JP3534633B2 - Joint member and turbine member - Google Patents

Joint member and turbine member

Info

Publication number
JP3534633B2
JP3534633B2 JP00067399A JP67399A JP3534633B2 JP 3534633 B2 JP3534633 B2 JP 3534633B2 JP 00067399 A JP00067399 A JP 00067399A JP 67399 A JP67399 A JP 67399A JP 3534633 B2 JP3534633 B2 JP 3534633B2
Authority
JP
Japan
Prior art keywords
brazing material
brazing
tial
intermetallic compound
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00067399A
Other languages
Japanese (ja)
Other versions
JP2000202683A (en
Inventor
利光 鉄井
美智男 京谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00067399A priority Critical patent/JP3534633B2/en
Publication of JP2000202683A publication Critical patent/JP2000202683A/en
Application granted granted Critical
Publication of JP3534633B2 publication Critical patent/JP3534633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Supercharger (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は乗用車、トラック用
小型過給器のタービンホイールおよび船舶用大型過給
器、ジェットエンジン、産業用ガスタービンブレ−ド等
の回転部材に関し、特にTiAl系金属間化合物基合金
と他の材料とが接合された部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotating member for a turbine wheel of a small supercharger for passenger cars and trucks, a large supercharger for ships, a jet engine, an industrial gas turbine blade, etc. The present invention relates to a member in which a compound base alloy and another material are joined.

【0002】[0002]

【従来の技術】近年の環境問題への関心の高まりから、
乗用車、トラック、船舶などの輸送機械に用いられる過
給器の性能向上が、またジェットエンジン、産業用ガス
タービンなどの効率の向上が求められている。上記製品
の性能、効率を支配する重要な構成要素の一つはタービ
ンであり、近年このタービンに対し、過渡応答特性の向
上、タービン入り口温度の高温化および高速回転化など
が求められている。この3つの要望に対してタービンホ
イール、タービンディスク、タービンブレードなどの回
転部材を構成する材料の改良が望まれているが、タービ
ン入り口温度の高温化および高速回転化については、前
記回転部材に現在使用されているNi基超合金をベース
にする場合、クリープ強度を含めた高温強度のさらなる
向上が必要である。しかし、組成的な面から現状のNi
基超合金の高温強度向上を望むことはほとんど困難であ
り、単結晶化といった特殊プロセスによる高温強度向上
の検討が進められている。この特殊プロセスの採用は、
ジェットエンジンブレードなどの高価な少量生産品につ
いては上記方策も有効であるが、乗用車用小型過給器な
どの複雑形状の量産品ではコスト的に適用が困難であ
る。また、過渡応答特性については、Ni基超合金の比
重がその組成に拘わらず約8〜9であるため、その向上
を図ることはできない。
2. Description of the Related Art Due to the increasing interest in environmental problems in recent years,
It is required to improve the performance of superchargers used in transportation machines such as passenger cars, trucks and ships, and to improve the efficiency of jet engines and industrial gas turbines. One of the important components that control the performance and efficiency of the above products is a turbine, and in recent years, it has been required for the turbine to have improved transient response characteristics, a higher turbine inlet temperature, and a higher rotation speed. In order to meet these three demands, it has been desired to improve the materials that make up rotating members such as turbine wheels, turbine disks, and turbine blades. However, regarding the high turbine inlet temperature and high-speed rotation, the rotating members are currently used. When the used Ni-based superalloy is used as a base, further improvement in high temperature strength including creep strength is required. However, from the viewpoint of composition, the current Ni
It is almost difficult to improve the high-temperature strength of the base superalloy, and studies are underway to improve the high-temperature strength by a special process such as single crystallization. The adoption of this special process
The above measures are also effective for high-priced small-volume products such as jet engine blades, but it is difficult to apply costly to mass-produced products with complicated shapes such as small superchargers for passenger cars. Further, the transient response characteristics cannot be improved because the specific gravity of the Ni-base superalloy is about 8 to 9 regardless of its composition.

【0003】Ni基超合金に替わり以上の3つの性能向
上に有望な材料として金属間化合物TiAlを主相とす
る合金(本明細書中では、TiAl系金属間化合物基合
金という)が注目を集めている。この合金は、比重が約
4と軽量であることから慣性モーメントが小さくなり、
過渡応答特性の向上が期待できる。また、回転部材では
負荷される応力は比重で除した比強度を考慮すればよい
ため、TiAl系金属間化合物基合金の比重がNi基超
合金の約1/2であることから、高温強度がNi基超合
金の1/2以上あれば、タービン入り口温度の高温化、
高速回転化が可能となる。
As an alternative to the Ni-base superalloy, an alloy containing TiAl as the main phase (herein referred to as TiAl-based intermetallic compound-base alloy) has attracted attention as a promising material for the above three performance improvements. ing. This alloy has a specific gravity of about 4 and is lightweight, so the moment of inertia is small,
Improvement of transient response characteristics can be expected. Further, in the rotating member, since the stress applied may be taken into consideration by dividing the specific strength by the specific gravity, the specific gravity of the TiAl-based intermetallic compound-based alloy is about 1/2 that of the Ni-based superalloy, so that the high temperature strength is If it is 1/2 or more of that of Ni-based superalloy, the turbine inlet temperature will rise
High-speed rotation is possible.

【0004】TiAl系金属間化合物基合金のタービン
ホイールを小型過給機に組み込む場合、タービンホイー
ルそのものはロストワックス法といった精密鋳造により
ニアネットで作成できるため問題ないが、このタービン
ホイールを構造用鋼からなるシャフトに接合する接合の
技術が重要となる。
When a turbine wheel made of a TiAl-based intermetallic compound-based alloy is incorporated in a small supercharger, the turbine wheel itself can be produced by near-net by precision casting such as the lost wax method, but there is no problem. The joining technique for joining to a shaft made of is important.

【0005】この接合技術について、特公平8−181
51号、あるいは特開平2−157403号が新規な提
案を行っている。つまり、特公平8−18151号は、
TiAl系金属間化合物基合金と構造用鋼の接合におい
て、タービンホイールとシャフトの間にオーステナイト
系ステンレス鋼、耐熱鋼、Ni基またはCo基の超合金
からなる中間材を配置し、各々の接合を摩擦溶接で行う
接合方法を提案している。図5はこの方法で接合したタ
ーボチャージャのホットホイールの構成を示す断面図で
あり、1がタービンホイール、2がシャフト、3が中間
材である。
Regarding this joining technique, Japanese Patent Publication No. 8-181
No. 51 or Japanese Patent Laid-Open No. 2-157403 makes a new proposal. In other words, Japanese Patent Publication No. 8-18151
In joining TiAl-based intermetallic compound-based alloy and structural steel, an intermediate material made of austenitic stainless steel, heat-resistant steel, Ni-based or Co-based superalloy is arranged between the turbine wheel and the shaft, and each joining is performed. We propose a joining method by friction welding. FIG. 5 is a sectional view showing the structure of a hot wheel of a turbocharger joined by this method, in which 1 is a turbine wheel, 2 is a shaft, and 3 is an intermediate material.

【0006】また、特開平2−157403号は、Ti
Al系金属間化合物基合金と中間材の接合は摩擦接合
で、中間材とシャフトとの接合は電子ビーム溶接で行う
こと接合方法を提案している。そして、中間材として
は、TiAl系金属間化合物基合金と接合性の良好なイ
ンコロイ903(商品名)を用いることが推奨されてい
る。図6はこの方法で接合したターボチャージャのホッ
トホイールの構成を示す断面図であり、1がタービンホ
イール、2がシャフト、3が中間材、4が中間部であ
り、またAはTiAl系金属間化合物基合金と中間材と
の接合部、Bは中間材とシャフトとの接合部である。
Further, Japanese Patent Laid-Open No. 2-157403 discloses Ti
A joining method is proposed in which the Al-based intermetallic compound-based alloy and the intermediate material are joined by friction welding, and the intermediate material and the shaft are joined by electron beam welding. Then, as the intermediate material, it is recommended to use Incoloy 903 (trade name), which has good bondability with the TiAl-based intermetallic compound-based alloy. FIG. 6 is a cross-sectional view showing the structure of a hot wheel of a turbocharger joined by this method. 1 is a turbine wheel, 2 is a shaft, 3 is an intermediate material, 4 is an intermediate portion, and A is a TiAl-based intermetallic material. The joint between the compound-based alloy and the intermediate material, and B is the joint between the intermediate material and the shaft.

【0007】[0007]

【発明が解決しようとする課題】前記特公平8−181
51号の提案においては、中間材とシャフトとの摩擦接
合は従来から実績のある接合方法であり問題はないもの
の、TiAl系金属間化合物基合金と中間材との摩擦接
合には以下のような問題がある。すなわち、前記特公平
8−18151号で採用されている中間材はいずれもT
iAl系金属間化合物基合金に比べると線膨張係数が大
きい(中間材:13〜20×10-6/℃、TiAl系金
属間化合物基合金:9〜11×10-6/℃)ため、乗用
車、トラックの小型過給機を想定した場合、その発停に
伴いタービンには加熱、冷却の熱サイクルが負荷される
のに伴い、TiAl系金属間化合物基合金からなるター
ビンホイールと中間材との接合界面には、両者の線膨張
係数の違いに起因する熱応力が負荷される。この熱応力
は加熱、冷却、すなわち、小型過給機の発停の度に負荷
されることから、乗用車、トラック等の現実の使用状況
に鑑みれば、小型過給機の使用時には非常に多大のサイ
クルの熱応力が負荷されることになる。摩擦接合部の靭
性が良好であればこの熱応力の負荷に耐えうるが、Ti
Al系金属間化合物基合金自体が靭性に乏しいうえに、
中間材との摩擦接合部はさらに脆くなっていることか
ら、線膨張係数の差に起因する熱応力の多サイクル負荷
は、摩擦接合部に疲労破壊を生じさせるおそれがある。
特開平2−157403号においては、中間材を構成す
るインコロイ903(商品名)がTiAl系金属間化合
物基合金と同等の線膨張係数を有しているため、特公平
8−18151号のような線膨張係数の差異に基づく熱
応力の負荷の問題は回避される。しかし、図6に示すよ
うに、タービンホイール1と中間材2との接合界面が、
軸方向に垂直な平面であるため、製品の製造工程および
使用中においてシャフト3に曲げモーメントが作用した
場合、接合界面を開く方向の応力が負荷されてしまう。
SUMMARY OF THE INVENTION The Japanese Patent Publication No. 8-181
In the proposal of No. 51, the friction joining between the intermediate material and the shaft is a joining method that has been proven in the past and there is no problem, but the friction joining between the TiAl-based intermetallic compound-based alloy and the intermediate material is as follows. There's a problem. That is, all of the intermediate materials adopted in Japanese Patent Publication No. 8-18151 are T
The linear expansion coefficient is larger than that of the iAl-based intermetallic compound-based alloy (intermediate material: 13 to 20 × 10 −6 / ° C., TiAl-based intermetallic compound-based alloy: 9 to 11 × 10 −6 / ° C.). Assuming that a small turbocharger for a truck is assumed, the turbine is made to start and stop, and a thermal cycle of heating and cooling is applied to the turbine. Therefore, a turbine wheel made of a TiAl-based intermetallic compound-based alloy and an intermediate material are Thermal stress due to the difference in linear expansion coefficient between the two is applied to the bonding interface. This thermal stress is applied to heating and cooling, that is, every time the small supercharger starts and stops. Therefore, in view of the actual use situation of passenger cars, trucks, etc., it is extremely large when the small supercharger is used. The thermal stress of the cycle will be loaded. If the toughness of the friction joint is good, it can withstand the load of this thermal stress.
The Al-based intermetallic compound-based alloy itself has poor toughness, and
Since the friction-bonded portion with the intermediate material is further brittle, multicycle loading of thermal stress due to the difference in linear expansion coefficient may cause fatigue fracture in the friction-bonded portion.
In Japanese Patent Laid-Open No. 2-157403, since Incoloy 903 (trade name) constituting the intermediate material has a linear expansion coefficient equivalent to that of a TiAl-based intermetallic compound-based alloy, it is disclosed in Japanese Patent Publication No. 8-181151. The problem of thermal stress loading due to the difference in linear expansion coefficient is avoided. However, as shown in FIG. 6, the joining interface between the turbine wheel 1 and the intermediate member 2 is
Since it is a plane perpendicular to the axial direction, when a bending moment acts on the shaft 3 during the manufacturing process and use of the product, a stress in the direction of opening the joint interface is applied.

