JPH023674B2 - - Google Patents

Info

Publication number
JPH023674B2
JPH023674B2 JP57184605A JP18460582A JPH023674B2 JP H023674 B2 JPH023674 B2 JP H023674B2 JP 57184605 A JP57184605 A JP 57184605A JP 18460582 A JP18460582 A JP 18460582A JP H023674 B2 JPH023674 B2 JP H023674B2
Authority
JP
Japan
Prior art keywords
heat
alloy
superalloy
resistant
resistant composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57184605A
Other languages
Japanese (ja)
Other versions
JPS5976839A (en
Inventor
Hiromi Kagohara
Hiroshi Fukui
Masahiko Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18460582A priority Critical patent/JPS5976839A/en
Publication of JPS5976839A publication Critical patent/JPS5976839A/en
Publication of JPH023674B2 publication Critical patent/JPH023674B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な耐熱性複合合金部材の製法に係
り、特にガスタービン用ブレード及びノズルに好
適な部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a new heat-resistant composite alloy member, and particularly to a member suitable for gas turbine blades and nozzles.

〔従来技術〕[Prior art]

従来、ガスタービン用耐熱部品である動翼、静
翼、燃焼器は全体が同一組成で、普通溶解により
製造された多結晶の耐熱合金の一体品からなる。
Conventionally, heat-resistant parts for gas turbines, such as rotor blades, stationary blades, and combustors, all have the same composition and are usually made of a single piece of polycrystalline heat-resistant alloy manufactured by melting.

動翼は、第1図に示すように翼部1、シヤンク
部2、ダブテイル部3全体が、真空溶解で精密鋳
造されたγ′相析出強化型のNi基耐熱合金によつ
て構成されている。
As shown in Fig. 1, the rotor blade has a blade section 1, a shank section 2, and a dovetail section 3, all of which are made of a γ' phase precipitation-strengthened Ni-based heat-resistant alloy that is precision cast by vacuum melting. .

〔従来技術の問題点〕[Problems with conventional technology]

近年ガスタービンの高効率化にともない動翼の
使用温度の上昇が不可欠になつたが、従来の真空
溶解−精密鋳造による多結晶のNi基合金では高
温強度が不足し、ガスタービンを高温化すること
ができない。この問題は静翼や、燃焼器でも同じ
である。これを解決する方法として、ガスタービ
ン部品を空気または水冷却して部品のメタル温度
を下げ、ガスタービンを高温化することが行われ
ている。この冷却法はある程度の効果はあるが、
冷却媒体量が余り多くなるとガス温度を下げるこ
とになり、かえつて熱効率を低下させる。また、
燃焼器では表面に遮熱コーテイングを施しメタル
温度を下げることによつてある程度の高温化が達
成されている。しかし、冷却法及び遮熱コーテイ
ングのいずれも高温化できる温度はせいぜい数十
℃程度であり、ガス温度1300〜1500℃とする高温
ガスタービンを達成するにはこれだけでは不十分
である。
In recent years, as gas turbines have become more efficient, it has become essential to raise the working temperature of rotor blades, but polycrystalline Ni-based alloys produced by conventional vacuum melting and precision casting lack high-temperature strength, making gas turbines even hotter. I can't. This problem is the same for stator blades and combustors. As a method to solve this problem, gas turbine components are cooled with air or water to lower the metal temperature of the components, thereby raising the temperature of the gas turbine. Although this cooling method is effective to some extent,
If the amount of cooling medium is too large, the gas temperature will be lowered, and the thermal efficiency will be reduced. Also,
In the combustor, a certain degree of high temperature is achieved by applying a thermal barrier coating to the surface and lowering the metal temperature. However, with both the cooling method and the thermal barrier coating, the temperature that can be raised is at most several tens of degrees Celsius, and this alone is not sufficient to achieve a high-temperature gas turbine with a gas temperature of 1300 to 1500 degrees Celsius.

また、合金によつて解決することが行なわれて
いる。一例として、酸化物分散強化合金は、850
℃以上での強度低下が耐熱合金に較べて著しく小
さい上に、耐熱疲労性、耐酸化性及び耐硫化腐食
性も優れており、高温ガスタービン部品に非常に
有望で、近年特に注目されている。既にジエツト
エンジンの一部に採用されている。この酸化物分
散強化合金は、製造工程が複雑多岐なため、特に
大型構造物となる発電用ガスタービン部品では、
その製造がきわめて困難である。
In addition, alloys are being used to solve the problem. As an example, the oxide dispersion strengthened alloy is 850
In addition to its significantly lower strength loss at temperatures above ℃ compared to heat-resistant alloys, it also has excellent thermal fatigue resistance, oxidation resistance, and sulfide corrosion resistance, making it very promising for high-temperature gas turbine parts, and has attracted particular attention in recent years. . It has already been adopted in some jet engines. The manufacturing process for this oxide dispersion strengthened alloy is complex and varied, so it is particularly difficult to manufacture gas turbine parts for power generation, which are large structures.
Its manufacture is extremely difficult.

〔発明の概要〕[Summary of the invention]

(発明の目的) 本発明の目的は、接合部の強度低下が少なく、
より高温で使用可能な、耐熱性複合合金材の製法
を提供するにある。
(Object of the invention) The object of the present invention is to reduce the decrease in strength of the joint,
An object of the present invention is to provide a method for producing a heat-resistant composite alloy material that can be used at higher temperatures.

