JPS5976839A - Heat resistant composite alloy member and its production - Google Patents

Heat resistant composite alloy member and its production

Info

Publication number
JPS5976839A
JPS5976839A JP18460582A JP18460582A JPS5976839A JP S5976839 A JPS5976839 A JP S5976839A JP 18460582 A JP18460582 A JP 18460582A JP 18460582 A JP18460582 A JP 18460582A JP S5976839 A JPS5976839 A JP S5976839A
Authority
JP
Japan
Prior art keywords
alloy
heat
alloy member
resistant
resistant composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18460582A
Other languages
Japanese (ja)
Other versions
JPH023674B2 (en
Inventor
Hiromi Kozobara
楮原 広美
Hiroshi Fukui
寛 福井
Masahiko Sakamoto
坂本 征彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18460582A priority Critical patent/JPS5976839A/en
Publication of JPS5976839A publication Critical patent/JPS5976839A/en
Publication of JPH023674B2 publication Critical patent/JPH023674B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To develop a composite alloy member which permits the use in a high temp. part in the stage of joining members of a sintered alloy and a heat resistant alloy and producing a heat resistant composite alloy member by penetrating beforehand B in the joining part of the heat resistant ally member then subjecting said member to diffusion joining with the sintered alloy member. CONSTITUTION:A blade or nozzle for a gas turbine is produced by constituting the part to be exposed to a particularly high temp. of a sintered alloy and the part continuous therewith of an ordinary heat resistant alloy, whereby the cost of production is reduced. An oxide dispersion-reinforced alloy of Ni or Co base, a fiber-reinforced alloy, unidirectionally solidified alloy, single crystal metal, etc. are used for the sintered alloy, and an Ni alloy contg. 0.05-0.20% C, <1% Si, <1% Mn, 10-25% Cr, 2-10% >=1 kinds of Mo and W, 0.5-7% Al and Ti respectively, and 0.005-0.05% B is used for the heat resistant alloy. B is penetrated at <=0.2% in the joining part of such heat resistant alloy and the sintered alloy is brought into contact with the surface thereof, then the members are heated in a non-oxidative atmosphere, whereby the diffusion joining is accomplished.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は新規な耐熱性複合合金部材に係シ、特にガスタ
ービン用ブレード及びノズルに好適な部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a new heat-resistant composite alloy member, and particularly to a member suitable for gas turbine blades and nozzles.

〔従来技術〕[Prior art]

従来、ガスタービン用耐熱部品である動翼、静翼、燃焼
器は全体が同一組成で、普通溶解にょシ製造された多結
晶の耐′熱合金の一体品からなる。
Conventionally, heat-resistant parts for gas turbines, such as rotor blades, stationary blades, and combustors, all have the same composition and are usually made of a single piece of polycrystalline heat-resistant alloy produced by melting.

動翼は、第1図に示すように翼部1、シャンク部2、ダ
ブテイル部3全体が、真空溶解で精密鋳造されたr′相
析出強化型のNt基耐熱合金によって構成されている。
As shown in FIG. 1, the rotor blade includes a blade section 1, a shank section 2, and a dovetail section 3, all of which are made of an r'-phase precipitation-strengthened Nt-based heat-resistant alloy that is precision cast by vacuum melting.

〔従来技術の問題点〕[Problems with conventional technology]

近年ガスタービンの品効率化にともない動翼の使用温度
の上昇が不可欠になづたが、従来の真空溶解−精密鋳造
による多結晶のNi基合金では高温強度が不足し、ガス
タービンを高温化することができない。この問題t」、
静諷や、燃焼器でも同じである。これ全解決する方法と
して、ガスタービン部品を空気またtま水冷却して部品
のメタル温度を下げ、ガスタービン全高温化することが
行われている。この冷却法はある程度の効果はあるが、
冷却媒体量が余り多くなるとガス温度を下げることにな
シ、かえって熱効率を低下させる。、!、た、燃焼器で
は表面に遮熱コーティング合流しメタル温度を下げるこ
とによっである程度の高温化が達成されている。しかし
、冷却法及び遮熱コーティングのいずれも高温化できる
温度はせいぜい数十C程度であり、ガス温度1300〜
1500cとする高温ガスタービンを達成するにはこれ
だけでは不十分である。
In recent years, as the efficiency of gas turbines has improved, it has become essential to raise the working temperature of rotor blades, but polycrystalline Ni-based alloys produced by conventional vacuum melting and precision casting lack high-temperature strength, making gas turbines at higher temperatures. Can not do it. This problem t'',
The same is true for Shizume and combustors. As a method to solve this problem, gas turbine parts are cooled by air or water to lower the metal temperature of the parts, thereby raising the overall temperature of the gas turbine. Although this cooling method is effective to some extent,
If the amount of cooling medium is too large, it will not be possible to lower the gas temperature, but will instead reduce thermal efficiency. ,! In the combustor, a thermal barrier coating is applied to the surface of the combustor to lower the metal temperature, thereby achieving a certain degree of high temperature. However, with both the cooling method and the thermal barrier coating, the temperature that can be raised is at most several tens of degrees Celsius, and the gas temperature is 1,300 to
This alone is not sufficient to achieve a high temperature gas turbine of 1500c.