【0008】通常の金属材料同士の摩擦接合であれば、
摩擦接合部自身に靭性があるため上記のような応力が負
荷されても問題が生じないが、前述のように、TiAl
系金属間化合物基合金と中間材との摩擦接合部は脆く、
亀裂進展に対する抵抗(KIC)が非常に小さいため、接
合面と亀裂開口方向が一致する場合、接合部表面の微小
欠陥、傷といった表面欠陥に敏感となる。つまり、シャ
フトに曲げモーメントが負荷された場合、微小な表面欠
陥を起点として亀裂が接合界面を容易に進展し、最終的
には接合部の破断に至るおそれがある。
In the case of friction welding of ordinary metal materials,
Since the friction-bonded part itself has toughness, no problem will occur even if the above stress is applied, but as described above, TiAl
The friction joint between the intermetallic compound base alloy and the intermediate material is brittle,
Since the resistance to crack growth (KIC) is very small, when the joint surface and the crack opening direction coincide with each other, it becomes sensitive to surface defects such as minute defects and scratches on the joint surface. That is, when a bending moment is applied to the shaft, a crack may easily propagate along the joint interface starting from a minute surface defect, and eventually the joint may be broken.

【0009】そこで本発明は、線膨張係数の差異による
接合部の疲労破壊を防止し、また、シャフトに曲げモー
メントが負荷された場合にも亀裂の進展が生じにくい接
合構造を有する接合部材の提供を課題とする。また本発
明は、そのような接合構造を有するタービン部材の提供
を課題とする。
Therefore, the present invention provides a joining member having a joining structure which prevents fatigue failure of a joint due to a difference in linear expansion coefficient and which is unlikely to cause crack propagation even when a bending moment is applied to the shaft. Is an issue. Another object of the present invention is to provide a turbine member having such a joint structure.

【0010】[0010]

【課題を解決するための手段】本発明者は接合手段とし
てロウ付けを前提として上記課題を解決するための検討
を行った。そして、軸方向に垂直な面のみならず、周方
向にも接合面を形成することにより、亀裂の進展を抑制
することとした。この接合を実現する具体的構造とし
て、接合部を構成する一方の部材に凹状接合部を、ま
た、他方の部材に凸状接合部を形成し、この凹状接合
部、凸状接合部を嵌合した状態でロウ付けすることが有
効である。
Means for Solving the Problems The present inventor has conducted a study for solving the above problems on the premise of brazing as a joining means. Then, not only the surface perpendicular to the axial direction but also the bonding surface not only in the circumferential direction but also in the circumferential direction, the growth of cracks is suppressed. As a specific structure for realizing this joining, a concave joining portion is formed on one member forming the joining portion and a convex joining portion is formed on the other member, and the concave joining portion and the convex joining portion are fitted together. It is effective to braze in this state.

【0011】この際、用いるロウ材として、軸方向に垂
直な面および周方向の接合面ともに同一のロウ材を用い
ることも可能であるが、周方向の接合面に強度の高いロ
ウ材を用いると、その凝固時の収縮により発生する応力
がロウ材の塑性変形で緩和することなく、TiAl系金
属間化合物基合金に負荷されることとなる。しかしなが
ら TiAl系金属間化合物基合金は靭性が不十分であ
ることから、この負荷応力によって亀裂が発生すること
が懸念される。従って 周方向の接合面には低強度のロ
ウ材を用い、ロウ材自身の塑性変形で凝固時に発生する
応力を緩和することとした。なお、軸方向に垂直な接合
面においてはこの応力は負荷されないため、高温に長時
間曝されるという本接合部の仕様に鑑み、耐久性維持の
ため高強度のロウ材を用いることとした。
At this time, as the brazing material to be used, it is possible to use the same brazing material for both the surface perpendicular to the axial direction and the bonding surface in the circumferential direction, but a brazing material having high strength is used for the bonding surface in the circumferential direction. Then, the stress generated by the contraction during solidification is applied to the TiAl-based intermetallic compound-based alloy without being relaxed by the plastic deformation of the brazing material. However, since the TiAl-based intermetallic compound-based alloy has insufficient toughness, there is a concern that cracks may occur due to this applied stress. Therefore, it was decided to use a low-strength brazing material for the joint surface in the circumferential direction to alleviate the stress generated during solidification due to plastic deformation of the brazing material itself. Since this stress is not applied to the joint surface perpendicular to the axial direction, in consideration of the specification of the main joint that the joint surface is exposed to high temperature for a long time, a high-strength brazing material is used to maintain durability.

【0012】また、前記凸状接合部をTiAl系金属間
化合物基合金からなる部材に、また凹状接合部を他方の
部材に形成する場合、当該接合部材の使用温度<ロウ付
け温度の前提において、該他方の部材を、室温〜ロウ付
け温度の平均線膨張係数がTiAl系金属間化合物基合
金のロウ付け温度の線膨張より大きいが、室温〜当該接
合部材が使用される温度の平均線膨張係数がTiAl系
金属間化合物基合金のそれより小さい材料から構成する
ことにより、欠陥を防止しロウ付け強度を増すとともに
使用時における接合強度も十分に確保することができ
る。つまり、ロウ付け過程を考えてみると、まず室温に
おいて両部材の間にロウ材を挿入し、これをロウ材の融
点以上となるロウ付け温度に昇温する。ロウ付け温度に
おいてはこの挿入したロウ材が溶融することで、前記凸
状接合部形状のTiAl系金属間化合物基合金からなる
部材と凹状接合部形状の他方の部材の間の空隙がロウ材
で満たされることとなる。次にロウ付け温度から室温ま
での冷却過程においてはいったん溶融したロウ材が再度
凝固することとなるが、その際にはこの両部材とも収縮
することとなる。ここで両部材の室温からロウ付け温度
までの平均線膨張率の差によって、凹状接合部の収縮量
は凸状接合部の収縮量より大きくなる。この作用によっ
て室温における両部材間の空隙は、ロウ付け温度におけ
る空隙量よりも減少することとなる。したがって、冷却
過程において空隙量の減少が生じることから、ロウ付け
部の欠陥が発生しにくくなるとともに、いわゆる焼きば
めの効果も発生し、ロウ付け強度を増すことができる。
一方、当該接合部材の使用状況を考えてみると、使用温
度においては室温から昇温することで両部材とも膨張す
ることとなる。ここで両部材の室温から使用温度までの
平均線膨張率の差によって、凸状接合部の膨張量は凹状
接合部の膨張量より大きくなり、ロウ材で充填されてい
る両者の間の空隙は減少する。このため、ロウ付け部に
は同様に焼きばめの効果も発生し、ロウ付け強度を増す
ことができる。そして、 TiAl系金属間化合物基合
金との関係でこの線膨張率の条件を満足する材料として
インコロイ909(商品名)が掲げられる。インコロイ
909の代表的な組成は、重量%で、Ni:38%、C
o:13%、Fe:42%、Nb:4.7%、Ti:
1.5%、Si:0.4%、Al:0.03%、C:
0.01%である。
When the convex joint is formed on a member made of a TiAl-based intermetallic compound-based alloy and the concave joint is formed on the other member, the operating temperature of the joint is less than the brazing temperature. The other member has an average linear expansion coefficient between room temperature and a brazing temperature which is larger than that of the brazing temperature of the TiAl-based intermetallic compound-based alloy, but is between room temperature and a temperature at which the joining member is used. Is composed of a material smaller than that of the TiAl-based intermetallic compound-based alloy, defects can be prevented, brazing strength can be increased, and sufficient bonding strength during use can be secured. That is, considering the brazing process, first, at room temperature, a brazing material is inserted between both members, and the brazing material is heated to a brazing temperature above the melting point of the brazing material. At the brazing temperature, the inserted brazing material melts, so that the void between the member made of the TiAl-based intermetallic compound base alloy having the convex joint shape and the other member having the concave joint shape becomes the brazing material. Will be satisfied. Next, during the cooling process from the brazing temperature to room temperature, the brazing material once melted will solidify again, but at this time, both these members will contract. Here, due to the difference in the average linear expansion coefficient between the room temperature and the brazing temperature of both members, the amount of shrinkage of the concave joint becomes larger than that of the convex joint. Due to this action, the gap between both members at room temperature becomes smaller than the gap amount at the brazing temperature. Therefore, since the amount of voids is reduced during the cooling process, defects in the brazing portion are less likely to occur, and a so-called shrink fit effect is also produced, so that the brazing strength can be increased.
On the other hand, considering the usage status of the joining member, both members expand when the temperature is raised from room temperature at the usage temperature. Here, due to the difference in average linear expansion coefficient from room temperature to operating temperature of both members, the expansion amount of the convex joint becomes larger than the expansion amount of the concave joint, and the gap between the two filled with the brazing material is Decrease. Therefore, the shrink fitting effect is similarly generated in the brazing portion, and the brazing strength can be increased. Incoloy 909 (trade name) is listed as a material that satisfies the condition of the linear expansion coefficient in relation to the TiAl-based intermetallic compound-based alloy. A typical composition of Incoloy 909 is% by weight, Ni: 38%, C
o: 13%, Fe: 42%, Nb: 4.7%, Ti:
1.5%, Si: 0.4%, Al: 0.03%, C:
It is 0.01%.

【0013】本発明は以上の知見、思想に基づくもので
あり、TiAl系金属間化合物基合金からなる基部と、
前記基部に接合される軸部とからなる接合部材におい
て、前記基部と前記軸部との接合面の一方に凸部を、他
方に凹部を形成し、前記凸部と凹部とが嵌合された状態
でロウ材により接合され、前記基部と前記軸部との軸方
向における接合面には強度の大きい第1のロウ材を用
い、周方向における接合面には前記第1のロウ材より強
度の小さい第2のロウ材を用いることを特徴とする接合
部材である。
The present invention is based on the above findings and ideas, and includes a base made of a TiAl-based intermetallic compound-based alloy,
In a joining member including a shaft portion joined to the base portion, a convex portion is formed on one of the joint surfaces of the base portion and the shaft portion, and a concave portion is formed on the other, and the convex portion and the concave portion are fitted together. In this state, the first brazing material having a high strength is used for the joining surface in the axial direction between the base portion and the shaft portion, and the joining surface in the circumferential direction is stronger than the first brazing material. The joining member is characterized by using a small second brazing material.