(発明の要点) 本発明は、酸化物分散強化合金部材、繊維強化
合金部材、一方向凝固合金部材及び単結晶金属部
材の1種からなる超合金部材と該超合金部材以外
の耐熱合金部材とを、これらの合金部材と合金化
して該合金部材の融点より低い融点を形成する金
属を介在させて拡散接合する方法において、耐熱
合金部材側に予めボロンを拡散浸透させ、この浸
透層を介して超合金部材を拡散接合するものであ
ることを特徴とする。
(Summary of the Invention) The present invention provides a superalloy member made of one of an oxide dispersion reinforced alloy member, a fiber reinforced alloy member, a directionally solidified alloy member, and a single crystal metal member, and a heat-resistant alloy member other than the superalloy member. In the method of diffusion bonding by interposing a metal that is alloyed with these alloy members to form a melting point lower than that of the alloy member, boron is diffused and permeated into the heat-resistant alloy member side in advance, and the It is characterized by diffusion bonding of superalloy members.

発明者らは、ガスタービン用ブレードの使用状
態での温度を調べた結果、最高温度と最低温度と
の間に数百℃の温度勾配を有することを見い出し
た。例えば、ガス温度が1100℃の場合、動翼の翼
部先端で920℃、ダブテイル部で約400℃であり、
更に翼部先端においてリーデングエツヂ部はトレ
ーリングエツヂ部より約150℃高いことを見い出
した。このことから、発明者らは、メタル温度が
前述の超合金部材以外の使用温度を越えるのは動
翼において翼部先端の一部であり、それ以外は超
合金部材以外の従来使用耐熱合金が十分に使用で
きる点に着目した。そのために、高温部を前述の
超合金部材とし、それより低い温度での部分を従
来使用の耐熱合金部材とし、これらを拡散接合す
ることによつて部材全体としてより高温化が達成
できる。
The inventors investigated the temperature of gas turbine blades during use and found that there is a temperature gradient of several hundred degrees Celsius between the highest and lowest temperatures. For example, when the gas temperature is 1100℃, the temperature at the tip of the rotor blade is 920℃, and the temperature at the dovetail portion is approximately 400℃.
Furthermore, it was found that the leading edge at the tip of the wing was approximately 150°C warmer than the trailing edge. From this, the inventors determined that the metal temperature exceeds the operating temperature of the above-mentioned superalloy members in a part of the blade tip of the rotor blade, and that in other parts of the rotor blade, the metal temperature exceeds the operating temperature of the previously used heat-resistant alloy members other than the superalloy members. We focused on the fact that it can be used sufficiently. For this purpose, by using the above-mentioned superalloy member for the high-temperature part, and using the conventionally used heat-resistant alloy member for the lower temperature part, and diffusion bonding these, a higher temperature can be achieved as a whole of the member.

酸化物分散強化合金、繊維強化合金、一方向凝
固合金、単結晶金属部材の超合金部材はいずれも
合金の特殊な規則的な配列によつて強化したもの
であるので、それらの規則性が破れれば極端に強
度が低下するのは言うまでもない。従つて、これ
らの超合金以外の耐熱合金と接合する際にその接
合部でこの規則性をこわさないようにしなければ
高い強度が得られないことを見い出した。これら
の規則性の破壊は接合後の熱処理等どんな他の手
段によつても元にもどすことはきわめて困難であ
る。一般の耐熱合金では熱処理によつて組織を改
善できる。
Superalloy members such as oxide dispersion strengthened alloys, fiber reinforced alloys, directionally solidified alloys, and single crystal metal members are all strengthened by a special regular arrangement of alloys, so these regularities are broken. Needless to say, the strength will be extremely reduced. Therefore, it has been found that high strength cannot be obtained unless this regularity is disrupted at the joint when joining with a heat-resistant alloy other than these superalloys. It is extremely difficult to restore these disruptions to the regularity by any other means such as heat treatment after bonding. The structure of general heat-resistant alloys can be improved by heat treatment.

従来、拡散接合は合金化して母材の融点より低
い融点となる金属例えば、B,Bi等の箔、粉末
を介して行われていたので、接合界面の両者の部
材は合金化して必らず溶融させ、その後拡散処理
する方法がとられていた。しかしこの方法では前
述の如く問題があり、その接合部の強度が低いも
のであつた。
Conventionally, diffusion bonding has been performed using foils or powders of metals that are alloyed and have a melting point lower than that of the base material, such as B or Bi, so both members at the bonding interface are not necessarily alloyed. The method used was to melt it and then perform a diffusion treatment. However, as mentioned above, this method has the problem that the strength of the joint is low.

本発明では、超合金部材の接合部での元の組織
がこわれないように他の耐熱合金側に予め低融点
を形成する金属を形成させることによつて解決し
たものである。従つて、超合金部材ではほとんど
溶融する部分がなく、ボロンの金属の固体拡散に
よつてのみ接合されるので、強度の高い複合合金
部材が得られる。
In the present invention, the problem is solved by forming a metal with a low melting point on the other heat-resistant alloy side in advance so that the original structure at the joint of the superalloy members is not destroyed. Therefore, since the superalloy member has almost no melted portion and is bonded only by solid diffusion of boron metal, a composite alloy member with high strength can be obtained.

酸化物分散強化合金、繊維強化合金、一方向凝
固合金、単結晶金属部材がその特徴を示すのは
850℃以上であるので、これらの超合金部材と耐
熱合金の接合位置を部品温度が850℃を下廻ると
ころにするのが良い。850℃以下ではこれらの超
合金部材より耐熱合金の方が強度、延性が優れて
いるので、よりバランスのとれた部材が得られ
る。
The characteristics of oxide dispersion strengthened alloys, fiber reinforced alloys, directionally solidified alloys, and single crystal metal parts are
Since the temperature is 850°C or higher, it is preferable to place the superalloy member and the heat-resistant alloy at a location where the component temperature is below 850°C. At temperatures below 850°C, heat-resistant alloys have better strength and ductility than these superalloy members, so a more balanced member can be obtained.