壕だ、合金によって解決することが行なわれている。−
例として、酸化物分散強化合金は、850C以上での強
度低下が耐熱合金に較べて著しく小さい上に、耐熱疲労
性、耐酸化性及び耐硫化腐食性も優れており、高温ガス
タービン部品に非常に有望で、近年特に注目されている
。既にジェットエンジンの一部に採用されている。この
酸化物分散強化合金は、製造工程が複雑多岐なため、特
に大型構造物となる発電用ガスタービン部品では、その
製造がきわめて困難である。
Well, the problem is being solved by using alloys. −
For example, oxide dispersion strengthened alloys exhibit significantly less strength loss at temperatures above 850C than heat-resistant alloys, and also have excellent thermal fatigue resistance, oxidation resistance, and sulfide corrosion resistance, making them extremely suitable for high-temperature gas turbine components. , and has attracted particular attention in recent years. It is already used in some jet engines. The manufacturing process for this oxide dispersion strengthened alloy is complex and varied, so it is extremely difficult to manufacture it, especially for gas turbine parts for power generation, which are large structures.

〔発明の概費〕[Outline of invention cost]

(発明の目的) 本発明の目的は、接合部の強度低下が少なく、よシ高温
で使用可能な、耐熱性複合合金部材とその製法を提供す
るにある。
(Objective of the Invention) An object of the present invention is to provide a heat-resistant composite alloy member and a method for manufacturing the same, which can be used at high temperatures with less decrease in strength of joints.

(発明の要点) 本発明は、酸化物分散強化合金部、材、繊維強化合金部
材、一方向凝固合金部材及び単結晶金属部材の1種から
なる超合金部材と該超合金部材以外の1.1熱合金部材
とが、これらの合金部材と合金化して該合金部材の融点
より低い融点を形成する金属を介在させた拡散接合させ
て複合部材であって、前記超合金部材の接合部は接合前
の組織が維持されていることを%徴とする。
(Summary of the Invention) The present invention provides a superalloy member made of one of oxide dispersion strengthened alloy parts, materials, fiber reinforced alloy members, directionally solidified alloy members, and single crystal metal members, and 1. 1. The superalloy member is a composite member formed by diffusion bonding with a metal interposed therebetween that is alloyed with these alloy members to form a melting point lower than that of the superalloy member, and the bonded portion of the superalloy member is bonded. The percentage indicates that the previous tissue is maintained.

発明者らは、ガスタービン用ブレードの使用状態での温
度fc調べた結果、最高温度と最低温度との間に数百C
の温度勾配を有することを見い出した。例えば、ガス温
度がl100Cの場合、動板の翼部先端で9201?、
ダプテイル部で約400Cであシ、更に翼部先端におい
てリーデングエツヂ部はトレーリングエッヂ部xシ約1
50t?^いことを見い出した。このことから、発明者
らは、メタル温度が前述の超合金部材以外の使用温度を
越えるのは動翼において翼部先端の一部であり、それ以
外は超合金部材以外の従来使用耐熱合金が十分に使用で
きる点に着目した。そのために、高温部を前述の超合金
部材とし、それより低い温度での部分を従来使用の耐熱
合金部材とし、これらを拡散接合することによって部材
全体としてよシ高温化が達成できる。
As a result of investigating the temperature fc of gas turbine blades in use, the inventors found that there is a difference of several hundred C between the maximum and minimum temperatures.
It was found that the temperature gradient of For example, if the gas temperature is 1100C, the blade tip of the moving plate is 9201? ,
Approximately 400C at the tail part, and the leading edge part at the tip of the wing is approximately 1 x 1
50 tons? I discovered something. From this, the inventors determined that the metal temperature exceeds the operating temperature of the above-mentioned superalloy members in a part of the blade tip of the rotor blade, and that in other parts of the rotor blade, the metal temperature exceeds the operating temperature of the previously used heat-resistant alloy members other than the superalloy members. We focused on the fact that it can be used sufficiently. For this purpose, the high temperature part is made of the above-mentioned superalloy member, the part at a lower temperature is made of the conventionally used heat resistant alloy member, and by diffusion bonding these parts, a much higher temperature can be achieved as a whole member.