【0014】本発明の接合体は、凸部と凹部とが嵌合し
た状態で接合しているので、その接合面は軸方向に垂直
な面のみならず、周方向にも形成される。したがって、
製造中あるいは使用中に軸に曲げモーメントが負荷され
た場合でも、接合面が軸方向に垂直な面にのみ形成され
た従来の接合構造に比べて接合部の表面欠陥からの亀裂
進展を抑制することができる。
Since the joined body of the present invention is joined in a state in which the convex portion and the concave portion are fitted to each other, the joint surface is formed not only in the plane perpendicular to the axial direction but also in the circumferential direction. Therefore,
Even when a bending moment is applied to the shaft during manufacturing or use, crack propagation from surface defects in the joint is suppressed compared to the conventional joint structure in which the joint surface is formed only on the plane perpendicular to the axial direction. be able to.

【0015】また、前記基部と前記軸部との軸方向に垂
直な接合面には強度の大きいロウ材を用いて接合強度を
十分に確保する一方、周方向における接合面には相対的
に強度の小さいロウ材を用いることにより、所定の接合
強度を確保しつつTiAl系金属間化合物基合金からな
る回転部材へのロウ材の収縮に伴う応力負荷を軽減して
いる。なお、本発明は周方向における接合面の全面に第
2のロウ材を用いる場合に限るものではなく、応力負荷
の問題が生じない範囲で第1のロウ材を周方向における
接合面に用いてもよい。また、強度の大きい第1のロウ
材としてはJIS BAu−12に代表される金ロウ、
強度の小さい第2のロウ材としてはJIS BAg−8
に代表される銀ロウを用いることが望ましい。
Further, a brazing material having high strength is used for the joint surface perpendicular to the axial direction of the base portion and the shaft portion to secure sufficient joint strength, while the joint surface in the circumferential direction is relatively strong. By using a brazing filler metal having a small size, the stress load due to the contraction of the brazing filler metal on the rotating member made of the TiAl-based intermetallic compound-based alloy is reduced while ensuring a predetermined bonding strength. The present invention is not limited to the case where the second brazing material is used on the entire bonding surface in the circumferential direction, but the first brazing material is used for the bonding surface in the circumferential direction as long as the stress load does not occur. Good. Further, as the first brazing material having high strength, a gold brazing material represented by JIS BAu-12,
JIS BAg-8 is used as the second brazing material having low strength.
It is desirable to use a silver wax represented by.

【0016】本発明ではTiAl系金属間化合物基合金
の組成を限定するものではないが、原子%で、Al:4
4.5〜48.5%、Nb:5〜9.5%、Cr:0.
5〜2%、Si:0.1〜0.4%、Ni:0.2〜
0.4、残部不可避的不純物およびTiからなる組成
を有するTiAl系金属間化合物基合金を用いるのが望
ましい。この組成を有する合金は、製造方法を特定する
ことにより、γ−TiAl相(以下、γ相)およびα
−TiAl相(以下、α 相)からなるラメラー組
織とγ相の2相組織、またはラメラー組織、γ相および
β相を呈する相(以下、β相)の3相組織を有し、優れ
た耐酸化性、高温強度、靱・延性を得ることができる。
In the present invention, the composition of the TiAl-based intermetallic compound-based alloy is not limited, but in atomic%, Al: 4
4.5-48.5%, Nb: 5-9.5%, Cr: 0.
5-2%, Si: 0.1-0.4%, Ni: 0.2-
It is desirable to use a TiAl-based intermetallic compound-based alloy having a composition of 0.4 % , the balance unavoidable impurities, and Ti. An alloy having this composition can be produced by specifying the production method to obtain a γ-TiAl phase (hereinafter, γ phase) and α 2
-Ti 3 Al having a lamellar structure composed of a phase (hereinafter, α 2 phase) and a γ phase, or a lamellar structure, and a three phase structure having a γ phase and a β phase (hereinafter, β phase), Excellent oxidation resistance, high temperature strength, and toughness / ductility can be obtained.

【0017】また、本発明によれば、TiAl系金属間
化合物基合金からなる凸状接続部を有する基部と、前記
基部の凸状接続部に嵌合する凹状接続部を有する軸部と
からなる接合部材において、前記基部と前記軸部とはロ
ウ材により接合され、室温〜前記接合部材の使用温度に
おける前記TiAl系金属間化合物基合金の平均線膨張
係数をα1、前記軸部を構成する材料の平均線膨張係数
をβ1、室温〜ロウ付け温度における前記TiAl系金
属間化合物基合金の平均線膨張係数をα2、前記軸部を
構成する材料の平均線膨張係数をβ2とすると、α1>
β1、α2<β2の条件を満足することを特徴とする接
合部材が提供される。
Further, according to the present invention, it comprises a base portion having a convex connecting portion made of a TiAl-based intermetallic compound base alloy, and a shaft portion having a concave connecting portion fitted to the convex connecting portion of the base portion. In the joining member, the base portion and the shaft portion are joined by a brazing material, the average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the operating temperature of the joining member is α1, and the material forming the shaft portion. Is β1, the average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the brazing temperature is α2, and the average linear expansion coefficient of the material forming the shaft portion is β2, α1>
Provided is a joining member characterized by satisfying the conditions of β1, α2 <β2.

【0018】この接合部材は、TiAl系金属間化合物
基合金からなる基部の凸状接続部と、前記軸部の凹状接
続部とを嵌合した状態で接合するので、その接合面は軸
方向に垂直な面のみならず、周方向にも形成されるの
で、接合面が軸方向に垂直な面にのみ形成された従来の
接合構造に比べて接合部の表面欠陥からの亀裂進展を抑
制することができる。
In this joint member, since the convex connecting portion of the base made of the TiAl-based intermetallic compound base alloy and the concave connecting portion of the shaft portion are joined together, the joint surface is axially oriented. Since it is formed not only on the vertical surface but also in the circumferential direction, it suppresses crack propagation from surface defects in the joint part compared to the conventional joint structure in which the joint surface is formed only on the plane perpendicular to the axial direction. You can

【0019】また、室温〜前記接合部材の使用温度にお
ける前記TiAl系金属間化合物基合金の平均線膨張係
数をα1、前記軸部の平均線膨張係数をβ1、室温〜ロ
ウ付け温度における前記TiAl系金属間化合物基合金
の平均線膨張係数をα2、前記軸部の平均線膨張係数を
β2とすると、前記軸部がα1>β1、α2<β2の条
件を満足する材料から構成されているので、ロウ付け
時、例えば金ロウのBAu−12でのロウ付け温度の9
40℃から室温までの冷却過程において、前記軸部の線
膨張が大きいので、 TiAl系金属間化合物基合金か
らなる基部との空隙が減少することで、ロウ付け欠陥の
防止とともに焼きばめの効果で接合強度を増すことがで
きる。一方、実際の使用時の温度、例えば小型過給機の
タービンの場合での接合部付近の温度である約450℃
においては前記軸部の線膨張が小さいので、ロウ付け部
を圧縮する方向に応力が生じて、接合強度の確保に有益
となる。
The average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the operating temperature of the joining member is α1, the average linear expansion coefficient of the shaft portion is β1, and the TiAl-based alloy at room temperature to brazing temperature. When the average linear expansion coefficient of the intermetallic compound-based alloy is α2 and the average linear expansion coefficient of the shaft portion is β2, the shaft portion is made of a material that satisfies the conditions of α1> β1 and α2 <β2. At the time of brazing, for example, a brazing temperature of BAu-12 of a gold wax is 9
In the cooling process from 40 ° C. to room temperature, since the linear expansion of the shaft portion is large, the voids with the base portion made of the TiAl-based intermetallic compound-based alloy are reduced, so that the brazing defect is prevented and the shrink-fit effect is obtained. Can increase the bonding strength. On the other hand, the temperature during actual use, for example, the temperature near the junction in the case of a turbine of a small turbocharger, about 450 ° C.
In the above, since the linear expansion of the shaft portion is small, stress is generated in the direction of compressing the brazed portion, which is useful for ensuring the joint strength.

【0020】前述のように、このような条件を満足する
とともに、所定の耐熱性を有する材料としてインコロイ
909(商品名)がある。インコロイ909およびTi
Al系金属間化合物基合金の線膨張係数を図3に示す。
図3に示すように、約700℃まではTiAl系金属間
化合物基合金の室温からの平均線膨張係数が大きいが、
この温度を超えるとインコロイ909の方が室温からの
線膨張係数が大きくなる。
As described above, there is Incoloy 909 (trade name) as a material satisfying such conditions and having a predetermined heat resistance. Incoloy 909 and Ti
The linear expansion coefficient of the Al-based intermetallic compound-based alloy is shown in FIG.
As shown in FIG. 3, the TiAl-based intermetallic compound-based alloy has a large average linear expansion coefficient from room temperature up to about 700 ° C.
Above this temperature, Incoloy 909 has a larger linear expansion coefficient from room temperature.

【0021】本発明において、前記軸部に構造用鋼から
なる軸本体を接続することもできる。この場合、前記軸
部が、図5、図6で示した従来の接合構造の中間材に該
当することになる。もちろん軸部が軸本体と一体で構成
されていても構わない。この場合、構造用鋼の室温から
の平均線膨張率は温度に係らずTiAl系金属間化合物
基合金よりは大きいことから、ロウ付け時の冷却過程で
の欠陥防止と接合強度向上の効果はインコロイ909と
同様であるが、使用時における接合強度の向上の効果は
期待することはできない。また、前述した前期基部と前
記軸部との軸方向における接合面には強度の大きいロウ
材を用い、周方向における接合面には相対的に強度の小
さいロウ材を用いることによる効果は構造用鋼を用いた
場合でも同じである。
In the present invention, a shaft body made of structural steel may be connected to the shaft portion. In this case, the shaft portion corresponds to the intermediate member of the conventional joint structure shown in FIGS. Of course, the shaft portion may be integrally formed with the shaft body. In this case, since the average linear expansion coefficient from the room temperature of the structural steel is larger than that of the TiAl-based intermetallic compound-based alloy regardless of the temperature, the effect of preventing defects and improving the joint strength during the cooling process during brazing is not affected by incoloy. Although it is similar to 909, the effect of improving the bonding strength at the time of use cannot be expected. In addition, the effect of using a brazing material having a high strength on the joint surface in the axial direction between the base portion and the shaft portion described above and using a brazing material having a relatively low strength on the joint surface in the circumferential direction is structural. The same is true when steel is used.

【0022】また、TiAl系金属間化合物基合金とし
ては、原子%で、Al:44.5〜48.5%、Nb:
5〜9.5%、Cr:0.5〜2%、Si:0.1〜
0.4%、Ni:0.2〜0.4、残部不可避的不純
物及びTiからなる組成を有するTiAl系金属間化合
物基合金を用いるのが望ましいことは前述したとおりで
ある。
The TiAl-based intermetallic compound-based alloy, in atomic%, Al: 44.5 to 48.5%, Nb:
5 to 9.5%, Cr: 0.5 to 2%, Si: 0.1
As described above, it is desirable to use a TiAl-based intermetallic compound-based alloy having a composition of 0.4%, Ni: 0.2 to 0.4 % , the balance unavoidable impurities, and Ti.

【0023】ここで上記組成範囲とする理由を述べてお
く。 Al:Alは本系合金の主たる構成元素であり、Tiと
ともに金属間化合物相を形成する。Alの濃度が44.
5%未満では常温における延性が低下する。一方、4
8.5%を超えると高温強度が低下してしまう。したが
って、44.5〜48.5%とする。
The reason for setting the above composition range will be described below. Al: Al is a main constituent element of the present alloy and forms an intermetallic compound phase together with Ti. Al concentration is 44.
If it is less than 5%, the ductility at room temperature decreases. On the other hand, 4
If it exceeds 8.5%, the high temperature strength will decrease. Therefore, it is 44.5 to 48.5%.