(製造法) 本発明の拡散接合には特に、ボロンを予め浸透
させて、その後拡散させる接合法である。特に、
最初耐熱合金の接合面のみにボロンを浸透させ、
次いで超合金部材を耐熱合金の接合面にセツト
し、拡散接合することが大切である。両者の接合
面に、あるいは超合金部材の接合面のみにボロン
を浸透させてその後拡散接合しても接合面には未
融着部が生じて好ましくない。
(Manufacturing method) In particular, the diffusion bonding of the present invention is a bonding method in which boron is infiltrated in advance and then diffused. especially,
First, boron is infiltrated only into the joint surface of the heat-resistant alloy.
Next, it is important to set the superalloy member on the joint surface of the heat-resistant alloy and perform diffusion bonding. Even if boron is infiltrated into the bonding surfaces of both or only the bonding surfaces of the superalloy members and then diffusion bonding is performed, an unfused portion will be generated on the bonding surfaces, which is not preferable.

このように未融着部が多い原因は例えば、酸化
物分散強化合金にBを浸透させた場合の表面に酸
化膜が多く不清浄であるためである。また、拡散
接合面に硼化物が生成することがあるが、硼化物
が多いと高温延性を低下させる原因になるので硼
化物の析出する幅が20μm以内にすることが好ま
しい。硼化物の量は、ボロンを浸透させた時のボ
ロン量と拡散接合時の拡散温度と保持時間によつ
て異るが、最も大切なのはボロン浸透層のボロン
の量である。ボロン量が15%以上だとその後の高
温における拡散接合処理によつてボロンの拡散が
不十分となり硼化物が20μm以上に析出するよう
になる。また、ボロン量が15%以上になると基地
中のCrと結合してCr硼化物となり、拡散処理に
よつても消滅しないので好ましくない。拡散接合
においてボロン量が低すぎる場合荷重を負荷する
と接合率が向上するが、ボロン量を適当に選べば
荷重をかけなくてもできる。
The reason why there are so many unfused parts is that, for example, when an oxide dispersion strengthened alloy is impregnated with B, the surface is unclean with many oxide films. In addition, boride may be formed on the diffusion bonding surface, but if there is too much boride, it will cause a decrease in high temperature ductility, so it is preferable that the width of boride precipitation be within 20 μm. The amount of boride varies depending on the amount of boron when it is infiltrated and the diffusion temperature and holding time during diffusion bonding, but the most important thing is the amount of boron in the boron permeation layer. If the amount of boron is 15% or more, boron diffusion will be insufficient due to the subsequent high-temperature diffusion bonding treatment, and boride will precipitate to a size of 20 μm or more. Moreover, if the amount of boron exceeds 15%, it is not preferable because it combines with Cr in the matrix to form Cr boride, which is not eliminated even by diffusion treatment. In diffusion bonding, if the amount of boron is too low, the bonding rate can be improved by applying a load, but if the amount of boron is appropriately selected, it can be done without applying a load.

拡散処理後の接合部のB量が0.2%を越えると
クリープ破断強度が低下するのでB量を0.2%以
下とするのがよい。
If the amount of B in the joint after diffusion treatment exceeds 0.2%, the creep rupture strength will decrease, so it is preferable to keep the amount of B at 0.2% or less.

(耐熱複合部品の組合せ) 燃焼器ライナ材にはFe基オーステナイト系合
金が用いられる。
(Combination of heat-resistant composite parts) Fe-based austenitic alloy is used for the combustor liner material.

その合金のCは高温強度の点から0.05以上する
が0.2%を越えると加工性が低下するので、0.05
〜0.2%が好ましい。Crは高温耐食性の点から20
〜40%,Niは安定した耐熱性と、オーステナイ
ト組織を得るために15〜50%必要である。一方こ
の合金に対して、酸化物分散強化合金の組成は、
高温強度の点からY2O3は0.3〜8%、加工性の点
から0.2〜0.8%Ti、耐酸化性の点から3〜6%
Al、耐食性の点から15〜25%Crを含み、残部が
Niからなる合金が最適である。
The C content of the alloy should be 0.05 or more from the viewpoint of high-temperature strength, but if it exceeds 0.2%, the workability will decrease, so 0.05
~0.2% is preferred. Cr is 20 from the point of view of high temperature corrosion resistance.
~40%, Ni is required at 15~50% to obtain stable heat resistance and austenitic structure. On the other hand, in contrast to this alloy, the composition of the oxide dispersion strengthened alloy is
Y 2 O 3 is 0.3 to 8% for high temperature strength, 0.2 to 0.8% Ti for workability, and 3 to 6% for oxidation resistance.
Contains Al, 15 to 25% Cr for corrosion resistance, and the balance is
An alloy consisting of Ni is optimal.