酸化物分散強化合金、繊維強化合金、一方向凝固合金、
却結晶金属部材の超合金部拐はいずれも合金の特殊な規
IJυ的な配列によって強化したものであるので、それ
らの規則性が破れれば極端に強度が低下するのは言うま
でもない。従って、これらの超合金以外の耐熱合金と接
合する際にその接合部でこの規則性をこわさないように
しなければ高い強IWが得られないことを見い出した。
Oxide dispersion strengthened alloys, fiber reinforced alloys, unidirectionally solidified alloys,
Since all superalloy parts of crystalline metal parts are strengthened by a special arrangement of alloys, it goes without saying that if these regularities are broken, the strength will be extremely reduced. Therefore, it has been found that when joining with heat-resistant alloys other than these superalloys, high strength IW cannot be obtained unless this regularity is disrupted at the joint.

これらの規則性の破壊は接合後の熱処理等どんな他の手
段によっても元にもどすことはきわめて困難である!一
般の耐熱合金では熱処理によって組織を改善できる。
It is extremely difficult to restore these regularity disruptions by any other means such as post-bonding heat treatment! The structure of general heat-resistant alloys can be improved by heat treatment.

従来、拡散接合は合金化して母材の融点よシ低い融点と
なる金部例えば、8.8i等の箔、粉末を介して行われ
ていたので、接合界面の両者の耶部材は合金化して必ら
ず溶融させ、その後拡散処理する方法がとられていた。
Conventionally, diffusion bonding was carried out through metal parts that were alloyed and had a melting point lower than that of the base metal, such as 8.8i foil or powder, so the two metal parts at the bonding interface were alloyed. The method used was always to melt the material and then perform a diffusion treatment.

しかしこの方法では前述の如く問題があり、その接合部
め強度が低いものであった。
However, this method has the problems described above, and the strength of the joint is low.

本発明では、超合金部材の接合部での元の組織がこわれ
ないように他の耐熱合金(11!Iに予め低融点を形成
する金属を形成させることによって解決したものである
。従って、超合金部材では11とんと溶融する部分がな
く、B等の金属の固体拡散によってのみ接合されるので
、強朋の高い複合合金部材が得られる。
In the present invention, the problem is solved by forming a metal with a low melting point on another heat-resistant alloy (11!I) so that the original structure at the joint of the superalloy members is not destroyed. Since the alloy member does not have any melting parts and is joined only by solid diffusion of metal such as B, a highly strong composite alloy member can be obtained.

酸化物分散強化合金、繊維強化合金、一方向凝固合金、
却結晶金属部イ・イがその特徴を示ずのは850C以−
ヒであるので、これらの超合金部材と耐熱合金の接合位
置全部品温度が850Cを下廻るところにするのが良い
、3850C以下ではこれらの超合金部材より耐熱合金
の方が強度、延性が優れているので、よりバランスのと
れた部材が得られる。
Oxide dispersion strengthened alloys, fiber reinforced alloys, unidirectionally solidified alloys,
It is after 850C that the crystalline metal parts I and I do not exhibit this characteristic.
Therefore, it is best to place these superalloy members and heat-resistant alloys in a place where the temperature of all parts is below 850C.At temperatures below 3850C, heat-resistant alloys have better strength and ductility than these superalloy members. As a result, a more balanced member can be obtained.

(製造法) 本発明の拡散接合には特に、ホロンを予め浸透させて、
その後拡散させる接合法を行うのがよい。
(Manufacturing method) In particular, in the diffusion bonding of the present invention, holon is infiltrated in advance,
After that, it is preferable to perform a bonding method that involves diffusion.