【0024】Nb:Nbは耐酸化性の向上、さらには高
温強度を向上させる働きを有する。小型過給機タービン
の場合,接合部の温度は約450℃であるが、タービン
ホイール先端の温度は最低でも800℃になるため、こ
の温度で長時間使用される用途を考えると、添加量が5
%未満では耐酸化性、高温強度の向上に効果がない。一
方、9.5%を超えると常温延性が低下する。したがっ
て5〜9.5%とする。なお、6%未満では一般的な小
型過給機の使用環境である850℃程度の温度域におけ
る耐酸化性が不十分であり、また、8.5%を超えても
添加量に応じた耐酸化性が得られないとともに比重が増
加するため、6〜8.5%とすることが望ましい。
Nb: Nb has the function of improving the oxidation resistance and further improving the high temperature strength. In the case of a small turbocharger turbine, the temperature at the joint is about 450 ° C, but the temperature at the tip of the turbine wheel is at least 800 ° C. 5
If it is less than%, there is no effect in improving the oxidation resistance and the high temperature strength. On the other hand, if it exceeds 9.5%, the room temperature ductility decreases. Therefore, it is set to 5 to 9.5%. If it is less than 6%, the oxidation resistance in the temperature range of about 850 ° C., which is the environment of use of a general small turbocharger, is insufficient, and if it exceeds 8.5%, the acid resistance corresponding to the amount added is required. Since it is not possible to obtain the chemical conversion property and the specific gravity increases, it is desirable to set the content to 6 to 8.5%.

【0025】Cr:Crは常温における靭・延性向上を
目的として添加する。0.5%未満では常温における靭
・延性の向上が不十分であり、一方、2%を超えると高
温強度を低下させる。したがって、本発明においては、
0.5〜2%とする。望ましいCrの量は、0.7〜
1.3%である。
Cr: Cr is added for the purpose of improving toughness and ductility at room temperature. If it is less than 0.5%, the toughness and ductility at room temperature are insufficiently improved, while if it exceeds 2%, the high temperature strength is reduced. Therefore, in the present invention,
0.5 to 2%. The desirable amount of Cr is 0.7 to
It is 1.3%.

【0026】Si:Siは耐酸化性向上とともにクリー
プ強度を向上させる働きがある。添加量が0.1%未満
では添加効果が十分でなく、一方、0.4%を超えると
常温における靭・延性が低下する。したがって、0.1
〜0.4%とする。望ましいSiの量は0.15〜0.
35%である。
Si: Si has the function of improving the oxidation resistance and the creep strength. If the addition amount is less than 0.1%, the effect of addition is not sufficient, while if it exceeds 0.4%, the toughness / ductility at room temperature decreases. Therefore, 0.1
~ 0.4%. A desirable amount of Si is 0.15 to 0.
35%.

【0027】Ni:Niは耐酸化性および高温強度の向
上を目的として添加させる。添加量が0.2%未満では
添加効果が不十分であり、一方、0.4%を超えると常
温における靭・延性が低下する。したがって、0.2〜
0.4%とする。望ましいNiの量は、0.25〜0.
35%である。
Ni: Ni is added for the purpose of improving oxidation resistance and high temperature strength. If the amount added is less than 0.2%, the effect of addition is insufficient, while if it exceeds 0.4%, the toughness / ductility at room temperature decreases. Therefore, 0.2-
0.4%. A desirable amount of Ni is 0.25 to 0.
35%.

【0028】その他:上記構成元素以外は不可避的不純
物およびTiからなるが、不純物元素のうちO(酸素)
が合金中に1000ppmを超え含まれていると、靭性を
低下させるため、Oは1000ppm以下に規制すること
が推奨される。
Others: Other than the above-mentioned constituent elements, it consists of unavoidable impurities and Ti. Of the impurity elements, O (oxygen)
Is contained in the alloy in excess of 1000 ppm, the toughness is lowered. Therefore, it is recommended to regulate O to 1000 ppm or less.

【0029】以上の組成からる合金を後述する方法によ
り製造すると、γ相およびα2相からなるラメラー組織
とγ相の2相組織、またはラメラー組織、γ相およびβ
相の3相組織となる。このような2相組織または3相組
織とすることにより、γ相、β相が、ラメラー組織の粗
大化を防止する効果を発現する。次に前述したTiAl
系金属間化合物基合金を例に本発明接合部材の好適な製
造方法について説明する。まず、原子%で、Al:4
4.5〜48.5%、Nb:5〜9.5%、Cr:0.
5〜2%、Si:0.1〜0.4%、Ni:0.2〜
0.4以下、残部不可避的不純物およびTiからなる合
金を溶解、鋳造する。溶解方法、鋳造方法については従
来公知の方法が適用できる。例えば、小型過給機のター
ビンホイールを対象とする場合には、溶解方法として高
周波溶解法を、また鋳造方法としてロストワックス法を
適用することができる。
When the alloy having the above composition is produced by the method described later, a lamellar structure consisting of γ phase and α 2 phase and a two- phase structure of γ phase, or a lamellar structure, γ phase and β phase
It becomes a three-phase organization of phases. With such a two-phase structure or a three-phase structure, the γ phase and β phase exhibit an effect of preventing coarsening of the lamellar structure. Next, the above-mentioned TiAl
A preferred method for producing the joining member of the present invention will be described by taking a system-based intermetallic compound-based alloy as an example. First, in atomic%, Al: 4
4.5-48.5%, Nb: 5-9.5%, Cr: 0.
5-2%, Si: 0.1-0.4%, Ni: 0.2-
An alloy of 0.4 or less and the balance unavoidable impurities and Ti is melted and cast. A conventionally known method can be applied to the melting method and the casting method. For example, when a turbine wheel of a small supercharger is targeted, a high frequency melting method can be applied as a melting method, and a lost wax method can be applied as a casting method.

【0030】次に、得られた鋳造物に熱間静水圧プレス
処理を施す。この熱間静水圧プレス処理は、鋳造物が比
較的大きい場合には鋳造物中に巣などの鋳造欠陥が存在
していることがあり、この鋳造欠陥を消滅させる目的で
行うものである。したがって、鋳造欠陥が生じにくい小
寸法製品を対象とするときは省略しても構わない。
Next, the obtained casting is subjected to hot isostatic pressing. This hot isostatic pressing treatment is performed for the purpose of eliminating casting defects such as cavities that may exist in the casting when the casting is relatively large. Therefore, it may be omitted when targeting small-sized products in which casting defects are less likely to occur.

【0031】熱間静水圧プレス処理の条件は、加熱温
度:1200〜1300℃、圧力:1100〜1300
atm、処理時間:0.5〜3時間とすることが望まし
い。温度が1200℃未満では鋳造欠陥を消滅させるた
めには不十分であり、また、1300℃を超えると表面
酸化による汚染が無視できないためである。なお、むろ
ん熱間静水圧プレス処理はアルゴン等の非酸化雰囲気で
行うが、加圧するためガス中に不純物として存在する酸
素の分圧が高くなり、温度が高くなると表面に若干の酸
化が生じる。この際、対象製品が表面を除去できるもの
であれば問題ないが、小型過給機のタービンホイールな
どの鋳物の表面をそのまま使用し、しかも翼が非常に薄
いものではこの酸化は望ましくない。圧力が1100at
m未満では鋳造欠陥を消滅させるためには不十分であ
り、また、1300atmを超えると効果が飽和する反
面、これが可能な熱間静水圧プレスの装置が限られるな
どの制約があるためである。処理時間は、0.5時間未
満では鋳造欠陥を消滅させるためには不十分であり、ま
た、3時間を超えても効果が飽和する反面処理コストが
かかるためである。
Conditions for the hot isostatic pressing treatment are as follows: heating temperature: 1200 to 1300 ° C., pressure: 1100 to 1300.
Atm, processing time: 0.5 to 3 hours is desirable. This is because if the temperature is less than 1200 ° C., it is insufficient to eliminate the casting defects, and if it exceeds 1300 ° C., the contamination due to surface oxidation cannot be ignored. Of course, the hot isostatic pressing process is performed in a non-oxidizing atmosphere such as argon. However, since pressure is applied, the partial pressure of oxygen existing as an impurity in the gas increases, and when the temperature rises, some oxidation occurs on the surface. At this time, there is no problem as long as the target product can remove the surface, but if the surface of the casting such as a turbine wheel of a small supercharger is used as it is and the blade is very thin, this oxidation is not desirable. Pressure is 1100at
This is because if it is less than m, it is not sufficient to eliminate casting defects, and if it exceeds 1300 atm, the effect is saturated, but there are restrictions such as limited hot isostatic pressing equipment that can do this. This is because if the treatment time is less than 0.5 hours, it is insufficient to eliminate the casting defects, and if it exceeds 3 hours, the effect is saturated but the treatment cost is high.

【0032】熱間静水圧プレス処理後、不活性雰囲気下
で、1300〜1400℃、10〜100分加熱保持し
た後急冷する熱処理を施す。熱処理雰囲気を非酸化雰囲
気とするのは、鋳造物の酸化防止のためである。ここで
非酸化雰囲気とは、真空またはAr等の不活性ガス中を
いう。また、加熱温度を1300〜1400℃とするの
は、この温度範囲で本発明の組織、つまりラメラー組
織、γ相およびβ相の3相組織が安定して得られるから
である。なお、1300℃未満ではγ相およびβ相の微
細2相組織からなる低強度な組織、1400℃を超える
とラメラー単相の粗大組織からなる低延性の組織となる
傾向が強い。したがって、加熱温度は1340〜138
0℃とすることが望ましい。さらに、加熱保持時間が1
0分未満では加熱温度が本発明範囲内であっても所望の
組織を得ることができず、また、所望の組織を得るため
には100分程度の保持で十分であり、それを超える保
持はエネルギーの浪費となるため、加熱保持時間は10
〜100分がよい。より望ましい加熱保持時間は15〜
70分である。
After hot isostatic pressing, heat treatment is carried out in an inert atmosphere by heating and holding at 1300 to 1400 ° C. for 10 to 100 minutes and then rapidly cooling. The non-oxidizing atmosphere is used as the heat treatment atmosphere in order to prevent oxidation of the casting. Here, the non-oxidizing atmosphere means a vacuum or an inert gas such as Ar. Further, the heating temperature is set to 1300 to 1400 ° C. because the structure of the present invention, that is, the lamellar structure, the three-phase structure of the γ phase and the β phase can be stably obtained in this temperature range. If the temperature is lower than 1300 ° C, a low-strength structure composed of a fine two-phase structure of γ phase and β phase, and if the temperature exceeds 1400 ° C, a low ductility structure composed of a coarse lamellar single-phase structure tends to be formed. Therefore, the heating temperature is 1340 to 138.
It is desirable to set it to 0 ° C. Furthermore, the heating hold time is 1
If it is less than 0 minutes, a desired tissue cannot be obtained even if the heating temperature is within the range of the present invention, and holding for about 100 minutes is sufficient to obtain the desired tissue, and if it exceeds that, Since the energy is wasted, the heating and holding time is 10
~ 100 minutes is good. More desirable heat holding time is 15 ~
70 minutes.

