and joined part - Google Patents

Joining method for titanium-aluminum alloy member and constructive steel member, and joined part

Info

Publication number
JPH11320132A
JPH11320132A JP12478098A JP12478098A JPH11320132A JP H11320132 A JPH11320132 A JP H11320132A JP 12478098 A JP12478098 A JP 12478098A JP 12478098 A JP12478098 A JP 12478098A JP H11320132 A JPH11320132 A JP H11320132A
Authority
JP
Japan
Prior art keywords
joining
tial alloy
alloy member
intermediate material
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12478098A
Other languages
Japanese (ja)
Other versions
JP3453302B2 (en
Inventor
Toshimitsu Tetsui
利光 鉄井
Michio Kyotani
美智男 京谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12478098A priority Critical patent/JP3453302B2/en
Publication of JPH11320132A publication Critical patent/JPH11320132A/en
Application granted granted Critical
Publication of JP3453302B2 publication Critical patent/JP3453302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability against a high temperature strength of a joining part by joining a turbine wheel composed of TiAl alloy and a steel shaft, using an alloy as an intermediate member whose thermal expansion coefficient is equivalent to that of the TiAl alloy. SOLUTION: When a steel made shaft 2 is joined with the TiAl alloy made turbine wheel being composed of and including, at an atomic ratio, 45-48% Al, 5-9% Nb, 1-2% Cr, 0.2-0.5% Si, 0.3-2% Ni, 0.01-0.05% Y and, Ti and an avoidable impurity as a balance, an intermediate material 3 composed of an incoloy 903, 907 or 909 is used. A concave part is formed on either one part of the joining faces between the turbine wheel 1 and the intermediate member 3, and a convex part is formed on the other face part. An abrasion welding is then carried out under the condition that the concaved and convexed parts are abutted. The joining face shape is made in a manner that the central part, which being equivalent to 20-70% of cross section diameter being orthogonal to the shaft, is vertical against the shaft and its outer surrounding is slanted by 20-40 deg., preferably 30 deg. from the face vertical against the shaft.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はTiAl合金部材と
構造用鋼材とを接合する接合方法及び該方法により接合
された接合部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining method for joining a TiAl alloy member and a structural steel material, and a joining part joined by the joining method.

【0002】[0002]

【従来の技術】乗用車やトラックのディーゼルエンジ
ン、ガソリンエンジンの小型過給機においては、タービ
ンホイールの重量を軽量化することによって、回転開始
に対する慣性モーメントが小さくなることから、過渡応
答特性が向上し、ひいてはエンジンとしての加速性能の
向上及び燃焼効率の向上による黒煙の低減に寄与でき
る。従って、タービンホイールに軽量材料を適用するこ
とが従来から考えられてきた。しかしながら、通常の軽
量金属材料であるAl合金やTi合金は耐熱性が不足し
ており適用は困難である。また軽量の新素材であるセラ
ミックは一部実用化も図られているが、脆性材料である
ため翼先端が欠けやすいという問題があり、また、製造
上の制約によりタービンホイールの翼形状が空力的に最
適化できないという問題もあることから、適用範囲はそ
れほど広がっていない。また、小型過給機のタービンホ
イールのほかにも、ガスタービンや過給機用の小型ター
ビンディスク、小型タービンロータなどにおいて同様な
問題がある。
2. Description of the Related Art In small turbochargers for diesel engines and gasoline engines for passenger cars and trucks, the transient response characteristic is improved because the weight of the turbine wheel is reduced to reduce the moment of inertia at the start of rotation. As a result, it is possible to contribute to the improvement of the acceleration performance of the engine and the reduction of black smoke due to the improvement of the combustion efficiency. Therefore, it has been conventionally considered to apply a lightweight material to the turbine wheel. However, Al alloys and Ti alloys, which are ordinary lightweight metal materials, have insufficient heat resistance and are difficult to apply. In addition, although ceramics, a new lightweight material, have been partially commercialized, there is a problem that the blade tip is easily chipped because it is a brittle material, and the blade shape of the turbine wheel is aerodynamic due to manufacturing restrictions. The scope of application is not so widespread because there is a problem that it cannot be optimized. In addition to the turbine wheel of a small turbocharger, there is a similar problem in a gas turbine, a small turbine disk for a turbocharger, a small turbine rotor, and the like.

【0003】一方、近年開発が進められているTiAl
金属間化合物をベースとする合金(原子%でTi及びA
lがほぼ等量:以下、TiAl合金と称す)は比重が従
来のタービンホイール材であるNi基耐熱合金の約1/
2と軽量であり、Alをベースとする合金やTiをベー
スとする合金に比べると高い耐熱性を、またセラミック
に比べると高い信頼性を有しており、さらに、Ni基耐
熱合金と同様に精密鋳造によって空力的に最適な翼形状
に成形できることから、上記要望に答えることのできる
新材料として近年にわかに有望視されてきた。TiAl
合金のタービンホイールを小型過給機に組み込む場合の
製造技術において、タービンホイールそのものは精密鋳
造によりニアネットで作製できるため問題ないが、この
タービンホイールと構造用鋼からなるシャフトに接合す
る接合技術の開発が必要である。この接合技術としては
従来は真空ろう付けが適用されてきたが、真空ろう付け
では接合作業に要する時間が長く、また作業工数が多い
ことから、本製品のような大量生産品には不適当であっ
た。さらに、エンジンの高出力化に伴って排気ガス温度
も高くなり、接合部の温度も高温となり、真空ろう付け
では強度が維持できない不安が生じてきた。そこで、高
効率な接合が可能で溶接部の高温強度が高い摩擦溶接に
よる接合に関する検討がなされ、種々の方法が提案され
ている。
On the other hand, TiAl, which has been developed recently,
Alloys based on intermetallics (Ti and A in atomic%)
1 is almost equivalent: hereinafter, referred to as TiAl alloy) has a specific gravity of about 1 / of that of a conventional Ni-base heat-resistant alloy which is a turbine wheel material.
2 and lighter, have higher heat resistance than Al-based alloys and Ti-based alloys, and higher reliability than ceramics. Since it can be formed into an aerodynamically optimal wing shape by precision casting, it has recently been promising as a new material that can meet the above demand. TiAl
There is no problem in the manufacturing technology when incorporating an alloy turbine wheel into a small turbocharger because the turbine wheel itself can be manufactured by near net by precision casting, but there is no problem with the joining technology of joining this turbine wheel to a shaft made of structural steel. Development is required. Conventionally, vacuum brazing has been applied as this joining technique, but vacuum brazing is not suitable for mass-produced products such as this product due to the long time required for joining work and the large number of work steps. there were. Furthermore, the exhaust gas temperature has also increased with the increase in the output of the engine, and the temperature of the joints has also increased. This has raised concerns that the strength cannot be maintained by vacuum brazing. Accordingly, studies have been made on joining by friction welding that enables highly efficient joining and has a high high-temperature strength at a welded portion, and various methods have been proposed.