ガスタービン用静翼における耐熱合金には炭化
物析出強化型のCo基とNi基合金、γ′相析出強化
型Ni基合金がある。炭化物析出強化型合金は、
高温強度及び延性の点から、C0.1〜0.6%、W5〜
10%,Co15〜35%、耐食性の点からCr20〜40%
の範囲を基本成分としたもの、γ′相析出強化型
Ni基合金の場合はγ′相形成元素であるAl1〜3
%、Ti2〜5%とし、さらに高温強度の点から
C0.05〜0.2%、Co17〜22%、高温耐食性の点から
Cr15〜25%を含むものが好ましい。この静翼の
場合の酸化物分散強化合金は高温強度耐熱疲労性
の点からY2O30.3〜1.5%C0.02〜0.15%耐酸化性
の点からAl0.2〜5%、耐食性の点からCr15〜25
%、加工性の点からTi0.3〜0.7%残部Niからなる
のが好ましい。
Heat-resistant alloys for gas turbine stator blades include carbide precipitation-strengthened Co-based and Ni-based alloys, and γ′ phase precipitation-strengthened Ni-based alloys. Carbide precipitation strengthened alloys are
From the point of high temperature strength and ductility, C0.1~0.6%, W5~
10%, Co15~35%, Cr20~40% for corrosion resistance
γ′ phase precipitation strengthened type
In the case of Ni-based alloys, Al1-3, which is a γ′ phase forming element,
%, Ti2 to 5%, and from the point of view of high temperature strength.
C0.05~0.2%, Co17~22%, from the point of view of high temperature corrosion resistance
Preferably, it contains 15 to 25% Cr. The oxide dispersion strengthened alloy for this stationary blade is Y 2 O 3 0.3 to 1.5% for high temperature strength and thermal fatigue resistance, C 0.02 to 0.15% for oxidation resistance, Al 0.2 to 5% for corrosion resistance. From Cr15~25
%, and from the viewpoint of workability, it is preferable that the alloy be composed of 0.3 to 0.7% Ti and the balance Ni.

動翼における耐熱合金にはγ′相析出強化型Ni
基合金を用いられるが、その成分はγ′形成元素で
あるAl3〜6%、Ti1〜4%、高温耐食性のため
Cr6〜17.9、高温強度と鋳造性を考慮してC0.05〜
0.15%とするのが好ましい。一方、酸化物分散強
化合金は、燃焼器ライナ及び静翼材に用いたもの
より高温強度が高いものが必要でY2O3は0.71〜
1.5%と多く、さらに基地を強化するためγ′相形
成元素であるAl3〜6%、Ti1〜4%C0.02〜0.15
%,Ta1〜3%、W2〜6%、粒界強元素である
Zr0.1〜0.3%,B0.02〜0.2%、高温耐食性のため
Cr12〜18%残部Niとするものが好ましい。
γ′ phase precipitation strengthened Ni is used as the heat-resistant alloy for rotor blades.
A base alloy is used, and its components are γ' forming elements Al3~6%, Ti1~4%, and for high temperature corrosion resistance.
Cr6~17.9, C0.05~ considering high temperature strength and castability
Preferably it is 0.15%. On the other hand, oxide dispersion strengthened alloys need to have higher high-temperature strength than those used for combustor liners and stator blade materials, and Y 2 O 3 must be 0.71~
As high as 1.5%, and to further strengthen the base, γ' phase forming elements Al3-6%, Ti1-4%, C0.02-0.15
%, Ta1~3%, W2~6%, grain boundary strong element
Zr0.1~0.3%, B0.02~0.2%, for high temperature corrosion resistance
Preferably, the content is 12 to 18% Cr and the balance is Ni.

前述した酸化物分散強化合金に代えてAl0.5〜
6%,Ti0.5〜6%,C0.02〜0.2%,Co5〜20%,
Cr5〜20%、残部Niからなる一方向凝固超合金、
Al0.5〜6%、Ti0.5〜6%、Co5〜20%、Cr5〜
20%、残部Niからなる単結晶金属部材、前述し
たガスタービン用動翼、静翼に使用した耐熱合金
を基地金属とし、Mo,W,Nb炭化珪素、窒化珪
素、ジルコニアからなる繊維を分散させた繊維強
化超合金を同様に用いることができる。
Al0.5 ~ instead of the oxide dispersion strengthened alloy mentioned above
6%, Ti0.5~6%, C0.02~0.2%, Co5~20%,
Directionally solidified superalloy consisting of 5~20% Cr, balance Ni,
Al0.5~6%, Ti0.5~6%, Co5~20%, Cr5~
A single-crystal metal member consisting of 20% Ni and the remainder Ni, the heat-resistant alloy used for the gas turbine rotor blades and stationary blades mentioned above is used as the base metal, and fibers consisting of Mo, W, Nb silicon carbide, silicon nitride, and zirconia are dispersed. Fiber-reinforced superalloys can be used as well.

一方向凝固超合金及び繊維強化超合金は、いず
れも引張力を受ける方向を前者では凝固方向及び
後者では繊維の長さ方向と一致させるのが必要で
ある。
For both unidirectionally solidified superalloys and fiber-reinforced superalloys, it is necessary that the direction in which the tensile force is applied coincides with the direction of solidification in the former and the length direction of the fibers in the latter.

〔発明の実施例〕[Embodiments of the invention]