特に、最初耐熱合金の接合面のみにホロンヶ浸透させ、
次いで超合金部材を耐熱合金の接合面にセツトし、拡散
接合することが大切である。両者の接合面に、るるいは
超合金部拐の接合面のみにボ17ンを浸透さヒーてその
後拡散接合しても接合面には未融着部が生じて好ましく
ない。、 このように未−+11着部が多い原因は例えば、酸化物
分散強化合金にBを浸透させた場合の表面に酸化膜が多
く不清浄であるためである。また、拡散接合面に硼化物
が生成することがあるが、硼化物が多いと高温延性を低
下させる原因になるので硼化物の析出する幅が20μm
以内にすることが好ましい。硼化物の量は、ボロンを浸
透させた時のボロン11と拡散接合時の拡散温度と保持
時間によって異るが、最も大切なのはボロン浸透層のボ
ロンの量である。
In particular, at first, the heat-resistant alloy is infiltrated only into the joint surface.
Next, it is important to set the superalloy member on the joint surface of the heat-resistant alloy and perform diffusion bonding. Even if the bonding surface of the two is infiltrated with a bolt 17 and heated only to the bonding surface of the superalloy part, and then diffusion bonding is performed, an unfused portion will be formed on the bonding surface, which is not preferable. The reason why there are so many non-+11 bonded parts is that, for example, when an oxide dispersion strengthened alloy is impregnated with B, the surface is unclean due to a large oxide film. In addition, boride may be generated on the diffusion bonding surface, but if there is a large amount of boride, it will cause a decrease in high-temperature ductility, so the width of boride precipitation should be 20 μm.
It is preferable to keep it within. The amount of boride varies depending on the boron 11 at the time of boron infiltration, the diffusion temperature and holding time during diffusion bonding, but the most important factor is the amount of boron in the boron permeation layer.

ボロン量が15%以上だとその後の高温における拡散接
合処理によってボロンの拡散が不十分となシ硼化物が2
0μm以上に析出するようになる。また、ボロン量が1
5%以上になると基地中のCrと結合してCr硼化物と
なυ、拡散処理によっても消滅しないので好ましくない
。拡散接合においてボロン量が低すぎる場合荷Mを負荷
すると接合率が向上するが、ポロン量會適尚に選べばイ
i′jM金かけなくてもできる。
If the amount of boron is 15% or more, the subsequent diffusion bonding treatment at high temperatures may result in boron diffusion being insufficient.
It begins to precipitate to a size of 0 μm or more. Also, the amount of boron is 1
If it exceeds 5%, it is not preferable because it combines with Cr in the matrix to form Cr boride, which is not eliminated even by diffusion treatment. In diffusion bonding, if the amount of boron is too low, the bonding rate can be improved by applying a load M, but if the amount of boron is selected appropriately, it can be done without spending any money.

拡散処理後の接合部のB量が0.2%を越えるとクリー
プ破断強度が低下するのでB 量’CO,2”10以 
′下とするのがよい。
If the amount of B in the joint after diffusion treatment exceeds 0.2%, the creep rupture strength will decrease, so the amount of B should be less than 2"10.
It is better to set it below.

(耐熱複合部品の組合b) 燃焼器ライナ相にはpe基オースアナイト系合金が用い
られる。
(Combination b of heat-resistant composite parts) A PE-based ausanite alloy is used for the combustor liner phase.

その合金のCは高温強度の点から0.05以上するが0
.2%を越えると加工性が低下するので、0.05〜0
.2%が好ましい。Crは高温耐食性の点から20〜4
0%、Niは安定した耐熱性と、オーステナイト組織を
得るために15〜50%必要である。一方この合金に対
して、酸化物分散強化合金の組成は、高温強度の点から
Y2O3は0.3〜8%、加工性の点から0.2〜0.
8%Ti1耐酸化性の点から3〜6%パノ5、耐食性の
点から15〜25%Crff1含み、残部がNiからな
る合金が最適である。
The C content of the alloy should be 0.05 or more from the viewpoint of high temperature strength, but it is 0.
.. If it exceeds 2%, workability will decrease, so 0.05 to 0.
.. 2% is preferred. Cr is 20 to 4 from the viewpoint of high temperature corrosion resistance.
0%, Ni is required in an amount of 15 to 50% to obtain stable heat resistance and an austenitic structure. On the other hand, compared to this alloy, the composition of the oxide dispersion strengthened alloy is 0.3 to 8% Y2O3 from the viewpoint of high temperature strength and 0.2 to 0.0% from the viewpoint of workability.
An alloy containing 8% Ti1, 3 to 6% Pano 5 from the viewpoint of oxidation resistance, 15 to 25% Crff1 from the viewpoint of corrosion resistance, and the balance consisting of Ni is optimal.