【0004】例えば特公平8−18151号公報にはT
iAl合金と構造用鋼の接合において、中間材としてオ
ーステナイト系ステンレス鋼もしくは耐熱鋼、又はNi
基もしくはCo基の超合金を使用し、TiAl合金と中
間材の接合、及び中間材と構造用鋼の接合を摩擦溶接で
行うことを特徴とする接合方法が開示されている。図5
はこの方法で接合したターボチャージャのホットホイー
ルの構成を示す断面図であり、1はタービンホイール、
2はシャフト、3は中間材である。この方法において、
中間材と軸材との摩擦接合は従来から実績がある接合方
法であり特に問題はないが、TiAl合金と中間材との
摩擦溶接は小型過給機に適用した場合、次のような問題
がある。 1)小型過給機では乗用車、トラック等の発停に伴いタ
ービンには加熱、冷却の熱サイクルが負荷されるが、こ
の公報で挙げられている中間材はいずれもTiAlに較
べると線膨張率が大きいため(中間材13〜20×10
-6/℃、TiAl合金9〜11×10-6/℃)、両材料
の接合界面にはこの線膨張率の違いに起因した熱応力が
負荷される。この熱応力は加熱、冷却、すなわち、小型
過給機の発停の度に負荷されることから、乗用車、トラ
ック等の使用状況を考えると、小型過給機の使用時には
非常に多大のサイクルの熱応力が負荷されることとな
る。ここで接合部に靱性があれば問題ないが、そもそも
TiAl自身が通常の金属材料に較べると脆く、また中
間材との接合部は更に脆くなっていることから、この線
膨張差に起因する熱応力が多サイクル負荷されることに
よって、最終的には接合部の疲労破壊に至る恐れがあ
る。
For example, Japanese Patent Publication No. Hei.
In the joining of iAl alloy and structural steel, austenitic stainless steel or heat-resistant steel, or Ni
A joining method is disclosed in which a base alloy or a Co-based superalloy is used, and the joining of the TiAl alloy and the intermediate material and the joining of the intermediate material and the structural steel are performed by friction welding. FIG.
1 is a cross-sectional view showing a configuration of a hot wheel of a turbocharger joined by this method, where 1 is a turbine wheel,
2 is a shaft, 3 is an intermediate material. In this method,
Friction welding between an intermediate material and a shaft material is a welding method that has been used in the past and is not particularly problematic. However, friction welding between a TiAl alloy and an intermediate material has the following problems when applied to a small turbocharger. is there. 1) In a small turbocharger, a heat cycle of heating and cooling is applied to a turbine when a passenger car, a truck and the like are started and stopped. However, the intermediate materials listed in this publication all have a linear expansion coefficient compared to TiAl. Is large (intermediate material 13-20 × 10
−6 / ° C., TiAl alloy 9-11 × 10 −6 / ° C.), and thermal stress due to the difference in the linear expansion coefficient is applied to the joint interface between the two materials. Since this thermal stress is applied every time heating and cooling, that is, every time a small turbocharger starts and stops, considering the usage of passenger cars and trucks, a very large number of cycles are required when using a small turbocharger. Thermal stress will be applied. Here, there is no problem if the joint has toughness, but in the first place, the TiAl itself is brittle compared to a normal metal material, and the joint with the intermediate material is more brittle. The multi-cycle loading of stress may eventually lead to fatigue failure of the joint.

【0005】2)また、この公報における接合部品の構
成図によると、中間材とTiAl合金との接合界面は直
線的であり、しかも軸方向に垂直である。従って小型過
給機の場合、軸に曲げモーメントが発生した場合、接合
面を開く方向の応力が負荷されることとなる。通常の金
属同士の摩擦接合部の場合、摩擦接合部自身に靱性があ
るため、上記応力が負荷されても問題は生じないが、先
に述べたようにTiAlと中間材との摩擦接合部は脆
く、亀裂進展に対する抵抗(KIC)は非常に小さいた
め、接合面の方向と亀裂開口方向が一致する場合、接合
部表面の微小な欠陥、キズ等に敏感となる問題が生じ
る。つまり軸に曲げモーメントが負荷された場合、表面
欠陥を起点として、亀裂が容易に接合界面を進展し、最
終的には接合部の破断に至る恐れがある。
[0005] 2) According to the configuration diagram of the joining component in this publication, the joining interface between the intermediate material and the TiAl alloy is linear and perpendicular to the axial direction. Therefore, in the case of a small turbocharger, when a bending moment is generated on the shaft, a stress in a direction in which the joint surface is opened is applied. In the case of a normal metal-to-metal friction joint, since the friction joint itself has toughness, no problem occurs even when the above stress is applied, but as described above, the friction joint between TiAl and the intermediate material is Since it is brittle and has very low resistance to crack propagation (K IC ), when the direction of the joint surface coincides with the direction of the crack opening, there is a problem that the surface of the joint becomes sensitive to minute defects, scratches, and the like. In other words, when a bending moment is applied to the shaft, cracks easily propagate from the surface defects as a starting point to the joint interface, and eventually the joint may be broken.