実施例 1 第1図は本発明の合金を適用したガスタービン
用静翼の斜視図である。翼部で2′,2″,2
は850℃以上にさらされる部分で最高で1100℃に
達する場合がある。重量で、0.25%C、30%Cr、
7.7%W、0.012%B、10.5%Ni、残部Coからなる
Co基耐熱合金を真空溶解し、ロストワツクス法
によつて、精度鋳造し、接合面を最終仕上げでエ
メリー紙#800まで研磨した。次いで重量で、20
%Cr0.6%Y2O3、0.3%Al、0.5%Ti、0.05%C、
残部Niからなる酸化物分散強化超合金によつて
第1図の部品2′,2″,2を成形した。次に翼
部2の接合面以外をマスクし、1%B−2.5%
NH4Cl−残部Al2O3粉からなる混合粉末剤の中に
埋め込み、Ar中で850℃×3hの加熱する処理を施
した。次いで接合面のB浸透面を軽くホーニング
し、さらに水洗いした。互いに接合面を入念に合
せて治具により動かないように固定し、加圧し
て、Ar中、1200℃×3hの拡散処理を行つた。次
いで、Co基耐熱合金の熱処理1150℃×2h→空冷、
982℃×4h→空冷の熱処理を行い、図に示すガス
タービン用静翼を得た。接合は翼部のみとし、
サイドウオール1,1″には行われていない。こ
れにより静翼の使用温度が約150℃高くできるこ
とが分つた。接合部断面の顕微鏡観祭の結果、ボ
ライドのない均一な組織であつた。
Example 1 FIG. 1 is a perspective view of a stator blade for a gas turbine to which the alloy of the present invention is applied. 2′, 2″, 2 at wing part 2
can reach up to 1100°C in areas exposed to temperatures above 850°C. By weight, 0.25% C, 30% Cr,
Consists of 7.7% W, 0.012% B, 10.5% Ni, balance Co
A Co-based heat-resistant alloy was vacuum melted, precision cast using the lost wax method, and the joint surfaces were polished to #800 emery paper for the final finish. Then by weight, 20
%Cr0.6% Y2O3 , 0.3%Al, 0.5% Ti , 0.05%C,
Parts 2', 2'', and 2 shown in Fig. 1 were molded using an oxide dispersion-strengthened superalloy with the balance being Ni.Next, the parts other than the joint surface of the wing section 2 were masked, and 1%B-2.5%
It was embedded in a mixed powder consisting of NH 4 Cl and balance Al 2 O 3 powder, and heated at 850° C. for 3 hours in Ar. Next, the B permeated surface of the joint surface was lightly honed and further washed with water. The bonded surfaces were carefully aligned and fixed with a jig so that they would not move, and then pressure was applied and diffusion treatment was performed at 1200°C for 3 hours in Ar. Next, heat treatment of Co-based heat-resistant alloy at 1150℃ x 2h → air cooling,
Heat treatment was performed at 982°C for 4 hours → air cooling to obtain the gas turbine stator blade shown in the figure. Only the wing part 2 is joined.
This was not applied to the sidewalls 1 and 1''. It was found that this allowed the operating temperature of the stator vane to be raised by approximately 150°C. Microscopic examination of the cross section of the joint revealed that it had a uniform structure with no boride.

実施例 2 第2図は本発明の合金を適用したガスタービン
用動翼の斜視図である。翼部で3′の先端部分
が850℃以上の温度にさらされる。3′は翼部
1/4位である。この部分を重量で、15%Cr、1.1%
Y2O3、4.5%Al、2.5%Ti、2%Ta、2%Mo、
4%W、0.1%Zr、0.01%B、BalNiの酸化物分散
合金で作製した。次ぎに3′を除き翼部3″、シヤ
ンク4、ダブテイル5の部分を、重量で、0.1%
C,1%Co,16.2%Cr,2.7%W,2%Mo,0.06
%Zr、3.2%Al,3.64%Ti、残部NiからなるNi基
耐熱合金の真空溶解、精密鋳造によつて製造し
た。この耐熱合金からなる動翼を、接合面以外を
マスクして実施例1と同様の方法によりBを拡散
浸透させた。拡散接合は加圧して、前述と同様に
行つた。次いで、Ni基耐熱合金の熱処理と同様
の1121℃×2h→空冷、843℃×24h→空冷を行つ
た。第3図は接合部のミクロ組織を観察した結
果、良好な接合部が得られた。これにより酸化物
分散強化合金一体の動翼より優れよりバランスの
とれた性能が得られた。
Example 2 FIG. 2 is a perspective view of a gas turbine rotor blade to which the alloy of the present invention is applied. The tip portion 3 ' of the wing portion 3 is exposed to a temperature of 850° C. or higher. 3' is about 1/4 of the wing portion 3 . This part is 15% Cr, 1.1% by weight
Y2O3 , 4.5 %Al, 2.5%Ti, 2%Ta, 2%Mo,
It was made from an oxide-dispersed alloy of 4% W, 0.1% Zr, 0.01% B, and BalNi. Next, remove the wing part 3'', shank 4, and dovetail 5 by 0.1% by weight, excluding 3'.
C, 1%Co, 16.2%Cr, 2.7%W, 2%Mo, 0.06
It was manufactured by vacuum melting and precision casting of a Ni-based heat-resistant alloy consisting of % Zr, 3.2% Al, 3.64% Ti, and the balance Ni. B was diffused and infiltrated into the rotor blade made of this heat-resistant alloy in the same manner as in Example 1, with the parts other than the joint surfaces masked. Diffusion bonding was performed under pressure in the same manner as described above. Next, air cooling was performed at 1121°C for 2 hours and air cooling at 843°C for 24 hours, similar to the heat treatment for Ni-based heat-resistant alloys. FIG. 3 shows that as a result of observing the microstructure of the joint, a good joint was obtained. This resulted in better and more balanced performance than the rotor blade made of an integrated oxide dispersion strengthened alloy.

実施例 3 実施例1の酸化物分散強化型超合金の代りに、
直径0.4mmのW線の束に20重量%Crを含むNi基合
金の溶湯を含浸させて製造した繊維強化超合金の
試料を実施例1と同様の方法により拡散接合させ
た。拡散接合の加熱は真空中で行い、接合後、実
施例1と同様の熱処理を行つた。W線の面積率は
75%であり、繊維強化型合金の接合は繊維の端面
で行つた。この複合合金によればガスタービン用
静翼の使用温度を約100℃高めることができる。
Example 3 Instead of the oxide dispersion strengthened superalloy of Example 1,
A sample of a fiber-reinforced superalloy produced by impregnating a bundle of W wires with a diameter of 0.4 mm with a molten Ni-based alloy containing 20% by weight of Cr was diffusion bonded in the same manner as in Example 1. Heating for diffusion bonding was performed in a vacuum, and after bonding, the same heat treatment as in Example 1 was performed. The area ratio of the W line is
75%, and the fiber-reinforced alloy was joined at the end faces of the fibers. According to this composite alloy, the operating temperature of gas turbine stator blades can be increased by approximately 100°C.