【0033】以上の加熱保持の後に、急冷処理する。こ
の急冷処理により、冷却後の鋳造物の組織は前述の2層
組織又は3相組織となる。この急冷処理は、加熱保持が
真空または不活性ガス雰囲気下で行われているが、所定
の加熱時間経過後に加熱を解除するとともに、真空下で
加熱保持していた場合には加熱炉中に不活性ガスを導入
するとともにそのガスを撹拌させるか、不活性ガス雰囲
気下で加熱保持していた場合には加熱炉中の不活性ガス
を撹拌するかあるいは新たに加熱炉中に不活性ガスを導
入するとともそのガスを撹拌すればよい。このような熱
処理を実行することが可能な熱処理炉として、真空ガス
ファンクーリング熱処理炉(以下、GFCと称す)があ
る。但し、急冷処理はこれら態様に限るものではなく、
所定の加熱保持後に熱処理炉から取り出して空冷する、
あるいは他のチャンバー内に移動させた後にこのチャン
バー内に不活性ガスを導入、吹付ける等の手段であって
もよい。
After the above heating and holding, a rapid cooling process is performed. By this rapid cooling treatment, the structure of the cast product after cooling becomes the above-mentioned two-layer structure or three-phase structure. In this rapid cooling process, heating and holding are performed in a vacuum or in an inert gas atmosphere, but when the heating is released after a predetermined heating time elapses, and when the heating and holding is performed in a vacuum, the heating is not performed in the heating furnace. Introduce active gas and stir the gas, or stir the inert gas in the heating furnace if heated and held in an inert gas atmosphere, or newly introduce the inert gas into the heating furnace. Then, the gas may be stirred. As a heat treatment furnace capable of performing such heat treatment, there is a vacuum gas fan cooling heat treatment furnace (hereinafter referred to as GFC). However, the quenching process is not limited to these modes,
After holding for a predetermined amount of heat, remove from the heat treatment furnace and air cool,
Alternatively, it may be a means such as introducing and spraying an inert gas into this chamber after moving it into another chamber.

【0034】[0034]

【発明の実施の形態】<実験例>最適なロウ付け条件を
設定するために行った実験について説明する。図4の
(a)(b)に示すような試験片を用い、ロウ付け部の品
質、即ちロウ付け欠陥の有無と、ロウ付け部の室温と4
50℃における継手強度を評価した。ロウ付けする接合
部の形状自体はいずれの試験片も同じであり、TiAl
系金属間化合物基合金からなる凸状試験片11とインコ
ロイ909からなる凹状試験片12との間に、ロウ材
A、BおよびCを図示のように配置した。ここで、ロウ
材Aは軸方向に垂直な接合面の接合に用いたロウ材、ロ
ウ材Bは周方向の接合面に用いたロウ材である。また、
ロウ材Cは、特に周方向の接合面におけるロウ付け欠陥
を防止するためのもので、鋳造欠陥防止のための押し湯
に相当するものである。ロウ付は、真空下で940℃、
10分保持の条件で行った。
BEST MODE FOR CARRYING OUT THE INVENTION <Experimental example> An experiment conducted for setting an optimum brazing condition will be described. Using test pieces as shown in (a) and (b) of FIG. 4, the quality of the brazing part, that is, the presence or absence of a brazing defect, the room temperature of the brazing part, and
The joint strength at 50 ° C was evaluated. The shape of the joint part to be brazed is the same for all test pieces.
Brazing materials A, B, and C were arranged between the convex test piece 11 made of the intermetallic compound-based alloy and the concave test piece 12 made of Incoloy 909 as shown in the drawing. Here, the brazing material A is a brazing material used for joining a joining surface perpendicular to the axial direction, and the brazing material B is a brazing material used for a joining surface in the circumferential direction. Also,
The brazing material C is for preventing a brazing defect particularly on the joint surface in the circumferential direction, and corresponds to a riser for preventing a casting defect. Brazing is 940 ° C under vacuum,
It was carried out under the condition of holding for 10 minutes.

【0035】まず、図4の(a)の試験片を用いて検討
したロウ付け部の品質評価結果について説明する。この
試験においてはロウ材A及びBを厚さ100μmのBA
u−12からなるシート状ロウ材とし、ロウ材Cを粉末
状のBAg−8、狭幅帯状のBAg−8(厚さ100μ
m) 、ワイヤ状のBAg−8(0.8mmφ)の3種
類とした。各ロウ材の組成は下記の通りである。また、
ロウ材Cを設けないものについてもロウ付けを実施し
た。なお、凸状試験片11と凹状試験片12の室温にお
ける間隙(片側)を140μmとした。つまり、100
μmのロウ材を挿入することを考慮してそれ以上の間隙
を空けた。ロウ付けを行った後に、縦に切断しロウ付け
欠陥、つまり空隙の有無を調査した。その結果を表1に
併せて示す。 BAu−12 Au−12.5wt%Ag−12.5wt%Cu BAg−8 Ag−28wt%Cu
First, the quality evaluation result of the brazing part examined by using the test piece of FIG. 4A will be described. In this test, the brazing materials A and B were made of BA having a thickness of 100 μm.
A sheet-shaped brazing material made of u-12, the brazing material C being powdered BAg-8, narrow band-shaped BAg-8 (thickness 100 μm
m) and wire-like BAg-8 (0.8 mmφ). The composition of each brazing material is as follows. Also,
Brazing was also carried out on the products without the brazing material C. The gap (one side) between the convex test piece 11 and the concave test piece 12 at room temperature was 140 μm. That is, 100
A further gap was provided in consideration of inserting a brazing material of μm. After brazing, it was cut vertically and examined for brazing defects, that is, the presence or absence of voids. The results are also shown in Table 1. BAu-12 Au-12.5 wt% Ag-12.5 wt% Cu BAg-8 Ag-28 wt% Cu

【0036】[0036]

【表1】 [Table 1]

【0037】表1に示す結果から、以下のことが言え
る。ロウ材Cを設けないと、ロウ付け部分に欠陥(空
隙)が発生するのに対し、ロウ材Cを用いるとロウ付け
部分の欠陥発生が抑制される。このロウ材Cの形態とし
ては、粉末状よりも、ワイヤ状または狭幅帯材とするこ
とが望ましい。この理由は以下の通りである。まず、室
温の状態でロウ材Bを挿入するためにはロウ材以上の間
隙が必要であり、本実験ではこれを140μm(片側)
とした。なお、実用上最低でもロウ材の厚み+20μm
の間隙は必要である。そのためこの間隙の体積はロウ材
の体積よりは大きくなり、追加のロウ材Cがない場合、
ロウ付けの欠陥は必然的に発生することとなる。つぎに
ロウ材Cとして粉末を用いた場合、粉末の比表面積は非
常に大きいため真空下においてもわずかな不純物の酸素
によって酸化が生じ、軽く焼結することですべてが溶融
しない現象が生じる。したがって、置いた位置でとどま
りその下部への流入量が少なくなるため欠陥が生じたと
考えられる。一方、ロウ材Cとしてワイヤ状または狭幅
帯材を用いた場合、比表面積は粉末より大幅に少なくな
るため、仮に表面がわずかに酸化しても溶融は生じ、下
部への流入は生じることから、ロウ材Bのみでは生じる
欠陥の充填が可能となったものと考えられる。
From the results shown in Table 1, the following can be said. If the brazing material C is not provided, defects (voids) are generated in the brazing portion, whereas the use of the brazing material C suppresses the occurrence of defects in the brazing portion. The brazing material C is preferably in the form of wire or narrow band rather than powder. The reason for this is as follows. First, in order to insert the brazing material B at room temperature, a gap larger than that of the brazing material is necessary. In this experiment, this is 140 μm (one side).
And The thickness of the brazing material is at least +20 μm for practical use.
Gaps are required. Therefore, the volume of this gap becomes larger than the volume of the brazing material, and when there is no additional brazing material C,
Brazing defects will inevitably occur. Next, when powder is used as the brazing material C, since the specific surface area of the powder is very large, even a small amount of oxygen as an impurity causes oxidation even under vacuum, and light sintering causes a phenomenon in which not all melt. Therefore, it is considered that a defect occurred because it stayed at the position where it was placed and the amount of inflow to the lower part decreased. On the other hand, when a wire-shaped or narrow band material is used as the brazing material C, the specific surface area is significantly smaller than that of the powder, so even if the surface is slightly oxidized, melting occurs and inflow to the lower part occurs. It is considered that the defects that occur only with the brazing material B can be filled.

【0038】次に、図4の(b)の試験片を用い、ロウ
付け後の試験片を室温と450℃で引張試験することで
評価したロウ付け部の強度評価結果について説明する。
この試験片においてはロウ材A及びBは厚さ100μm
のシート状ロウ材とし、ロウ材Cは直径0.8mmφの
ワイヤ状のロウ材とし、各ロウ材の材質を変えることで
最も良い組み合わせを検討した。また、参考のためロウ
付けを行わない同形状のTiAl系金属間化合物基合金
自体についても引張試験を行った。なお、凸状試験片1
1と凹状試験片12の室温における間隙(片側)はロウ
付け部の品質評価結果用の試験片と同じ140μmであ
る。結果を表2に示す。試験条件1はロウ材A、B、C
とも金ろうのBAu-12を用いたものであるが、室温
では母材の約1/2と言う非常に低い強度でTiAl系
金属間化合物基合金で破断している。一方、450℃に
おいてはほぼ母材と同等の強度でロウ付け部から破断し
ている。試験条件2はロウ材A、BをBAu-12と
し、ロウ材Cを銀ロウのBAg-8としたものである。室
温では試験条件1よりは良好であるものの、やはり母材
に較べるとかなり低い強度でTiAl系金属間化合物基
合金で破断している。一方、450℃においては試験条
件1と同等である。試験条件3はロウ材AをBAu-1
2とし、ロウ材B、Cを銀ロウのBAg-8としたもので
ある。室温ではTiAl系金属間化合物基合金で破断し
ているものの、試験条件1、2よりは大幅に良好であ
る。一方、450℃においてはロウ付け部破断であるが
試験条件1、2と大差なく良好である。試 験条件4は
ロウ材A、B、Cの全てをBAg-8としたものである。
室温の強度は最も良好であるものの、450℃の強度が
低い。
Next, using the test piece of FIG. 4 (b), the strength evaluation result of the brazed portion evaluated by performing a tensile test on the test piece after brazing at room temperature and 450 ° C. will be described.
In this test piece, the brazing materials A and B have a thickness of 100 μm
The sheet-like brazing material was used, the brazing material C was a wire-shaped brazing material having a diameter of 0.8 mm, and the best combination was examined by changing the material of each brazing material. For reference, a tensile test was also performed on the TiAl-based intermetallic compound-based alloy itself having the same shape without brazing. The convex test piece 1
The gap (one side) between the test piece 1 and the concave test piece 12 at room temperature is 140 μm, which is the same as the test piece for the quality evaluation result of the brazing part. The results are shown in Table 2. Test condition 1 is brazing material A, B, C
Both are made of BAu-12, which is a brazing filler metal, but at room temperature, it fractures in a TiAl-based intermetallic compound-based alloy with a very low strength of about 1/2 that of the base metal. On the other hand, at 450 ° C., it fractures from the brazed portion with strength almost equal to that of the base metal. Test condition 2 is that the brazing materials A and B are BAu-12, and the brazing material C is silver brazing BAg-8. Although it is better than the test condition 1 at room temperature, it also fractures in the TiAl-based intermetallic compound-based alloy with considerably lower strength than the base metal. On the other hand, at 450 ° C., it is equivalent to the test condition 1. Test condition 3 is brazing material A with BAu-1
No. 2 and the brazing materials B and C are silver brazing BAg-8. Although fractured at the TiAl-based intermetallic compound-based alloy at room temperature, it is significantly better than the test conditions 1 and 2. On the other hand, at 450 ° C., the brazed part was broken, but it was good, not much different from the test conditions 1 and 2. Test condition 4 is that all of the brazing materials A, B, and C are BAg-8.
The strength at room temperature is the best, but the strength at 450 ° C is low.