【0006】一方、特開平2−157403号公報に
は、TiAl合金と構造用鋼の接合において、TiAl
合金と中間材の接合は摩擦接合で、中間材と構造用鋼の
接合は電子ビーム溶接などの溶接法で行うことを特徴と
する接合方法である。中間材はTiAl合金と接合性の
良い材料と規定されており、例としてインコロイ903
が挙げられており、形状は中空のリング状としている。
図6はこの方法による接合部品の構成を示す断面図であ
り、1はタービンホイール、2はシャフト、3は中間
材、4は中空部であり、またAはTiAl合金と中間材
との接合部、Bは中間材とシャフトとの接合部である。
この方法においても中間材と軸材の溶接方法は従来から
実績がある接合方法であり、特に問題はない。TiAl
合金と中間材との摩擦接合に関しては、中間材としてイ
ンコロイ903という鉄、ニッケル、コバルトを主要成
分とする低熱膨張材でTiAl合金と線膨張率がほぼ等
しい材料を使用する場合には、前記特公平8−1815
1号公報の方法における問題点の1)、すなわち線膨張
率の違いに起因する熱応力の負荷は回避される。しかし
ながら、接合面が軸と垂直であることから、接合部表面
の微小な欠陥、キズ等に敏感であり、曲げモーメントに
よって容易に亀裂が伝播する2)の問題点については同
様である。
[0006] On the other hand, Japanese Patent Application Laid-Open No. 2-157403 discloses that a TiAl alloy and a structural steel are bonded together.
The joining method is characterized in that the joining of the alloy and the intermediate material is performed by friction welding, and the joining of the intermediate material and the structural steel is performed by a welding method such as electron beam welding. The intermediate material is defined as a material having a good bonding property with the TiAl alloy, for example, Incoloy 903
And the shape is a hollow ring shape.
FIG. 6 is a cross-sectional view showing the structure of a joint part according to this method, wherein 1 is a turbine wheel, 2 is a shaft, 3 is an intermediate material, 4 is a hollow portion, and A is a joint between the TiAl alloy and the intermediate material. , B are joints between the intermediate member and the shaft.
Also in this method, the welding method of the intermediate material and the shaft material is a joining method that has been used in the past, and there is no particular problem. TiAl
Regarding the friction joining between the alloy and the intermediate material, when using a material such as Incoloy 903, which is a low thermal expansion material mainly composed of iron, nickel and cobalt, and having a coefficient of linear expansion substantially equal to that of the TiAl alloy, as the intermediate material, Fairness 18-1815
The problem 1) of the method disclosed in Japanese Patent Application Laid-Open Publication No. HEI 1 (1), that is, the load of thermal stress caused by the difference in the coefficient of linear expansion is avoided. However, since the joint surface is perpendicular to the axis, the joint surface is sensitive to minute defects and scratches on the joint surface, and the same applies to the problem 2) in which a crack is easily propagated by a bending moment.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような従
来技術の実状に鑑み、中間材を使用してTiAl合金部
材と構造用鋼材とを接合するに際し、TiAl合金部材
と中間材との接合界面において、熱膨張率の差による熱
応力の負荷が軽減され、また、接合部の表面欠陥に敏感
で曲げモーメントの負荷に弱いという問題点を解消した
TiAl合金部材と構造用鋼材との接合方法及びその方
法によって得られる接合部品を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances of the prior art, and has been used for joining a TiAl alloy member and an intermediate material when joining a TiAl alloy member and a structural steel material using an intermediate material. At the interface, a method of joining a TiAl alloy member to a structural steel material, in which the load of thermal stress due to the difference in the coefficient of thermal expansion is reduced, and the problem of being sensitive to surface defects at the joint and weak to the load of bending moment is solved. And a joint component obtained by the method.

【0008】[0008]

【課題を解決するための手段】本発明は前記課題を解決
する手段として次の(1)〜(5)の態様を採るもので
ある。 (1)TiAl合金部材と構造用鋼材とを中間材を使用
して接合する方法において、中間材としてTiAl合金
と同等の熱膨張率を有する合金を使用し、かつ、TiA
l合金部材と中間材との接合面の一方の面に凸部を、他
方の面に凹部を形成し、TiAl合金部材と中間材との
接合を前記凸部が形成された面と前記凹部が形成された
面とを突き合わせた状態で摩擦溶接により行うことを特
徴とするTiAl合金部材と構造用鋼材との接合方法。
The present invention adopts the following aspects (1) to (5) as means for solving the above-mentioned problems. (1) In a method of joining a TiAl alloy member and a structural steel material using an intermediate material, an alloy having a thermal expansion coefficient equivalent to that of the TiAl alloy is used as the intermediate material, and TiA is used.
(1) A convex portion is formed on one surface of the joining surface between the alloy member and the intermediate member, and a concave portion is formed on the other surface. A method for joining a TiAl alloy member and a structural steel material, wherein the joining is performed by friction welding in a state where the formed surfaces are butted against each other.

【0009】(2)TiAl合金部材と構造用鋼材とを
中間材を使用して接合する方法において、第1中間材と
してTiAl合金と同等の熱膨張率を有する合金を使用
し、さらにTiAl合金部材と第1中間材の相対する面
の少なくともどちらか一方の面の中央部に凹部を設け、
該凹部に靱性の高い材料からなる第2中間材を埋め込ん
だ状態でTiAl合金部材と第1及び第2中間材とを摩
擦溶接し、TiAl合金部材と前記第1中間材との間に
第2中間材の層を形成させるように接合することを特徴
とするTiAl合金部材と構造用鋼材との接合方法。
(2) In a method of joining a TiAl alloy member and a structural steel material using an intermediate material, an alloy having a thermal expansion coefficient equivalent to that of the TiAl alloy is used as a first intermediate material, and the TiAl alloy member is further used. A concave portion is provided at a central portion of at least one of opposing surfaces of the first intermediate member and
The TiAl alloy member and the first and second intermediate members are friction-welded with the second intermediate material made of a material having high toughness embedded in the recesses, and a second intermediate material is provided between the TiAl alloy member and the first intermediate material. A method for joining a TiAl alloy member and a structural steel material, wherein the joining is performed so as to form an intermediate material layer.

【0010】(3)前記(1)又は(2)の方法により
TiAl合金部材と構造用鋼材とを接合してなることを
特徴とするTiAl合金部材と構造用鋼材との接合部
品。 (4)前記TiAl合金部材がタービンホイールであ
り、前記構造用鋼材が鋼製シャフトであることを特徴と
する前記(3)の接合部品。 (5)前記TiAl合金部材が原子%でAl:45〜4
8%、Nb:5〜9%、Cr:1〜2%、Si:0.2
〜0.5%、Ni:0.3〜2%、Y:0.01〜0.
05%を含有し、残部がTi及び不可避的不純物からな
るTiAl合金部材であることを特徴とする前記(3)
又は(4)の接合部品。
(3) A joined part of a TiAl alloy member and a structural steel material, wherein the TiAl alloy member and the structural steel material are joined by the method (1) or (2). (4) The joining component according to (3), wherein the TiAl alloy member is a turbine wheel, and the structural steel material is a steel shaft. (5) The TiAl alloy member has an atomic percentage of Al: 45-4.
8%, Nb: 5 to 9%, Cr: 1 to 2%, Si: 0.2
0.5%, Ni: 0.3-2%, Y: 0.01-0.
(3) characterized in that it is a TiAl alloy member containing 0.05%, with the balance being Ti and unavoidable impurities.
Or the joined component of (4).