ガスタービン用静殿における耐熱合金には炭化物析出強
化型のCO基とNi基合金 r/相析出強化型Ni基合
金がir)る。炭化物析出強化型1合金r、t、高侃強
度及び延性の点から、C091〜0.6 ”/。
Heat-resistant alloys for gas turbine statics include carbide precipitation-strengthened CO-based and Ni-based alloys (r/phase precipitation-strengthened Ni-based alloys). Carbide precipitation strengthened type 1 alloy r, t, from the point of view of high strength and ductility, C091~0.6''/.

W5〜1−0電惰、Co15〜35%、耐食性の点から
Cr20=40%のLUFliiを基本成分としたもの
7−/相析出強化型Nt基合金の場合はr′相影形成元
素あるA11〜3′!4、T12〜5%とし、さC)に
高温強度の点からc O,05〜0.2%、0017〜
22%、高温耐食性の点からCr15〜25%を含むも
のが好ましい。この静翼の場合の酸化物分散強化合金は
高1品強度耐熱疲労性の点からY2030,3〜1.5
%CO,02−,0,15%耐酸化性の点からA l 
0.2〜5%、耐食性の点からCr15〜25%、加工
性の点からTi013〜0.7%残部Ntからなるのが
好ましい。
W5~1-0 electric inertia, Co15~35%, Cr20=40% LUFlii as the basic component from the viewpoint of corrosion resistance 7-/In the case of phase precipitation strengthened Nt-based alloy, A11 with r' phase-forming element ~3′! 4. T12~5%, C) from the viewpoint of high temperature strength, c O, 05~0.2%, 0017~
22%, and preferably 15 to 25% Cr from the viewpoint of high temperature corrosion resistance. The oxide dispersion strengthened alloy for this stator blade is Y2030, 3 to 1.5 in terms of high grade strength and thermal fatigue resistance.
%CO,02-,0,15%Al
From the viewpoint of corrosion resistance, it is preferably composed of 0.2 to 5% Cr, 15 to 25% Cr from the viewpoint of corrosion resistance, and 13 to 0.7% Ti and the balance Nt from the viewpoint of workability.

動呉における耐熱合金にはr′相析出強化型Ni基合金
を用いられるが、その成分はγ′形成元素であるA13
〜6%、’t’ti〜4%、高温耐食性のためCr6へ
、17.9、高温強度と鋳造性全考慮1、てC0,05
〜0.15%とするのが好ましい。一方、酸化物分散強
化合金目1、燃焼器ライナ及び静翼材に用いたものより
高温強度が高いものが必要でY* Osは0.71〜1
.5%と多く、さらに基地を強化するためr′相影形成
元素おるAt3〜6%、T11〜4%C0,02〜0.
15%、Ta1〜3%、W2〜6%、粒界強元累である
Z r 0.1〜0.3%、80.02〜0,2%、高
温耐食性のためCr12〜18′沌残部Niとするもの
が好捷しい。
An r'-phase precipitation strengthened Ni-based alloy is used as the heat-resistant alloy in Dogo, and its components include A13, which is a γ'-forming element.
~6%, 't'ti ~4%, to Cr6 for high temperature corrosion resistance, 17.9, high temperature strength and castability all considered 1, C0,05
It is preferable to set it as 0.15%. On the other hand, oxide dispersion strengthened alloy No. 1 needs to have higher high temperature strength than those used for the combustor liner and stator blade material, and Y*Os is 0.71 to 1.
.. 5%, and furthermore, to strengthen the base, the r' phase forming elements are At3-6%, T11-4%, C0.02-0.
15%, Ta 1-3%, W 2-6%, grain boundary strong element Z r 0.1-0.3%, 80.02-0.2%, Cr 12-18' Chaos residue for high temperature corrosion resistance The one with Ni is preferable.