実施例 4 実施例2の酸化物分散強化型合金の代りに、直
径0.4mmのW線の束に重量で、W2.5%、Cr15%,
Al2%,Ti2%、残部Niからなる合金の溶湯を含
浸させ、Wの面積率90%の繊維強化超合金を、実
施例2と同様の方法により拡散接合させた。接面
は繊維の端面で行い、接合後実施例2と同様の熱
処理を行つた。
Example 4 Instead of the oxide dispersion strengthened alloy of Example 2, a bundle of W wire with a diameter of 0.4 mm was made by weight of 2.5% W, 15% Cr,
A fiber-reinforced superalloy with a W area ratio of 90% was impregnated with a molten alloy consisting of 2% Al, 2% Ti, and the balance Ni, and was diffusion bonded by the same method as in Example 2. The contact surface was the end surface of the fiber, and after joining, the same heat treatment as in Example 2 was performed.

この複合合金によればガスタービン用動翼の使
用温度を150℃高めることができる。なお、この
動翼全体に厚さ10μmの白金を被覆することが好
ましい。
According to this composite alloy, the operating temperature of gas turbine rotor blades can be increased by 150°C. Note that it is preferable that the entire rotor blade be coated with platinum to a thickness of 10 μm.

実施例 5 実施例1の酸化物分散強化合金の代りに、重量
で、Al5%、Ti2.5%,C0.15%,W12%,Co10
%,Cr9%,Hf1.8%,B0.02%,Zr0.08%、残部
Niからなる一方向凝固合金を実施例1と同様の
方法により拡散接合させた。接合は真空中で1232
℃で2h加熱することにより行い、凝固方向の端
面を接合面とした。接合後、982℃×4h加熱によ
る時効処理及び871℃×20の加熱による時効処理
を行つた。この複合合金によれば、ガスタービン
用静翼の使用温度を約100℃高温にすることがで
きる。
Example 5 Instead of the oxide dispersion strengthened alloy of Example 1, Al5%, Ti2.5%, C0.15%, W12%, Co10 by weight
%, Cr9%, Hf1.8%, B0.02%, Zr0.08%, balance
A directionally solidified alloy made of Ni was diffusion bonded by the same method as in Example 1. Bonding is done in vacuum 1232
This was done by heating at ℃ for 2 hours, and the end surface in the solidification direction was used as the bonding surface. After bonding, aging treatment was performed by heating at 982°C for 4 hours and aging treatment by heating at 871°C for 20 hours. According to this composite alloy, the operating temperature of gas turbine stationary blades can be raised to approximately 100°C.

実施例 6 実施例2の酸化物分散強化合金の代りに、重量
で、Cr10%,Al5%,Ti1.5%,Ta12%,W4%、
残部Niからなる単結晶部材を実施例1と同様の
方法により拡散接合させた。接合後、1079℃×
4h加熱の時効処理及び871℃×32h加熱の時効処
理を行つた。この複合合金によればガスタービン
用動翼の使用温度を約100℃高めることができる。
Example 6 Instead of the oxide dispersion strengthened alloy of Example 2, Cr10%, Al5%, Ti1.5%, Ta12%, W4%,
A single crystal member consisting of the remainder Ni was diffusion bonded by the same method as in Example 1. After bonding, 1079℃×
Aging treatment was performed by heating for 4 hours and aging treatment was performed by heating at 871°C for 32 hours. According to this composite alloy, the operating temperature of gas turbine rotor blades can be increased by approximately 100°C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、接合強度の高い複合合金部材
が得られ、特にガスタービン用動翼及び静翼の使
用温度を顕著に高めることができる。
According to the present invention, a composite alloy member with high bonding strength can be obtained, and in particular, the operating temperature of gas turbine rotor blades and stationary blades can be significantly increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の合金を適用したガスタービン
用静翼の一例を示す斜視図及び第2図は本発明の
合金を適用したガスタービン用動翼の斜視図であ
る。 1,1′……サイドウエール、……翼部、
4……シヤンク、5……ダブテイル、2′,2″,
2,3……本発明合金を使用した部分。
FIG. 1 is a perspective view showing an example of a stator blade for a gas turbine to which the alloy of the present invention is applied, and FIG. 2 is a perspective view of a rotor blade for a gas turbine to which the alloy of the present invention is applied. 1, 1'...Sideway, 2 , 3 ...Wing part,
4...Shank, 5...Dovetail, 2', 2'',
2, 3... Part using the alloy of the present invention.

Claims (1)