【0039】以上の結果を考察すると以下の通りであ
る。まず450℃の結果であるが、この温度では全てロ
ウ付け部で破断が生じており、単純にロウ材の強度が引
張強度を律速したと考えられる。また、各試験条件での
強度の違いは単純にロウ材の配合比から説明可能であ
る。即ち、より高温強度の高いBAu-12の配合比が
多いほど高温強度は向上している。次に、室温の結果で
あるがこれはいずれもTiAl系金属間化合物基合金で
破断しているが、その強度が全く違うことが特徴的であ
る。一般に延性のある通常の金属材料であれば、このよ
うな母材の破断強度の違いは生じえないが、TiAl系
金属間化合物基合金は室温では非常に脆いため、このよ
うな特異的な現象が生じたと考えられる。即ち、周方向
の接合部であるロウ材B、Cに強度が高いBAu-12
を用いた場合、ロウ付け後の冷却過程において収縮によ
って残留応力が発生するが、これをロウ材自身の塑性変
形によって緩和することができないため、 凸状試験片
11のTiAl系金属間化合物基合金に応力が負荷され
ることとなる。しかしながら、TiAl系金属間化合物
基合金は非常に脆いため、この応力に耐えられず微細な
割れが発生したものと考えられる。また、TiAl系金
属間化合物基合金の室温における亀裂伝播速度は非常に
速いため、室温の引張試験においてはこの亀裂が容易に
進展し、試験条件1、2では低荷重で破断したものと考
えられる。なお、450℃においてはこの亀裂伝播速度
は遅くなるため、試験条件1、2でもロウ材破断で良好
な強度を示したものと考えられる。また室温強度及び4
50℃強度ともに良好な結果を得たのは、ロウ材Aとし
てBAu-12、ロウ材B及びCとしてBAg-8を用いた
試験条件3であるが、この要因としてはロウ材B及びC
に柔らかいロウ材のBAg-8を用いたため、ロウ付け後の
収縮時においてはこのロウ材が塑性変形することで応力
緩和し、 TiAl系金属間化合物基合金には割れが発
生しなかったため、室温強度が良好になったと考えられ
る。また軸方向の接合面である底面ではロウ材Aとして
高温強度の高いBAu-12を用いたため、450℃に
おいても十分な強度を維持したものと考えられる。なお
この点がすべてを低強度のBAg-8を用いた、試験条件4
との違いである。
Considering the above results, they are as follows. First, regarding the result of 450 ° C., at this temperature all fractures occurred in the brazed portion, and it is considered that the strength of the brazing material simply limited the tensile strength. Further, the difference in strength under each test condition can be simply explained by the blending ratio of the brazing material. That is, the higher the blending ratio of BAu-12 having higher high temperature strength, the higher the high temperature strength. Next, regarding the results at room temperature, all of the fractures were caused by the TiAl-based intermetallic compound-based alloys, but it is characteristic that the strengths are completely different. Generally, if a normal ductile metal material is used, such a difference in rupture strength of the base material cannot occur, but since TiAl-based intermetallic compound-based alloy is extremely brittle at room temperature, such a specific phenomenon occurs. Is thought to have occurred. That is, BAu-12, which has a high strength, is used for the brazing materials B and C which are the circumferential joints.
When the alloy is used, residual stress occurs due to shrinkage in the cooling process after brazing, but this cannot be relaxed by the plastic deformation of the brazing material itself. Therefore, the TiAl-based intermetallic compound-based alloy of the convex test piece 11 cannot be relaxed. Will be stressed. However, since the TiAl-based intermetallic compound-based alloy is extremely brittle, it is considered that the TiAl-based intermetallic compound-based alloy cannot withstand this stress and fine cracks occur. Further, since the crack propagation speed of the TiAl-based intermetallic compound-based alloy at room temperature is very high, it is considered that this crack easily propagated in the tensile test at room temperature and ruptured under a low load under the test conditions 1 and 2. . At 450 ° C., the crack propagation rate becomes slower, and it is considered that the brazing material showed good strength even under the test conditions 1 and 2. Room temperature strength and 4
It was the test condition 3 in which BAu-12 was used as the brazing material A and BAg-8 was used as the brazing materials B and C.
Since a soft brazing material BAg-8 was used for this, stress was relaxed by plastic deformation of this brazing material during contraction after brazing, and no cracks occurred in the TiAl-based intermetallic compound-based alloy. It is considered that the strength has improved. Further, since BAu-12, which has high strength at high temperature, was used as the brazing material A on the bottom surface which is the joint surface in the axial direction, it is considered that sufficient strength was maintained even at 450 ° C. In addition, this point is that all test conditions 4 using low strength BAg-8.
Is the difference.

【0040】[0040]

【表2】 [Table 2]

【0041】以下本発明を具体的実施形態に基づき説明
する。 <第1実施形態>図1に示す構造の乗用車小型過給機用
タービンを作成した。図1において、1はタービンホイ
ール(基部)、2はシャフト(軸部)である。タービン
ホイール1は、原子%で、Al:45.8%、Nb:
8.6%、Cr:1.2%、Si:0.25%、Ni:
0.35%、O2:700ppm、残部不可避的不純物お
よびTiからなる組成を有するTiAl系金属間化合物
基合金から構成されている。このタービンホイール1は
ロストワックス法により得られたものである。また、シ
ャフト2は、JISSCM435相当材から構成されて
いる。なお、タービンホイール1のミクロ組織を観察し
たところ、γ相およびα2相からなるラメラー組織、γ
相およびβ相の3相組織であることが確認された。
The present invention will be described below based on specific embodiments. <First Embodiment> A turbine for a passenger car small turbocharger having a structure shown in Fig. 1 was produced. In FIG. 1, 1 is a turbine wheel (base), and 2 is a shaft (shaft). The turbine wheel 1 is in atomic%, Al: 45.8%, Nb:
8.6%, Cr: 1.2%, Si: 0.25%, Ni:
It is composed of a TiAl-based intermetallic compound-based alloy having a composition of 0.35%, O2: 700 ppm, the balance unavoidable impurities, and Ti. The turbine wheel 1 is obtained by the lost wax method. The shaft 2 is made of a material equivalent to JIS SCM435. Observation of the microstructure of the turbine wheel 1 revealed that a lamellar structure composed of γ phase and α 2 phase, γ
It was confirmed to have a three-phase structure of a phase and a β phase.

【0042】図1に示すように、タービンホイール1に
は凸状接合部1aが、また、シャフト2には凹状接合部
2aが形成され、この凸状接合部1aと凹状接合部2a
とが嵌合状態となりタービンホイール1とシャフト2と
が接合されている。
As shown in FIG. 1, the turbine wheel 1 is formed with a convex joint portion 1a and the shaft 2 is formed with a concave joint portion 2a. The convex joint portion 1a and the concave joint portion 2a are formed.
Are fitted and the turbine wheel 1 and the shaft 2 are joined.

【0043】ロウ付けに際しては、凸状接合部1aと凹
状接合部2aとの間に、表2の試験条件3と同じ方法、
即ちロウ材A(BAu−12)、B(BAu−8)およ
びC(ワイヤ状BAu−8)を、図4(C)に示すよう
に配置した。ここで、ロウ材Aは軸方向に垂直な接合面
の接合に用いたロウ材、ロウ材Bは周方向の接合面に用
いたロウ材である。ロウ付は、真空下で940℃、10
分保持の条件で行った。
At the time of brazing, the same method as the test condition 3 in Table 2 was used between the convex joint portion 1a and the concave joint portion 2a.
That is, brazing materials A (BAu-12), B (BAu-8) and C (wire-shaped BAu-8) were arranged as shown in FIG. 4 (C). Here, the brazing material A is a brazing material used for joining a joining surface perpendicular to the axial direction, and the brazing material B is a brazing material used for a joining surface in the circumferential direction. Soldering is under vacuum at 940 ° C, 10
It was carried out under the condition of holding the minute.

【0044】以上のタービンは、前記タービンホイール
1とシャフト2との軸方向における接合面には強度の大
きいロウ材であるBAu−12を用い、周方向における
接合面には強度の小さいロウ材であるBAg−8を用い
ているので、ロウ付けによりタービンホイール1の凸状
接合部1aへの応力負荷が緩和されるとともに、タービ
ン使用時における接合部の温度である450℃程度の高
温状態においての接合強度も確保することができる。
In the above turbine, BAu-12, which is a high-strength brazing material, is used for the joint surface of the turbine wheel 1 and the shaft 2 in the axial direction, and a low-strength brazing material is used for the joint surface in the circumferential direction. Since a certain BAg-8 is used, the stress load on the convex joint 1a of the turbine wheel 1 is relieved by brazing, and at the time of high temperature of about 450 ° C. which is the temperature of the joint when the turbine is used. Bonding strength can also be secured.

【0045】また、本実施の形態にかかるタービンは、
TiAl系金属間化合物基合金からなるタービンホイー
ル1の凸状接続部1aと、前記シャフト2の凹状接続部
2aとを嵌合した状態で接合するので、その接合面は軸
方向に垂直な面のみならず、周方向にも形成されるの
で、接合面が軸方向に垂直な面にのみ形成された従来の
接合構造に比べ、製作時および使用時に曲げモーメント
が負荷された場合においても、接合部の表面欠陥からの
亀裂進展を抑制することができる。
Further, the turbine according to the present embodiment is
Since the convex connecting portion 1a of the turbine wheel 1 made of a TiAl-based intermetallic compound-based alloy and the concave connecting portion 2a of the shaft 2 are joined together in a fitted state, the joint surface is only a surface perpendicular to the axial direction. However, since it is also formed in the circumferential direction, compared to the conventional joint structure in which the joint surface is formed only on the surface perpendicular to the axial direction, the joint portion can be made even when a bending moment is applied during manufacture and use. It is possible to suppress the crack development from the surface defect.

【0046】なお、以上の実施形態において、周方向の
接合面をテーパ状とすることもできるし、また、タービ
ンホイール1に凹状接続部を、シャフト2に凸状接続部
を設けてもよい。
In the above embodiment, the joint surface in the circumferential direction may be tapered, or the turbine wheel 1 may be provided with a concave connecting portion and the shaft 2 may be provided with a convex connecting portion.

【0047】<第2実施形態>図2に示す構造の乗用車
小型過給機用タービンを作成した。図2において、1は
タービンホイール、2はシャフト、3は中間材である。
タービンホイール1は、原子%で、Al:45.8%、
Nb:8.6%、Cr:1.2%、Si:0.25%、
Ni:0.35%、O2:740ppm、残部不可避的不
純物およびTiからなる組成を有するTiAl系金属間
化合物基合金から構成されている。また、シャフト2
は、JIS SCM435相当材から構成されている。
さらに、中間材3は、重量%で、Ni:37.8%、C
o:13.2%、Nb:4.7%、Ti:1.4%、S
i:0.4%、Al:0.03%、 C:0.01%、
残部Feおよび不可避的不純物からなるFe基の超合金
(商品名:インコロイ909)から構成されている。な
お、タービンホイール1のミクロ組織を観察したとこ
ろ、γ相およびα2相からなるラメラー組織、γ相およ
びβ相の3相組織であることが確認された。
<Second Embodiment> A small turbocharger turbine for a passenger car having a structure shown in FIG. 2 was produced. In FIG. 2, 1 is a turbine wheel, 2 is a shaft, and 3 is an intermediate material.
Turbine wheel 1 is in atomic%, Al: 45.8%,
Nb: 8.6%, Cr: 1.2%, Si: 0.25%,
It is composed of a TiAl-based intermetallic compound-based alloy having a composition of Ni: 0.35%, O2: 740 ppm, the balance unavoidable impurities, and Ti. Also, shaft 2
Is made of a material equivalent to JIS SCM435.
Further, the intermediate material 3 is, by weight%, Ni: 37.8%, C
o: 13.2%, Nb: 4.7%, Ti: 1.4%, S
i: 0.4%, Al: 0.03%, C: 0.01%,
The balance is composed of a Fe-based superalloy (trade name: Incoloy 909) containing Fe and unavoidable impurities. When the microstructure of the turbine wheel 1 was observed, it was confirmed that the turbine wheel 1 had a lamellar structure composed of γ phase and α 2 phase, and a three-phase structure of γ phase and β phase.