【0011】[0011]

【発明の実施の形態】本発明は原子%でTi:50%、
Al:50%を基本成分とするTiAl合金部材とSC
M435:SNCM439等の構造用鋼材との接合方法
に関するものであり、例えば小型過給機におけるTiA
l合金製のタービンホイールと構造用鋼からなるシャフ
トとの接合などに適用される。またこの方法は、ガスタ
ービン又は過給機等の小型タービンディスク、小型ター
ビンロータと軸との接合などにも適用可能である。な
お、説明の簡略化のため、以後は小型過給機におけるT
iAl合金製のタービンホイールと構造用鋼からなるシ
ャフトとの接合の例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to an atomic% Ti: 50%,
Al: TiAl alloy member containing 50% as a basic component and SC
M435: a method for joining with structural steel such as SNCM439, for example, TiA in a small turbocharger
The present invention is applied to, for example, joining of a turbine wheel made of an alloy and a shaft made of structural steel. This method is also applicable to a small turbine disk such as a gas turbine or a supercharger, or a joint between a small turbine rotor and a shaft. For the sake of simplicity of description, the T
An example of joining a turbine wheel made of an iAl alloy to a shaft made of structural steel will be described.

【0012】これらのTiAl合金部材と構造用鋼材と
を摩擦溶接により直接接合しようとしても接合後にクラ
ックが生じて継手を形成することができない。そのた
め、このような接合の場合にはTiAl合金と接合性の
よい中間材が使用される。本発明の方法(1)において
は、熱膨張率が通常の金属材料に較べると小さく、少な
くとも600℃程度まではTiAl合金(熱膨張係数:
室温〜600℃で9〜11×10-6/℃)と同等の熱膨
張率(室温〜600℃で8〜10×10-6/℃)を有す
る合金を使用する。このような合金としてはインコロイ
909、インコロイ903、インコロイ907(いずれ
も商品名)などを挙げることができる。これらの合金の
組成を表1に示す。中間材としてこのような材料を使用
することにより、従来の技術における問題点の一つであ
ったTiAl合金部材と中間材との熱膨張率の差による
熱応力の発生を防止することができる。
[0012] Even if the TiAl alloy member and the structural steel material are directly joined by friction welding, cracks occur after the joining, and a joint cannot be formed. Therefore, in the case of such joining, an intermediate material having good joining properties with the TiAl alloy is used. In the method (1) of the present invention, the coefficient of thermal expansion is smaller than that of a normal metal material, and the TiAl alloy (coefficient of thermal expansion:
An alloy having a coefficient of thermal expansion (8 to 10 × 10 −6 / ° C. at room temperature to 600 ° C.) equivalent to 9 to 11 × 10 −6 / ° C. at room temperature to 600 ° C. is used. Examples of such alloys include Incoloy 909, Incoloy 903, Incoloy 907 (all trade names). Table 1 shows the compositions of these alloys. By using such a material as the intermediate material, it is possible to prevent the occurrence of thermal stress due to the difference in the coefficient of thermal expansion between the TiAl alloy member and the intermediate material, which is one of the problems in the prior art.

【0013】[0013]

【表1】 [Table 1]

【0014】本発明の方法(1)においては前記中間材
の材質選定に加えて、さらに、TiAl合金部材と中間
材との接合面の一方の面に凸部を、他方の面に凹部を形
成し、TiAl合金部材と中間材との接合を前記凸部が
形成された面と前記凹部が形成された面とを突き合わせ
た状態で摩擦溶接により行うようにしている。このよう
にすることによりTiAl合金部材と中間材との接合界
面の形状は、中心軸に平行な断面図で見た場合に、中心
軸に垂直な直線状となることはないので、接合部表面の
欠陥からの亀裂の進展を抑制することができる。なお、
各接合面に形成させる凸部と凹部とは必ずしも隙間のな
い状態で嵌合させる必要はなく、凸部が形成された面と
凹部が形成された面とを突き合わせた状態で摩擦溶接を
行えば、TiAl合金部材及び中間材の塑性変形によっ
て完全な密着接合面が形成される。この場合、接合界面
の形状は種々の形を採るように接合することができる
が、好ましい形状例として図1のタービンホイール1と
シャフト2を中間材3を介して接合する例に示すように
接合界面の形状を、軸に垂直な断面の直径の20〜70
%、好ましくは30〜50%に相当する中心部は軸に垂
直な面に平行な直線状とし、その外側の部分では軸に垂
直な面から20〜40°、好ましくは約30°傾斜した
形状がある。また、他の好ましい形状として図2のター
ビンホイール1とシャフト3を中間材3を介して接合す
る例に示すように接合界面の形状を、軸に垂直な面に平
行な直線状とするが、軸に垂直な断面の直径の20〜7
0%、好ましくは30〜50%に相当する中心部とその
外側の部分との間に接合部直径の20〜50%程度の高
さの段差を設けた階段状とする形状がある。
In the method (1) of the present invention, in addition to the selection of the material of the intermediate material, a convex portion is formed on one surface of the joining surface between the TiAl alloy member and the intermediate material, and a concave portion is formed on the other surface. Then, the joining of the TiAl alloy member and the intermediate material is performed by friction welding in a state where the surface on which the convex portions are formed and the surface on which the concave portions are formed abut against each other. By doing so, the shape of the joining interface between the TiAl alloy member and the intermediate material does not become a straight line perpendicular to the central axis when viewed in a cross-sectional view parallel to the central axis. Crack growth from the defect can be suppressed. In addition,
It is not always necessary to fit the convex portion and the concave portion formed on each joint surface in a state where there is no gap, and if friction welding is performed in a state where the surface where the convex portion is formed and the surface where the concave portion is formed are abutted. , And the TiAl alloy member and the intermediate material are plastically deformed to form a complete close contact surface. In this case, the joining interface can be joined so as to take various shapes. As a preferred example of the joining, as shown in an example in which the turbine wheel 1 and the shaft 2 are joined via the intermediate member 3 in FIG. The shape of the interface is 20 to 70 of the diameter of the cross section perpendicular to the axis.
%, Preferably a central portion corresponding to 30 to 50% is a straight line parallel to the plane perpendicular to the axis, and the outer part thereof is inclined at 20 to 40 °, preferably about 30 ° from the plane perpendicular to the axis. There is. Further, as another preferred shape, as shown in an example in which the turbine wheel 1 and the shaft 3 are joined via the intermediate member 3 in FIG. 2, the shape of the joining interface is a straight line parallel to a plane perpendicular to the axis. 20 to 7 of diameter of section perpendicular to axis
There is a step-like shape in which a step having a height of about 20 to 50% of the joint diameter is provided between a central part corresponding to 0%, preferably 30 to 50% and an outer part thereof.