前述した酸化物分散強化合金に代えてA /、 0.5
〜6%、  T io、  5〜6%、C0,02〜0
.2 ゛ン0゜005〜20%、Cr5〜20%、残部
Ntからなる一方向凝固超合金、A t 0.5〜6%
、TiO,5〜6%、0103〜20%、Cr5〜20
%、残部Niからなる単結晶金属部拐、前述したガスか
らなる繊維を分散させた繊維強化超合金全同様に用いる
ことができる。
A/, 0.5 in place of the oxide dispersion strengthened alloy described above
~6%, Tio, 5~6%, C0,02~0
.. Directionally solidified superalloy consisting of 0.5~20% Cr, 5~20% Cr, and the balance Nt, At 0.5~6%
, TiO, 5-6%, 0103-20%, Cr5-20
%, the balance being Ni, and the fiber-reinforced superalloy in which fibers made of the aforementioned gas are dispersed can be used in the same way.

一方向凝固超合金及び繊維強化超合金は、いずれも引張
力を受ける方向を前者では凝固方向及び後者では繊維の
長さ方向と一致させるのが必要である。
For both unidirectionally solidified superalloys and fiber-reinforced superalloys, it is necessary that the direction in which the tensile force is applied coincides with the direction of solidification in the former and the length direction of the fibers in the latter.

〔発明の実施例〕[Embodiments of the invention]

実施例1 第1図は本発明の合金1&:適用したガスタービン用静
汎の斜視図である。翼部2で27 、2 g、 2//
/は850C以上にさらされる部分で最高で1100C
に達する場合がある。M泉で、0.25%C130%C
r、7.7%W%0.012%B、10.5%N1、残
部coからなるCo基耐熱合金を真空溶解し、ロストワ
ックス法によって、精度鋳造し、接合面を最終仕上げで
エメリー紙+SOOまで研磨した。次いで重量で、2o
%Cr 0.6 %Yz Os、0、3 %A t、0
.5’10T j 、 0.05 %C%残部NMから
なる酸化物分散強化超合金によって第1図の部品2/、
21/、2“′を成形した。次に翼部2の接合面以外f
 7 スフし、1%B −2,5%NH*C1−残部A
l2O5粉からなる混合粉末剤の中に埋め込み、Ar中
で850Cxahの加熱する処理を施した。次いで接合
面のB浸透面t′軽くホーニングし、さらに水洗いした
。互いに接合面全入念に合せて治具により動かないよう
に固定し、加圧して、Ar中、1,200?、”X3h
の拡散処理を行った。次いで、CO基耐熱合金の熱処理
1.150CX2h→を冷、982UX4b→空冷の熱
処理を行い、図に示すガスタービン用靜slt得た。接
合は翼部2のみとし、サイドウオール1゜1”には行わ
れていない。これにより静翼の使用温度が約150C高
くできることが分った。接合部断面の顕微鏡観察の結果
、ポライドのない均一な組織であ・りた。
Example 1 FIG. 1 is a perspective view of a static spectrum for a gas turbine to which alloy 1&: of the present invention is applied. 27, 2 g, 2// in wing part 2
/ is a part exposed to 850C or higher, up to 1100C
may reach. M spring, 0.25%C130%C
A Co-based heat-resistant alloy consisting of r, 7.7% W%, 0.012% B, 10.5% N1, and the balance co is melted in vacuum, precision cast using the lost wax method, and the joint surfaces are finished with emery paper. Polished to +SOO. Then, by weight, 2o
%Cr 0.6 %Yz Os, 0,3 %A t, 0
.. Component 2/ of FIG.
21/, 2"' was molded. Next, f other than the joint surface of the wing part 2
7 Sprinkle, 1% B - 2,5% NH*C1 - Remainder A
It was embedded in a mixed powder made of 12O5 powder and heated at 850 Cxah in Ar. Next, the B permeation surface t' of the joint surface was lightly honed and further washed with water. Carefully align the joint surfaces with each other, fix them with a jig so that they do not move, apply pressure, and heat them in Ar at 1,200? ,”X3h
Diffusion treatment was performed. Next, heat treatment of the CO-based heat-resistant alloy 1.150CX2h→cooling, 982UX4b→air cooling was performed to obtain the cold slt for gas turbine shown in the figure. Bonding is done only on the wing section 2, and is not done on the sidewall 1°1". It was found that this allows the operating temperature of the stator vane to be raised by about 150C. As a result of microscopic observation of the joint section, it was found that the section without polide was bonded. It was a uniform organization.