【0048】図2に示すように、タービンホイール1に
は凸状接合部1aが、また、中間材3はカップ状の形状
をしており、タービンホイール1の凸状接合部1aが中
間材3の凹部とが嵌合状態となりロウ材を介してタービ
ンホイール1と中間材2とが接合されている。また、中
間材3とシャフト2とは、電子ビーム溶接により接合さ
れている。
As shown in FIG. 2, the turbine wheel 1 has a convex joint 1a, and the intermediate member 3 has a cup-like shape. The convex joint 1a of the turbine wheel 1 has an intermediate member 3a. The concave portion of the turbine wheel 1 and the intermediate material 2 are joined to each other through the brazing material. The intermediate member 3 and the shaft 2 are joined by electron beam welding.

【0049】ロウ付けに際しては、表2の試験条件3と
同じ方法、即ち凸状接合部1aと凹状接合部2aとの間
に、ロウ材A、BおよびCを図4(C)に示す態様で配
置した。ここで、ロウ材Aは軸方向に垂直な接合面の接
合に用いたBAu−12、ロウ材Bは周方向における接
合面に用いたBAg−8、ロウ材Cは特に周方向の接合
面におけるロウ付け欠陥を防止するために配置したワイ
ヤ状のBAg−8である。ロウ付けの条件は、940℃
×10分である。なお、周方向における接合面について
は、本実施の形態ではその全面にBAg−8を配置した
が、例えば1/2程度の高さまでBAu−12を配置し
ても構わない。
In brazing, the same method as the test condition 3 in Table 2, that is, the brazing materials A, B and C between the convex joint portion 1a and the concave joint portion 2a are shown in FIG. 4 (C). I placed it in. Here, the brazing material A is BAu-12 used for joining the joining surface perpendicular to the axial direction, the brazing material B is BAg-8 used for the joining surface in the circumferential direction, and the brazing material C is especially for the joining surface in the circumferential direction. It is a wire-like BAg-8 arranged to prevent a brazing defect. Brazing conditions are 940 ° C
× 10 minutes. Regarding the bonding surface in the circumferential direction, BAg-8 is arranged on the entire surface in the present embodiment, but BAu-12 may be arranged up to a height of about ½, for example.

【0050】本実施の形態にかかるタービンは、前記タ
ービンホイール1を構成するTiAl系金属間化合物基
合金の室温〜500℃における平均線膨張係数が約11
×10-6/℃、同じく室温〜900℃(ロウ付け温度近
傍)における平均線膨張係数が約12×10-6/℃、前
記中間材3を構成するインコロイ909の室温〜500
℃における平均線膨張係数が約8.5×10-6/℃、同
じく室温〜900℃(ロウ付け温度近傍)における平均
線膨張係数が約13.5×10-6/℃である。つまり、
室温〜500℃(使用時の接合部付近の温度)における
平均線膨張係数は中間材3の方がタービンホイール1よ
りも小さいが、室温〜900℃(ロウ付け温度近傍)に
おける平均線膨張係数は中間材3の方がタービンホイー
ル1よりも大きい。したがって、これまで詳述したよう
に、ロウ付け後の冷却過程ならびに使用時ともロウ付け
部を締めつける力が発生するため、ロウ付け施工時にお
いてロウ付け欠陥が発生しにくくなるとともに、擬似的
な焼嵌め状態となり、両者の接合強度は強固なものとな
る。
In the turbine according to the present embodiment, the average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy forming the turbine wheel 1 at room temperature to 500 ° C. is about 11.
× 10 −6 / ° C., the average linear expansion coefficient at room temperature to 900 ° C. (near the brazing temperature) is about 12 × 10 −6 / ° C., and room temperature to 500 of Incoloy 909 constituting the intermediate material 3.
The average linear expansion coefficient is about 8.5 × 10 −6 / ° C. at room temperature, and the average linear expansion coefficient is about 13.5 × 10 −6 / ° C. at room temperature to 900 ° C. (near brazing temperature). That is,
The average linear expansion coefficient at room temperature to 500 ° C (temperature near the joint during use) is smaller for the intermediate material 3 than for the turbine wheel 1, but at room temperature to 900 ° C (near the brazing temperature) the average linear expansion coefficient is The intermediate material 3 is larger than the turbine wheel 1. Therefore, as described in detail so far, a force for tightening the brazing portion is generated during the cooling process after brazing and during use, so that a brazing defect is less likely to occur during brazing, and the pseudo baking is not performed. The fitting state is established and the joining strength between the two becomes strong.

【0051】また、本実施の形態にかかるタービンは、
前記タービンホイール1とシャフト2との軸方向におけ
る接合面には高温強度の大きいロウ材であるBAu−1
2を用い、周方向における接合面には常温強度の小さい
ロウ材であるBAg−8を用いているので、ロウ付けに
よりタービンホイール1の凸状接合部1aが室温で破断
することがなく、また、乗用車小型過給機での使用時の
接合部付近の温度である450℃程度の高温状態におい
ての接合強度も確保することができる。
Further, the turbine according to the present embodiment is
The joint surface of the turbine wheel 1 and the shaft 2 in the axial direction is made of a brazing material having a high temperature strength, BAu-1.
No. 2 is used and BAg-8, which is a brazing material having a low room temperature strength, is used for the joint surface in the circumferential direction, so that the convex joint portion 1a of the turbine wheel 1 is not broken at room temperature by brazing, and It is also possible to secure the bonding strength in a high temperature state of about 450 ° C. which is the temperature in the vicinity of the bonding portion when used in a passenger car compact turbocharger.

【0052】また、本実施の形態にかかるタービンは、
TiAl系金属間化合物基合金からなるタービンホイー
ル1の凸状接続部1aと、前記シャフト2の凹状接続部
2aとを嵌合した状態で接合するので、その接合面は軸
方向に垂直な面のみならず、周方向にも形成されるの
で、接合面が軸方向に垂直な面にのみ形成された従来の
接合構造に比べて、製作時、使用時に曲げモーメントが
負荷された場合においても、接合部の表面欠陥からの亀
裂進展を抑制することができる。
Further, the turbine according to the present embodiment is
Since the convex connecting portion 1a of the turbine wheel 1 made of a TiAl-based intermetallic compound-based alloy and the concave connecting portion 2a of the shaft 2 are joined together in a fitted state, the joint surface is only a surface perpendicular to the axial direction. However, since it is also formed in the circumferential direction, compared with the conventional joining structure in which the joining surface is formed only on the surface perpendicular to the axial direction, the joining is performed even when a bending moment is applied during manufacturing and use. It is possible to suppress the crack growth from the surface defect of the part.

【0053】[0053]

【発明の効果】以上説明のように、本発明のTiAl系
金属間化合物基合金からなる基部と、前記基部に接合さ
れる軸部とからなる接合部材は、凸部と凹部とが嵌合し
た状態で接合しているので、その接合面は軸方向に垂直
な面のみならず、周方向にも形成される。したがって、
曲げモーメントが負荷された場合でも、接合面が軸方向
に垂直な面にのみ形成された従来の接合構造に比べて接
合部の表面欠陥からの亀裂進展を抑制することができ
る。さらに、前記基部と前記軸部との軸方向に垂直な接
合面には強度の大きいロウ材を用いて接合強度を十分に
確保する一方、周方向における接合面には相対的に強度
の小さいロウ材を用いることにより所定の接合強度を確
保しつつTiAl系金属間化合物基合金への応力負荷を
軽減している。
As described above, the convex portion and the concave portion are fitted in the joining member including the base portion made of the TiAl-based intermetallic compound base alloy of the present invention and the shaft portion joined to the base portion. Since they are joined in a state, the joining surface is formed not only in the plane perpendicular to the axial direction but also in the circumferential direction. Therefore,
Even when a bending moment is applied, it is possible to suppress crack propagation from the surface defect of the joint portion as compared with the conventional joint structure in which the joint surface is formed only on the surface perpendicular to the axial direction. Further, a brazing material having high strength is used for a joint surface perpendicular to the axial direction of the base portion and the shaft portion to secure sufficient joint strength, while a brazing material having relatively low strength is formed on the joint surface in the circumferential direction. By using the material, the stress load on the TiAl-based intermetallic compound-based alloy is reduced while ensuring a predetermined bonding strength.

【0054】また、室温〜前記接合部材の使用温度にお
ける前記TiAl系金属間化合物基合金の平均線膨張係
数をα1、前記軸部の平均線膨張係数をβ1、室温〜ロ
ウ付け温度における前記TiAl系金属間化合物基合金
の平均線膨張係数をα2、前記軸部の平均線膨張係数を
β2とすると、ロウ付け温度>使用時の接合部温度にお
いて、前記軸部がα1>β1、α2<β2の条件を満足
する材料から構成した場合には、ロウ付け後の冷却過程
ならびに使用時ともロウ付け部を締めつける力が発生す
るため、ロウ付け施工時においてロウ付け欠陥が発生し
にくくなるとともに、擬似的な焼嵌め状態となり、両者
の接合強度は強固なものとなる。
The average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the operating temperature of the joining member is α1, the average linear expansion coefficient of the shaft portion is β1, and the TiAl-based alloy at room temperature to brazing temperature is Assuming that the average linear expansion coefficient of the intermetallic compound-based alloy is α2 and the average linear expansion coefficient of the shaft portion is β2, when the brazing temperature> the junction temperature during use, the shaft portion has α1> β1 and α2 <β2. If the material is made of materials that satisfy the conditions, a force that tightens the brazing part is generated both during the cooling process after brazing and during use. It will be in a state of shrink fitting, and the joint strength of both will be strong.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の1実施形態にかかるタービンを示す
図である。
FIG. 1 is a diagram showing a turbine according to an embodiment of the present invention.

【図2】 本発明の他の実施形態にかかるタービンを示
す図である。
FIG. 2 is a diagram showing a turbine according to another embodiment of the present invention.

【図3】 インコロイ909およびTiAl系金属間化
合物基合金の線膨張係数を示すグラフである。
FIG. 3 is a graph showing the coefficient of linear expansion of Incoloy 909 and a TiAl-based intermetallic compound-based alloy.

【図4】 ロウ付け試験に用いた試験片及びロウ材の配
置を示す図である。
FIG. 4 is a view showing an arrangement of test pieces and a brazing material used in a brazing test.

【図5】 従来のタービンの1例を示す示す図である。FIG. 5 is a diagram showing an example of a conventional turbine.

【図6】 従来のタービンの1例を示す示す図である。FIG. 6 is a diagram showing an example of a conventional turbine.