【0015】このようにTiAl合金との接合界面を直
線的にせず、例えば角度30°程度の斜め状、あるいは
階段状とすることによって、従来技術の問題点の一つで
あった表面欠陥に敏感となる点は回避できる。すなわ
ち、仮に接合部表面に欠陥があり、軸に曲げモーメント
が発生した場合でも、図1の場合ではこの応力による亀
裂進展方向と脆い接合界面の方向が異なるため、これら
の方向が同一である従来技術の接合部に較べると亀裂が
伝播しにくいという長所がある。また、図2の場合では
表面欠陥を起点とする当初の亀裂進展は従来の技術と同
様であるが、亀裂の進展は階段部分で止められるため、
破断までには至らないという長所がある。なお、いずれ
の例においても中間材3とシャフト2を構成する構造用
鋼材との接合は電子ビーム溶接等の通常の接合方法で行
えばよい。
As described above, by not making the joining interface with the TiAl alloy straight, but making it inclined, for example, at an angle of about 30 °, or stepped, it is possible to be sensitive to surface defects, which is one of the problems of the prior art. Can be avoided. That is, even if there is a defect on the surface of the joint and a bending moment is generated on the axis, in the case of FIG. 1, the crack propagation direction due to this stress is different from the direction of the brittle joint interface. It has the advantage that cracks are less likely to propagate compared to technology joints. In addition, in the case of FIG. 2, the initial crack growth starting from the surface defect is the same as that of the conventional technique, but since the crack growth is stopped at the step portion,
There is an advantage that it does not lead to breakage. In any case, the joining of the intermediate member 3 and the structural steel material constituting the shaft 2 may be performed by a normal joining method such as electron beam welding.

【0016】本発明の方法(2)においては、主たる中
間材である第1中間材として前記(1)の方法の場合と
同じく熱膨張率が通常の金属材料に較べると小さく、少
なくとも600℃程度まではTiAl合金(熱膨張係
数:室温〜600℃で9〜11×10-6/℃)と同等の
熱膨張率(室温〜600℃で8〜10×10-6/℃)を
有する合金を使用する。そして、さらに前記第1中間材
のTiAl合金と接する側の面の中央部に凹部を設けて
靱性の高い材料からなる第2中間材を埋め込んだ状態で
TiAl合金部材と第1及び第2中間材とを摩擦溶接
し、TiAl合金部材と前記第1中間材との間に第2中
間材の層を形成させるように接合する。第2中間材とし
てはTi、Ni、Cu等の靱性があり、500℃程度ま
での高温強度を有する材料が使用できるが、中でもTi
Al合金との界面で脆化相を作らないTi又はNiが好
ましい。
In the method (2) of the present invention, the first intermediate material, which is the main intermediate material, has a smaller thermal expansion coefficient than that of the ordinary metal material, and is at least about 600 ° C. as in the case of the method (1). Up to a TiAl alloy (coefficient of thermal expansion: 9 to 11 × 10 −6 / ° C. at room temperature to 600 ° C.) (8 to 10 × 10 −6 / ° C. at room temperature to 600 ° C.) use. The TiAl alloy member and the first and second intermediate materials are further embedded in a state where a recess is provided at the center of the surface of the first intermediate material on the side in contact with the TiAl alloy and the second intermediate material made of a material having high toughness is embedded. Are joined by friction welding to form a second intermediate material layer between the TiAl alloy member and the first intermediate material. As the second intermediate material, a material having toughness such as Ti, Ni, and Cu and having a high-temperature strength up to about 500 ° C. can be used.
Ti or Ni which does not form an embrittlement phase at the interface with the Al alloy is preferable.

【0017】この方法による接合方法の具体例を図3及
び図4に示す。この例では図3に示すように第1中間材
4のタービンホイール1と接する方の面の中央に凹部を
設け、第2中間材5を埋め込んだ状態で摩擦溶接する。
摩擦溶接の間に第2中間材5が接合界面に押し出され、
図4に示すように接合界面に薄い第2中間材5の層が形
成される。第2中間材5の層の厚みは、接合前の状態で
接合部直径の20〜50%程度とする。なお、第2中間
材5を埋め込む凹部はタービンホイール1の表面に形成
させてもよいが、加工の容易さ等から第1中間材に設け
るのが好ましい。また、この例においても第1中間材4
とシャフト2を構成する構造用鋼材との接合は電子ビー
ム溶接等の通常の接合方法で行えばよい。
FIGS. 3 and 4 show specific examples of the joining method according to this method. In this example, as shown in FIG. 3, a concave portion is provided at the center of the surface of the first intermediate member 4 which is in contact with the turbine wheel 1, and friction welding is performed with the second intermediate member 5 embedded.
During the friction welding, the second intermediate member 5 is extruded to the joint interface,
As shown in FIG. 4, a thin layer of the second intermediate member 5 is formed at the bonding interface. The thickness of the layer of the second intermediate material 5 is about 20 to 50% of the diameter of the joint before joining. In addition, the concave portion in which the second intermediate member 5 is embedded may be formed on the surface of the turbine wheel 1, but is preferably provided in the first intermediate member from the viewpoint of ease of processing and the like. Also in this example, the first intermediate material 4
The joint between the shaft and the structural steel material constituting the shaft 2 may be made by a normal joining method such as electron beam welding.