【特許請求の範囲】 1 酸化物分散強化合金部材、繊維強化合金部
材、一方向凝固合金部材及び単結晶金属部材の1
種類からなる超合金部材と該超合金部材以外の耐
熱合金部材とを接合間にボロン含有合金を介在さ
せて拡散接合する方法において、前記耐熱合金部
材の接合面にボロンを予め拡散浸透させ、その面
に前記超合金部材を接触させて、非酸化性雰囲気
中で加熱することを特徴とする耐熱性複合部材の
製法。 2 前記加熱する間中、前記合金部材に対し、接
合面間に圧力を加える特許請求の範囲第1項に記
載の耐熱性複合部材の製法。 3 ボロン粉末及びボロンと反応して拡散浸透す
る温度でガス化する拡散促進剤を含む粉末中に前
記耐熱合金を埋め込み、所定の温度で非酸化性雰
囲気中で加熱し、接合面にボロンの拡散浸透層を
形成させる特許請求の範囲第1項又は第2項に記
載の耐熱性複合部材の製法。 4 前記拡散浸透層は、最外表面で5〜15重量%
のBを含み、5〜20μmの厚さを有する特許請求
の範囲第1項〜第3項のいずれかに記載の耐熱性
複合部材の製法。 5 前記複合部材はガスタービン用ブレードであ
り、その翼部の少なくとも先端部分の1/4を前記
超合金部材によつて構成した特許請求の範囲第1
項〜第4項に記載の耐熱性複合部材の製法。 6 前記ブレードは、少なくともその翼部の先端
部分の1/4を除いて、重量で、C0.05〜0.2%,Si1
%以下、Mn1%以下、Cr10〜25%,Mo及びWの
1種以上2〜10%,Al0.5〜7%,Ti0.5〜7%,
B0.005〜0.5%及び残部Niからなり、Al+Ti量が
3〜10%であり、γ′相の析出によつて強化された
Ni基鋳造合金からなる特許請求の範囲5項に記
載の耐熱性複合部材の製法。 7 前記複合部材はガスタービン用ノズルであ
り、その翼部の少なくともトレーリングエツヂ部
を前記超合金部材によつて構成した特許請求の範
囲第1項〜第4項に記載の耐熱性複合部材の製
法。 8 前記ノズルは、少なくともその翼部のトレー
リングエツヂ部を除いて重量で、C0.1〜0.6%,
Si2%以下、Mn2%以下、Cr20〜40%,Co10〜35
%,Mo及びWの1種以上5〜10%,B0.005〜
0.05%、残部Niからなり、共晶炭化物及び二次炭
化物の析出によつて強化されたCo基鋳造合金か
らなる特許請求の範囲第7項に記載の耐熱性複合
部材の製法。 9 前記ノズルは、少なくともその翼部のトレー
リングエツヂ部を除いて重量で、C0.2〜0.6,
Cr20〜40%,Ni5〜15%,Mo及びWの1種以上
5〜10%,B0.005〜0.05%、残部Coからなり、
共晶炭化物及び二次炭化物の析出によつて強化さ
れたNi基鋳造合金からなる特許請求の範囲第8
項に記載の耐熱性複合部材の製法。 10 前記酸化物分散強化合金部材は、重量で、
C0.02〜0.2%,Y2O30.3〜1.5%,Ti0.2〜5%,
Al0.2〜6%,Cr12〜25%を含み、Fe,Ni及び
Coの少なくとも1種以上を40%以上有するFe基、
Ni基又はCo基超合金である特許請求の範囲第1
項〜第9項のいずれかに記載の耐熱性複合部材の
製法。 11 前記一方向凝固合金部材は、重量でC0.02
〜0.2%,Si1%以下、Mn1%以下、Cr5〜20%,
Al0.5〜6%,Ti0.5〜6%,Mo及びWの1種以
上2〜10%,Co5〜20%、残部Niからなり、一方
向に凝固させた鋳造組織を有するものであり、前
記鋳造組織の成長方向に垂直な面を前記耐熱合金
部材に接合されている特許請求の範囲第1項〜第
10項のいずれかに記載の耐熱性複合部材の製
法。 12 前記単結晶金属部材は、重量で、Al2〜7
%,Ti3〜6%,Cr6〜20%,Ta5〜15%及び
Co15〜35%を含み、Ni40%以上のNi基合金から
なる特許請求の範囲第1項〜第10項のいずれか
に記載の耐熱性複合部材の製法。
[Claims] 1. Oxide dispersion reinforced alloy member, fiber reinforced alloy member, directionally solidified alloy member, and single crystal metal member.
In a method of diffusion bonding a superalloy member consisting of a different type of superalloy member and a heat-resistant alloy member other than the superalloy member by interposing a boron-containing alloy between the bonding parts, boron is diffused and infiltrated into the bonding surface of the heat-resistant alloy member in advance. A method for producing a heat-resistant composite member, comprising bringing the superalloy member into contact with a surface thereof and heating the superalloy member in a non-oxidizing atmosphere. 2. The method for manufacturing a heat-resistant composite member according to claim 1, wherein pressure is applied between joint surfaces of the alloy member during the heating. 3. The heat-resistant alloy is embedded in a powder containing boron powder and a diffusion promoter that gasifies at the temperature at which it reacts with boron and diffuses and permeates, and is heated in a non-oxidizing atmosphere at a predetermined temperature to diffuse boron to the joint surface. A method for manufacturing a heat-resistant composite member according to claim 1 or 2, which comprises forming a permeable layer. 4 The diffusion permeation layer has a content of 5 to 15% by weight on the outermost surface.
A method for producing a heat-resistant composite member according to any one of claims 1 to 3, which includes B and has a thickness of 5 to 20 μm. 5. Claim 1, wherein the composite member is a gas turbine blade, and at least 1/4 of the tip portion of the blade portion is made of the superalloy member.
A method for producing a heat-resistant composite member according to items 4 to 4. 6 The blade, except for at least 1/4 of the tip portion of the blade, is made of 0.05 to 0.2% C and Si1 by weight.
% or less, Mn 1% or less, Cr 10-25%, one or more of Mo and W 2-10%, Al 0.5-7%, Ti 0.5-7%,
Consisting of 0.005~0.5% B and the balance Ni, the amount of Al+Ti is 3~10%, and is strengthened by the precipitation of γ' phase.
A method for producing a heat-resistant composite member according to claim 5, which is made of a Ni-based cast alloy. 7. The heat-resistant composite member according to claims 1 to 4, wherein the composite member is a gas turbine nozzle, and at least a trailing edge portion of a blade portion thereof is made of the superalloy member. manufacturing method. 8. The nozzle, excluding at least the trailing edge of its blade, has a carbon content of 0.1 to 0.6% by weight;
Si2% or less, Mn2% or less, Cr20~40%, Co10~35
%, one or more of Mo and W 5~10%, B0.005~
8. The method for producing a heat-resistant composite member according to claim 7, comprising a Co-based cast alloy consisting of 0.05% Ni, the balance being Ni, and strengthened by precipitation of eutectic carbides and secondary carbides. 9 The nozzle, excluding at least the trailing edge of its wing, has a weight of C0.2 to 0.6,
Consists of 20-40% Cr, 5-15% Ni, 5-10% of one or more of Mo and W, 0.005-0.05% B, and the balance Co.
Claim 8 consisting of a Ni-based cast alloy strengthened by precipitation of eutectic carbides and secondary carbides.
The manufacturing method of the heat-resistant composite member described in section. 10 The oxide dispersion strengthened alloy member has a weight of:
C0.02~0.2%, Y 2 O 3 0.3~1.5%, Ti0.2~5%,
Contains Al0.2~6%, Cr12~25%, Fe, Ni and
Fe group having 40% or more of at least one type of Co,
Claim 1, which is a Ni-based or Co-based superalloy
9. A method for producing a heat-resistant composite member according to any one of items 9 to 9. 11 The directionally solidified alloy member has a weight of C0.02
~0.2%, Si1% or less, Mn1% or less, Cr5~20%,
It is composed of 0.5-6% Al, 0.5-6% Ti, 2-10% of one or more of Mo and W, 5-20% Co, and the balance Ni, and has a cast structure solidified in one direction. 11. The method for manufacturing a heat-resistant composite member according to claim 1, wherein a surface perpendicular to the growth direction of the cast structure is joined to the heat-resistant alloy member. 12 The single crystal metal member has Al2 to 7 by weight.
%, Ti3~6%, Cr6~20%, Ta5~15% and
A method for producing a heat-resistant composite member according to any one of claims 1 to 10, which is made of a Ni-based alloy containing 15 to 35% Co and 40% or more Ni.
JP18460582A 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production Granted JPS5976839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18460582A JPS5976839A (en) 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18460582A JPS5976839A (en) 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production