【符号の説明】[Explanation of symbols]

1 タービンホイール(基部) 2 シャフト(軸部) 3 中間材(軸部) 1 turbine wheel (base) 2 shaft (shaft part) 3 Intermediate material (shaft)

フロントページの続き (56)参考文献 特開 平11−320132(JP,A) 特開 平10−220236(JP,A) 特開 平10−118764(JP,A) 特開 平5−78769(JP,A) 実開 昭62−61901(JP,U) (58)調査した分野(Int.Cl.7,DB名) B23K 35/00 - 35/30 B23K 1/00 - 1/20 B23K 31/00 - 33/00 F02B 39/00 Continuation of front page (56) Reference JP-A-11-320132 (JP, A) JP-A-10-220236 (JP, A) JP-A-10-118764 (JP, A) JP-A-5-78769 (JP , A) Actual development Sho 62-61901 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) B23K 35/00-35/30 B23K 1/00-1/20 B23K 31/00 -33/00 F02B 39/00

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 TiAl系金属間化合物基合金からなる
基部と、前記基部に接合される軸部とからなる接合部材
において、 前記基部と前記軸部との接合面の一方に凸部を、他方に
凹部を形成し、前記凸部と凹部とが嵌合された状態でロ
ウ材により接合され、 前記基部と前記軸部との軸方向における接合面には強度
の大きい第1のロウ材を用い、周方向における接合面に
は前記第1のロウ材より強度の小さい第2のロウ材を用
いることを特徴とする接合部材。
1. A joining member comprising a base portion made of a TiAl-based intermetallic compound base alloy and a shaft portion joined to the base portion, wherein a convex portion is provided on one of the joint surfaces of the base portion and the shaft portion, and the other is provided. A concave portion is formed in the concave portion, and the convex portion and the concave portion are fitted to each other by a brazing material, and a first brazing material having high strength is used for a joint surface in the axial direction between the base portion and the shaft portion. A second brazing material having a strength lower than that of the first brazing material is used for the bonding surface in the circumferential direction.
【請求項2】 前記第1のロウ材が金ロウ、前記第2の
ロウ材が銀ロウである請求項1に記載の接合部材。
2. The joining member according to claim 1, wherein the first brazing material is a gold brazing material and the second brazing material is a silver brazing material.
【請求項3】 前記TiAl系金属間化合物基合金が、
原子%で、Al:44.5〜48.5%、Nb:5〜
9.5%、Cr:0.5〜2%、Si:0.1〜0.4
%、Ni:0.2〜0.4、残部不可避的不純物およ
びTiからなる組成を有する請求項1または2に記載の
接合部材。
3. The TiAl-based intermetallic compound-based alloy,
Atomic%, Al: 44.5-48.5%, Nb: 5-
9.5%, Cr: 0.5-2%, Si: 0.1-0.4
%, Ni: 0.2-0.4 % , the balance unavoidable impurities, and Ti. The joining member according to claim 1 or 2.
【請求項4】 TiAl系金属間化合物基合金からなる
凸状接続部を有する基部と、前記基部の凸状接続部に嵌
合する凹状接続部を有する軸部とからなる接合部材にお
いて、 前記基部と前記軸部とはロウ材により接合され、 室温〜前記接合部材の使用温度における前記TiAl系
金属間化合物基合金の平均線膨張係数をα1、前記軸部
を構成する材料の平均線膨張係数をβ1、室温〜ロウ付
け温度における前記TiAl系金属間化合物基合金の平
均線膨張係数をα2、前記軸部を構成する材料の平均線
膨張係数をβ2とすると、使用温度<ロウ付け温度の場
合で、α1>β1、α2<β2の条件を満足することを
特徴とする接合部材。
4. A joining member comprising a base portion having a convex connecting portion made of a TiAl-based intermetallic compound base alloy and a shaft portion having a concave connecting portion that fits into the convex connecting portion of the base portion. And the shaft portion are joined by a brazing material, and the average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the operating temperature of the joining member is α1, and the average linear expansion coefficient of the material forming the shaft portion is When β1, the average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the brazing temperature is α2, and the average linear expansion coefficient of the material forming the shaft portion is β2, the operating temperature is less than the brazing temperature. , Α1> β1 and α2 <β2 are satisfied.
【請求項5】 前記軸部に構造用鋼からなる軸本体が接
合されている請求項4に記載の接合部材。
5. The joining member according to claim 4, wherein a shaft body made of structural steel is joined to the shaft portion.
【請求項6】 前記基部と前記軸部との軸方向における
接合面には強度の大きい第1のロウ材を用い、周方向に
おける接合面には前記第1のロウ材より強度の小さい第
2のロウ材を用いる請求項4又は5に記載の接合部材。
6. A first brazing material having high strength is used for a joint surface of the base portion and the shaft portion in an axial direction, and a second brazing material having a strength lower than that of the first brazing material is used for a joint surface in a circumferential direction. The joining member according to claim 4 or 5, wherein the brazing material is used.
【請求項7】 前記第1のロウ材が金ロウ、前記第2の
ロウ材が銀ロウである請求項6に記載の接合部材。
7. The joining member according to claim 6, wherein the first brazing material is a gold brazing material, and the second brazing material is a silver brazing material.
【請求項8】 前記TiAl系金属間化合物基合金が、
原子%で、Al:44.5〜48.5%、Nb:5〜
9.5%、Cr:0.5〜2%、Si:0.1〜0.4
%、Ni:0.2〜0.4、残部不可避的不純物およ
びTiからなる組成を有する請求項〜7のいずれかに
記載の接合部材。
8. The TiAl-based intermetallic compound-based alloy,
Atomic%, Al: 44.5-48.5%, Nb: 5-
9.5%, Cr: 0.5-2%, Si: 0.1-0.4
%, Ni: 0.2-0.4 % , the balance unavoidable impurities, and Ti. The joining member according to claim 4 .
【請求項9】 TiAl系金属間化合物基合金からなる
タービンホイールと、前記タービンホイールに接合され
るシャフトとからなるタービン部材において、前記ター
ビンホイールと前シャフトとの接合面の一方に凸部を、
他方に凹部を形成し、前記凸部と凹部とが嵌合された状
態でロウ材により接合され、 前記タービンホイールと前記シャフトとの軸方向におけ
る接合面には強度の大きい第1のロウ材を用い、周方向
における接合面には前記第1のロウ材より強度の小さい
第2のロウ材を用いることを特徴とするタービン部材。
9. A turbine member comprising a turbine wheel made of a TiAl-based intermetallic compound-based alloy and a shaft joined to the turbine wheel, wherein a convex portion is provided on one of the joining surfaces of the turbine wheel and the front shaft.
A concave portion is formed on the other side, and the convex portion and the concave portion are joined by a brazing material in a fitted state, and a first brazing material having high strength is formed on a joint surface in the axial direction between the turbine wheel and the shaft. A second brazing material having a strength lower than that of the first brazing material is used for the joint surface in the circumferential direction.
【請求項10】 TiAl系金属間化合物基合金からな
る凸状接続部を有するタービンホイールと、前記タービ
ンホイールの凸状接続部に嵌合する凹状接続部を有する
中間材と、中間材に接続されるシャフトとからなるター
ビン部材において、 前記タービンホイールと前記中間材とはロウ材により接
合され、室温〜前記タービン部材の使用温度における前
記TiAl系金属間化合物基合金の平均線膨張係数をα
1、前記中間材を構成する材料の平均線膨張係数をβ
1、室温〜ロウ付け温度における前記TiAl系金属間
化合物基合金の平均線膨張係数をα2、前記中間財を構
成する材料の平均線膨張係数をβ2とすると、使用温度
<ロウ付け温度の場合で、α1>β1、α2<β2の条
件を満足することを特徴とするタービン部材。
10. A turbine wheel having a convex connecting portion made of a TiAl-based intermetallic compound-based alloy, an intermediate material having a concave connecting portion fitted to the convex connecting portion of the turbine wheel, and connected to the intermediate material. In the turbine member including a shaft, the turbine wheel and the intermediate member are joined by a brazing material, and the average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the operating temperature of the turbine member is α.
1. Let β be the average coefficient of linear expansion of the material that constitutes the intermediate material.
1. When the average linear expansion coefficient of the TiAl-based intermetallic compound-based alloy at room temperature to the brazing temperature is α2, and the average linear expansion coefficient of the material forming the intermediate product is β2, when the operating temperature <the brazing temperature, , Α1> β1 and α2 <β2 are satisfied.
JP00067399A 1999-01-05 1999-01-05 Joint member and turbine member Expired - Lifetime JP3534633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00067399A JP3534633B2 (en) 1999-01-05 1999-01-05 Joint member and turbine member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00067399A JP3534633B2 (en) 1999-01-05 1999-01-05 Joint member and turbine member

Publications (2)

Publication Number Publication Date
JP2000202683A JP2000202683A (en) 2000-07-25
JP3534633B2 true JP3534633B2 (en) 2004-06-07

Family

ID=11480274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00067399A Expired - Lifetime JP3534633B2 (en) 1999-01-05 1999-01-05 Joint member and turbine member

Country Status (1)

Country Link
JP (1) JP3534633B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241416B2 (en) * 2003-08-12 2007-07-10 Borg Warner Inc. Metal injection molded turbine rotor and metal injection molded shaft connection attachment thereto
CN100413636C (en) * 2005-09-29 2008-08-27 哈尔滨工业大学 High strength connecting method for TiAl base alloy charging turbine and steel shaft
JP2013174129A (en) 2012-02-23 2013-09-05 Mitsubishi Heavy Ind Ltd Turbocharger
JP6021354B2 (en) 2012-02-29 2016-11-09 三菱重工業株式会社 Engine turbocharger
JP2015033717A (en) * 2013-08-09 2015-02-19 三菱重工業株式会社 Repair method

Also Published As

Publication number Publication date
JP2000202683A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP3629920B2 (en) Nozzle for gas turbine, gas turbine for power generation, Co-base alloy and welding material
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
JP2820613B2 (en) Liquid phase diffusion bonding alloy foil for heat resistant materials that can be bonded in oxidizing atmosphere
JP3243184B2 (en) Alloy foil for liquid phase diffusion bonding that can be bonded in oxidizing atmosphere
Li et al. Microstructure and shear strength of γ-TiAl/GH536 joints brazed with Ti− Zr− Cu− Ni− Fe− Co− Mo filler alloy
JPH11320132A (en) Joining method for titanium-aluminum alloy member and constructive steel member, and joined part
JP3421758B2 (en) Oxide dispersion strengthened alloy and high temperature equipment composed of the alloy
JP3829388B2 (en) TiAl turbine rotor
JPWO2017018514A1 (en) Titanium composite and titanium material for hot rolling
JP3534633B2 (en) Joint member and turbine member
PL172589B1 (en) Structural component and method of making same
JP2000199025A (en) TiAl INTERMETALLIC COMPOUND BASE ALLOY, ITS PRODUCTION, TURBINE MEMBER AND ITS PRODUCTION
JPH05202706A (en) Engine valve and manufacture thereof
US6524405B1 (en) Iron base high temperature alloy
JP6787428B2 (en) Titanium material for hot rolling
JPH10193087A (en) Manufacture of titanium-aluminum-made turbine rotor
JP2003053520A (en) METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER
JPH10118764A (en) Method for joining tial turbine impeller with rotor shaft
JP4538878B2 (en) Joining method between steel and titanium
Shapiro et al. Heat-resistant brazing filler metals for joining titanium aluminide and titanium alloys
JPH08200681A (en) Gas turbine burner
JPH023674B2 (en)
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
JP3434129B2 (en) Liquid phase diffusion bonding alloy foil that can be bonded in oxidizing atmosphere
JP2903597B2 (en) Method for producing Ti-Al based heat resistant alloy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

EXPY Cancellation because of completion of term