【0018】第1中間材として前記のような材料を使用
することにより、前記方法(1)と同様に従来の技術に
おける問題点の一つであったTiAl合金部材と中間材
との熱膨張率の差による熱応力の発生を防止することが
できる。なお、接合後の第2中間材は薄くなるため、第
2中間材とTiAl合金及び第2中間材と第1中間材の
間に生成する熱応力は問題ない程度に小さい。また、こ
の例での接合界面の形状は従来技術と同様に中心軸に対
して垂直な直線となっているが、接合部は靱性のある第
2中間材で満たされているため、仮に接合部表面に欠陥
があった場合でも亀裂進展に対する抵抗(KIC)が大き
いため、亀裂の進展は抑制される。なお、この第2中間
材の高温強度はTiAl合金に較べると低いが、小型過
給機では接合部の温度は500℃以下と低いため、50
0℃程度までの高温強度を有していれば支障はない。
By using the above-mentioned material as the first intermediate material, the thermal expansion coefficient between the TiAl alloy member and the intermediate material, which is one of the problems in the prior art, as in the above method (1), Can be prevented from being generated due to the difference in the thermal stress. Since the second intermediate material after joining becomes thin, the thermal stress generated between the second intermediate material and the TiAl alloy and between the second intermediate material and the first intermediate material is small enough to cause no problem. Also, the shape of the bonding interface in this example is a straight line perpendicular to the central axis as in the prior art. However, since the bonding portion is filled with the tough second intermediate material, Even when there is a defect on the surface, the crack growth is suppressed because the resistance to crack growth (K IC ) is large. Although the high-temperature strength of the second intermediate material is lower than that of the TiAl alloy, the temperature of the joining portion is as low as 500 ° C. or less in a small turbocharger.
There is no problem if it has a high-temperature strength up to about 0 ° C.

【0019】本発明はTiAl相をベースとし、各種添
加成分を含有するいずれのTiAl合金に対しても適用
可能であるが、小型過給機へ適用する場合には、小型過
給機タービンホイールの翼先端分の温度は接合部分に比
べるとはるかに高く、ディーゼルエンジン用では最大約
850℃、ガソリンエンジン用では最大約950℃にも
達することから、適用すべきTiAl合金は高温におけ
る耐酸化性及び高温強度に優れたものであることが望ま
しい。このような優れた特性を有するTiAl合金とし
て原子%でAl:45〜48%、Nb:5〜9%、C
r:1〜2%、Si:0.2〜0.5%、Ni:0.3
〜2%、Y:0.01〜0.05%を含有し、残部がT
i及び不可避的不純物からなるTiAl合金がある。こ
のTiAl合金のタービンホイールを使用し、本発明の
方法により鋼製シャフトと接合した接合部品は、軽量で
接合強度が高く、小型過給機へ組み込む接合部品として
優れた性能を有している。
The present invention can be applied to any TiAl alloy containing various additive components based on the TiAl phase. However, when the present invention is applied to a small turbocharger, the present invention is applied to a small turbocharger turbine wheel. The temperature at the tip of the blade is much higher than that at the joint, and reaches up to about 850 ° C for diesel engines and up to about 950 ° C for gasoline engines. It is desirable that the material has excellent high-temperature strength. As a TiAl alloy having such excellent characteristics, Al: 45 to 48% in atomic%, Nb: 5 to 9%, C
r: 1-2%, Si: 0.2-0.5%, Ni: 0.3
~ 2%, Y: 0.01-0.05%, the balance being T
There is a TiAl alloy consisting of i and unavoidable impurities. The joining part which is joined to the steel shaft by the method of the present invention using this TiAl alloy turbine wheel is lightweight, has high joining strength, and has excellent performance as a joining part to be incorporated in a small turbocharger.

【0020】[0020]

【発明の効果】本発明の方法によれば、TiAl合金部
材と構造用鋼材とを高強度で、しかも高い信頼性をもっ
て接合することができる。このような本発明の方法は、
小型過給機に使用されるTiAl合金製のタービンホイ
ールと鋼製のシャフトとの接合に特に好適である。本発
明の方法によって得られるTiAl合金部材と構造用鋼
材との接合部品は、TiAl合金部材と中間材との接合
界面において、熱膨張率の差による熱応力の負荷による
接合部の疲労破壊や接合部の欠陥を起点として亀裂が進
展することによる接合部の破断の恐れがない優れた信頼
性を有している。特に、特定組成のTiAl合金製のタ
ービンホイールと鋼製のシャフトとを本発明の方法によ
り接合した小型過給機用の接合部品は軽量で高温強度及
び信頼性が高く、優れた特性を有している。
According to the method of the present invention, a TiAl alloy member and a structural steel material can be joined with high strength and high reliability. Such a method of the present invention comprises:
It is particularly suitable for joining a turbine shaft made of TiAl alloy and a steel shaft used for a small turbocharger. The joining part of the TiAl alloy member and the structural steel material obtained by the method of the present invention is characterized in that at the joining interface between the TiAl alloy member and the intermediate material, the fatigue fracture or joining of the joint due to the thermal stress load due to the difference in the coefficient of thermal expansion. It has excellent reliability without the risk of breakage of the joint due to crack propagation starting from the defect of the part. In particular, a joint part for a small turbocharger in which a turbine wheel made of a TiAl alloy having a specific composition and a steel shaft are joined by the method of the present invention has a lightweight, high-temperature strength, high reliability, and excellent characteristics. ing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明(1)の方法の1実施態様における接合
界面の形状を示す断面図。
FIG. 1 is a cross-sectional view showing the shape of a bonding interface in one embodiment of the method (1) of the present invention.

【図2】本発明(1)の方法の他の実施態様における接
合界面の形状を示す断面図。
FIG. 2 is a sectional view showing the shape of a bonding interface in another embodiment of the method of the present invention (1).

【図3】本発明(2)の方法の1実施態様における接合
前の状態を示す断面図。
FIG. 3 is a sectional view showing a state before joining in one embodiment of the method of the present invention (2).

【図4】図3の状態で摩擦溶接した後の接合界面の形状
を示す断面図。
FIG. 4 is a sectional view showing the shape of a joining interface after friction welding in the state of FIG. 3;

【図5】従来の方法により接合したターボチャージャの
ホイールの構成例を示す断面図。
FIG. 5 is a cross-sectional view showing a configuration example of a wheel of a turbocharger joined by a conventional method.