Publications (2)

Publication Number Publication Date
JPS5976839A JPS5976839A (en) 1984-05-02
JPH023674B2 true JPH023674B2 (en) 1990-01-24

Family

ID=16156135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18460582A Granted JPS5976839A (en) 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production

Country Status (1)

Country Link
JP (1) JPS5976839A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148562A (en) * 1984-08-10 1986-03-10 Hitachi Ltd Manufacture of body to be joined
US4877435A (en) * 1989-02-08 1989-10-31 Inco Alloys International, Inc. Mechanically alloyed nickel-cobalt-chromium-iron composition of matter and glass fiber method and apparatus for using same
CN111218584B (en) * 2018-11-23 2021-08-17 中国科学院金属研究所 Large-gap brazing repair method for DZ40M alloy part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
JPS4913060A (en) * 1972-03-20 1974-02-05
JPS5277854A (en) * 1975-12-19 1977-06-30 United Technologies Corp Construct made by diffusion joining
JPS5434087A (en) * 1977-08-22 1979-03-13 Hitachi Cable Ltd Oil feeding tank for oil filled power cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
JPS4913060A (en) * 1972-03-20 1974-02-05
JPS5277854A (en) * 1975-12-19 1977-06-30 United Technologies Corp Construct made by diffusion joining
JPS5434087A (en) * 1977-08-22 1979-03-13 Hitachi Cable Ltd Oil feeding tank for oil filled power cable

Also Published As

Publication number Publication date
JPS5976839A (en) 1984-05-02

Similar Documents

Publication Publication Date Title
US4869645A (en) Composite gas turbine blade and method of manufacturing same
US6638639B1 (en) Turbine components comprising thin skins bonded to superalloy substrates
US6648596B1 (en) Turbine blade or turbine vane made of a ceramic foam joined to a metallic nonfoam, and preparation thereof
US6709771B2 (en) Hybrid single crystal-powder metallurgy turbine component
US3964877A (en) Porous high temperature seal abradable member
US20110135489A1 (en) Nickel-based superalloys, turbine blades, and methods of improving or repairing turbine engine components
Schafrik et al. Gas turbine materials
US5451142A (en) Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface
EP2383438B1 (en) Single crystal superalloy blade
US6755619B1 (en) Turbine blade with ceramic foam blade tip seal, and its preparation
JP2006102814A (en) System for bonding substrate and substrate bonding method
US6838190B2 (en) Article with intermediate layer and protective layer, and its fabrication
US6811894B2 (en) Ceramic turbine blade attachment having high temperature, high stress compliant layers and method of fabrication thereof
US6544003B1 (en) Gas turbine blisk with ceramic foam blades and its preparation
JPH023674B2 (en)
US6582812B1 (en) Article made of a ceramic foam joined to a metallic nonfoam, and its preparation
JP3534633B2 (en) Joint member and turbine member
Signorelli Review of status and potential of tungsten-wire: Superalloy composites for advanced gas turbine engine blades
JP3764567B2 (en) Turbine blade and method for manufacturing the same
JPH0390346A (en) Composite blade comprising ceramics and alloy
Raj et al. Transpiration Air Protected Turbine Blades: An Effective Concept to Achieve High Temperature and Erosion Resistance for Gas Turbines Operating in an Aggressive Environment
JPS5893586A (en) Joining method for heat resisting alloy
JPH10102175A (en) Co-base heat resistant alloy, member for gas turbine, and gas turbine
US20070264125A1 (en) Lightweight Heat-Resistant Material for Generator Gas Turbine
JPH10168534A (en) Turbine blade and its production