【図6】従来の方法により接合したターボチャージャの
ホイールの他の構成例を示す断面図。
FIG. 6 is a cross-sectional view showing another configuration example of a turbocharger wheel joined by a conventional method.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02B 39/00 F02B 39/00 U // B23K 103:24 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F02B 39/00 F02B 39/00 U // B23K 103: 24

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 TiAl合金部材と構造用鋼材とを中間
材を使用して接合する方法において、中間材としてTi
Al合金と同等の熱膨張率を有する合金を使用し、か
つ、TiAl合金部材と中間材との接合面の一方の面に
凸部を、他方の面に凹部を形成し、TiAl合金部材と
中間材との接合を前記凸部が形成された面と前記凹部が
形成された面とを突き合わせた状態で摩擦溶接により行
うことを特徴とするTiAl合金部材と構造用鋼材との
接合方法。
1. A method for joining a TiAl alloy member and a structural steel material using an intermediate material, wherein Ti is used as the intermediate material.
An alloy having a coefficient of thermal expansion equivalent to that of an Al alloy is used, and a convex portion is formed on one surface and a concave portion is formed on the other surface of the joining surface between the TiAl alloy member and the intermediate material. A method of joining a structural steel material to a TiAl alloy member, wherein the joining with the material is performed by friction welding in a state where the surface on which the convex portion is formed and the surface with the concave portion are abutted.
【請求項2】 TiAl合金部材と構造用鋼材とを中間
材を使用して接合する方法において、第1中間材として
TiAl合金と同等の熱膨張率を有する合金を使用し、
さらにTiAl合金部材と第1中間材の相対する面の少
なくともどちらか一方の面の中央部に凹部を設け、該凹
部に靱性の高い材料からなる第2中間材を埋め込んだ状
態でTiAl合金部材と第1及び第2中間材とを摩擦溶
接し、TiAl合金部材と前記第1中間材との間に第2
中間材の層を形成させるように接合することを特徴とす
るTiAl合金部材と構造用鋼材との接合方法。
2. A method of joining a TiAl alloy member and a structural steel material using an intermediate material, wherein an alloy having a thermal expansion coefficient equivalent to that of the TiAl alloy is used as a first intermediate material.
Further, a concave portion is provided at the center of at least one of the opposing surfaces of the TiAl alloy member and the first intermediate material, and the second intermediate material made of a high toughness material is embedded in the concave portion. The first and second intermediate members are friction-welded to form a second intermediate member between the TiAl alloy member and the first intermediate member.
A method for joining a TiAl alloy member and a structural steel material, wherein the joining is performed so as to form an intermediate material layer.
【請求項3】 請求項1又は2に記載の方法によりTi
Al合金部材と構造用鋼材とを接合してなることを特徴
とするTiAl合金部材と構造用鋼材との接合部品。
3. The method according to claim 1, wherein
A joined part of a TiAl alloy member and a structural steel material, which is formed by joining an Al alloy member and a structural steel material.
【請求項4】 前記TiAl合金部材がタービンホイー
ルであり、前記構造用鋼材が鋼製シャフトであることを
特徴とする請求項3に記載の接合部品。
4. The joint component according to claim 3, wherein the TiAl alloy member is a turbine wheel, and the structural steel material is a steel shaft.
【請求項5】 前記TiAl合金部材が原子%でAl:
45〜48%、Nb:5〜9%、Cr:1〜2%、S
i:0.2〜0.5%、Ni:0.3〜2%、Y:0.
01〜0.05%を含有し、残部がTi及び不可避的不
純物からなるTiAl合金部材であることを特徴とする
請求項3又は4に記載の接合部品。
5. The method according to claim 1, wherein the TiAl alloy member is Al:
45 to 48%, Nb: 5 to 9%, Cr: 1 to 2%, S
i: 0.2-0.5%, Ni: 0.3-2%, Y: 0.
5. The joint component according to claim 3, wherein the component is a TiAl alloy member containing 0.01 to 0.05%, with the balance being Ti and unavoidable impurities. 6.
JP12478098A 1998-05-07 1998-05-07 Method of joining TiAl alloy member to structural steel and joining parts Expired - Lifetime JP3453302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12478098A JP3453302B2 (en) 1998-05-07 1998-05-07 Method of joining TiAl alloy member to structural steel and joining parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12478098A JP3453302B2 (en) 1998-05-07 1998-05-07 Method of joining TiAl alloy member to structural steel and joining parts

Publications (2)

Publication Number Publication Date
JPH11320132A true JPH11320132A (en) 1999-11-24
JP3453302B2 JP3453302B2 (en) 2003-10-06

Family

ID=14893941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12478098A Expired - Lifetime JP3453302B2 (en) 1998-05-07 1998-05-07 Method of joining TiAl alloy member to structural steel and joining parts

Country Status (1)

Country Link
JP (1) JP3453302B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660407B1 (en) * 1999-07-24 2003-12-09 Daimlerchrysler Ag Friction-welded shaft-disc assembly and method for the manufacture thereof
CN100413636C (en) * 2005-09-29 2008-08-27 哈尔滨工业大学 High strength connecting method for TiAl base alloy charging turbine and steel shaft
US7802493B2 (en) 2005-12-20 2010-09-28 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod, internal combustion engine, automotive vehicle, and production method for connecting rod
DE112009001230T5 (en) 2008-06-19 2011-04-28 Borgwarner Inc., Auburn Hills Rotor shaft of a turbomachine and method for manufacturing a rotor of a turbomachine
JP2011196256A (en) * 2010-03-19 2011-10-06 Ihi Corp Rotor and supercharger
CN102211249A (en) * 2011-05-26 2011-10-12 洛阳双瑞精铸钛业有限公司 Method for connecting titanium-aluminum alloy turbine with 42CrMo steel shaft
WO2013013755A1 (en) * 2011-07-26 2013-01-31 Ihi Charging Systems International Gmbh Connecting arrangement for connecting a shaft to a rotor, and method for producing a connecting arrangement of said type
CN103321685A (en) * 2013-07-12 2013-09-25 中国北方发动机研究所(天津) Through-hole connection method and connection structure of titanium aluminum turbine impeller and rotating shaft
DE102012217560A1 (en) * 2012-09-27 2014-04-24 Continental Automotive Gmbh Turbine rotor useful for exhaust gas turbine comprises turbine impeller with impeller hub comprising refractory metal alloy and rotor shaft with rotor shaft end facing the impeller hub, which is made of steel, and spacer sleeve
JP2015503703A (en) * 2012-01-10 2015-02-02 ネピア ターボチャージャーズ リミテッドNapier Turbochargers Limited Turbocharger having a connector for connecting an impeller to a shaft
JP2015508865A (en) * 2012-03-01 2015-03-23 ボーグワーナー インコーポレーテッド Exhaust gas turbocharger
JP2015205329A (en) * 2014-04-22 2015-11-19 オーエスジー株式会社 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool
US9556738B2 (en) 2012-02-29 2017-01-31 Mitsubishi Heavy Industries, Ltd. Turbine rotor for supercharger and manufacturing method thereof
CN110977137A (en) * 2019-10-29 2020-04-10 中国航发沈阳黎明航空发动机有限责任公司 Ti2Method for controlling welding cracks of AlNb-based alloy inertia friction welding
CN111299807A (en) * 2020-04-14 2020-06-19 江苏磐一智能装备有限公司 Friction stir welding with function of removing aluminum layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7354057B2 (en) 2020-05-29 2023-10-02 三菱重工業株式会社 Thermocouple mounting structure and thermocouple mounting method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660407B1 (en) * 1999-07-24 2003-12-09 Daimlerchrysler Ag Friction-welded shaft-disc assembly and method for the manufacture thereof
CN100413636C (en) * 2005-09-29 2008-08-27 哈尔滨工业大学 High strength connecting method for TiAl base alloy charging turbine and steel shaft
US7802493B2 (en) 2005-12-20 2010-09-28 Yamaha Hatsudoki Kabushiki Kaisha Connecting rod, internal combustion engine, automotive vehicle, and production method for connecting rod
DE112009001230T5 (en) 2008-06-19 2011-04-28 Borgwarner Inc., Auburn Hills Rotor shaft of a turbomachine and method for manufacturing a rotor of a turbomachine
CN102046960A (en) * 2008-06-19 2011-05-04 博格华纳公司 Rotor shaft of a turbomachine and method for the production of a rotor of a turbomachine
JP2011196256A (en) * 2010-03-19 2011-10-06 Ihi Corp Rotor and supercharger
CN102211249A (en) * 2011-05-26 2011-10-12 洛阳双瑞精铸钛业有限公司 Method for connecting titanium-aluminum alloy turbine with 42CrMo steel shaft
WO2013013755A1 (en) * 2011-07-26 2013-01-31 Ihi Charging Systems International Gmbh Connecting arrangement for connecting a shaft to a rotor, and method for producing a connecting arrangement of said type
JP2015503703A (en) * 2012-01-10 2015-02-02 ネピア ターボチャージャーズ リミテッドNapier Turbochargers Limited Turbocharger having a connector for connecting an impeller to a shaft
US9556738B2 (en) 2012-02-29 2017-01-31 Mitsubishi Heavy Industries, Ltd. Turbine rotor for supercharger and manufacturing method thereof
JP2015508865A (en) * 2012-03-01 2015-03-23 ボーグワーナー インコーポレーテッド Exhaust gas turbocharger
DE102012217560A1 (en) * 2012-09-27 2014-04-24 Continental Automotive Gmbh Turbine rotor useful for exhaust gas turbine comprises turbine impeller with impeller hub comprising refractory metal alloy and rotor shaft with rotor shaft end facing the impeller hub, which is made of steel, and spacer sleeve
DE102012217560B4 (en) 2012-09-27 2022-11-10 Vitesco Technologies GmbH Turbine runner with sleeve spacer, exhaust gas turbocharger and a method for manufacturing the turbine runner
CN103321685A (en) * 2013-07-12 2013-09-25 中国北方发动机研究所(天津) Through-hole connection method and connection structure of titanium aluminum turbine impeller and rotating shaft
JP2015205329A (en) * 2014-04-22 2015-11-19 オーエスジー株式会社 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool
CN110977137A (en) * 2019-10-29 2020-04-10 中国航发沈阳黎明航空发动机有限责任公司 Ti2Method for controlling welding cracks of AlNb-based alloy inertia friction welding
CN110977137B (en) * 2019-10-29 2021-09-07 中国航发沈阳黎明航空发动机有限责任公司 Ti2Method for controlling welding cracks of AlNb-based alloy inertia friction welding
CN111299807A (en) * 2020-04-14 2020-06-19 江苏磐一智能装备有限公司 Friction stir welding with function of removing aluminum layer

Also Published As

Publication number Publication date
JP3453302B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
JP3453302B2 (en) Method of joining TiAl alloy member to structural steel and joining parts
Noda Application of cast gamma TiAl for automobiles
US6291086B1 (en) Friction welding interlayer and method for joining gamma titanium aluminide to steel, and turbocharger components thereof
EP0368642B1 (en) Method of forming a joint between a ti-al alloy member and a steel structural member
US7287960B2 (en) Titanium aluminide wheel and steel shaft connection thereto
US5431752A (en) Friction welding of γ titanium aluminide to steel body with nickel alloy connecting piece there between
EP0816007A2 (en) Method of friction-welding a shaft to a titanium aluminide turbine rotor
JP2005059098A (en) Turbine rotor for metal injection molding, and fitting method of shaft for metal injection molding to the same rotor
US6691910B2 (en) Method of joining different metal materials by friction welding
US20020020733A1 (en) Method of joining different metal materials by friction welding
PL172589B1 (en) Structural component and method of making same
JP2907470B2 (en) Inertia welding method
JP4130734B2 (en) Ceramic disperse iron-base alloy bonded structure and its manufacturing method
JP3534633B2 (en) Joint member and turbine member
US20220145765A1 (en) Tip repair of a turbine component using a composite tip boron base pre-sintered preform
JP2003510459A (en) Superalloy for high temperature applications with excellent weldability
JPH02127986A (en) Structure for coupling ceramics body of rotation with metallic shaft
JPH0278734A (en) Supercharger
JPH02124781A (en) Method for coupling rotor made of ceramic with metallic shaft
JP2619216B2 (en) Combined ceramic and metal
JPH0494889A (en) Ti-al series alloy-made engine valve
JP3939885B2 (en) Ceramic turbo rotor
KR100300207B1 (en) Components consisting of alloys, rigid bodies and connecting pieces, and methods for manufacturing the same
JP2001205443A (en) Method for joining steel to titanium material
JP2004298935A (en) Friction pressure joining method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090718

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100718

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term