実施例2 第2図Cよ本発明の合金を適用したガスタービン用ルυ
翼の斜視図である。翼部3−C3’の先端部分が850
C以上の温度にさらされる。3′は翼部3の17′4位
である。この部分金本量で、15%Cr、1.1%¥2
03.4.5%At、2.5%Ti12%T’a、2 
%Mo、   4 %W、0.1 %Z r、 0.0
1%BIBalNiの酸化物分散合金で作製した。次ぎ
に3′を除き翼部3”、シャンク4.ダブテイル5の部
分を、重量で、0.1%c、i%Co、16.2%Cr
Example 2 Figure 2C shows a gas turbine lu υ to which the alloy of the present invention is applied.
FIG. 2 is a perspective view of a wing. The tip part of wing part 3-C3' is 850
exposed to temperatures above C. 3' is the 17'4 position of the wing section 3. This partial gold amount is 15% Cr, 1.1% ¥2
03.4.5%At, 2.5%Ti12%T'a, 2
%Mo, 4%W, 0.1%Zr, 0.0
It was made from an oxide-dispersed alloy of 1% BIBalNi. Next, except for 3', the wing part 3", shank 4, and dovetail 5 parts were made of 0.1% C, i% Co, 16.2% Cr by weight.
.

2.7%W、2%M O、(1,Q6’乞)Z r 、
J2’′/i+ Al*3、 C34“シθIll i
、残部Niから在るNN基耐熱台金のれ受溶解、荀密釣
造によって製造した。この耐熱合金かC)なる−浅化、
接曾mj以外をマスクして実Jj14例1と同様の方法
によシ[(を拡散浸透させた。
2.7% W, 2% M O, (1, Q6') Z r,
J2''/i+ Al*3, C34"shi θIll i
It was manufactured by applying and melting the NN-based heat-resistant base metal with the remaining Ni, and by Xun Midiao construction. This heat-resistant alloy C) becomes shallower;
Masking the areas other than the contact area MJ, it was diffused and infiltrated in the same manner as in Example 1 of Actual JJ 14.

拡散接合は加圧して、前述と同様に行った。次いで、N
!基ij熱台金の熱処理と同様の1,121Cx2h→
窒冷、843tl、’X24h→視冷を行った。第3図
は接合部のミクロ組織を観察した結果、良好な接合部が
得られた。これによシ酸化物分故強化合金一体の動翼よ
シ優れよシバランスのとれた性能が得られた。
Diffusion bonding was performed in the same manner as described above under pressure. Then, N
! 1,121C x 2h, similar to the heat treatment of base ij heat base metal →
Nitrogen cooling, 843 tl, 'X24h→Visual cooling was performed. FIG. 3 shows that as a result of observing the microstructure of the joint, a good joint was obtained. As a result, better and more balanced performance than that of a rotor blade made of an alloy reinforced with oxidized oxides was obtained.

実施例3 実施例1の酸化物分散強化型超合金の代りに、直径0.
4 mIのWaの束に20 xtt’po Cr k含
むNl基合金の溶湯を含υさせて製造した繊維強化超合
金の試料を実施例1と同様の方法によシ拡散接合させた
。拡散接合の加熱は真空中で行い、接合後、実施例1と
同様の熱処理全行った。W線の面積率eよ75%であシ
、繊維強化型合金の接合は繊維の端面で行った。この複
合合金によればガスタービン用静翼の使用温匿を約10
0C畠めることができる。
Example 3 Instead of the oxide dispersion strengthened superalloy of Example 1, a diameter of 0.
A sample of a fiber-reinforced superalloy produced by impregnating a 4 mI Wa bundle with a molten Nl-based alloy containing 20 xtt'poCrk was diffusion bonded in the same manner as in Example 1. Heating for diffusion bonding was performed in a vacuum, and after bonding, the same heat treatment as in Example 1 was performed. The area ratio of the W wire was 75%, and the fiber-reinforced alloy was joined at the end face of the fiber. According to this composite alloy, the usability of stator blades for gas turbines can be reduced by approximately 10%.
You can get 0C.

実施例4 実施例2の酸化物分散強化型合金の代りに、直径0.4
闘のW線の束にiL輩で、W2.5%、Cr15%。
Example 4 Instead of the oxide dispersion strengthened alloy of Example 2, a diameter of 0.4
A bunch of fighting W lines with iL guys, W2.5%, Cr15%.

At2“>6+ T I 2’釉、残部Niからなる合
金の溶湯を含浸させ、Wの面積率90%の繊維強化型合
金金、実施例2と同様の方法によυ拡散接合させた。接
面は繊維の肩面で行い、接合後実施例2と「C1」様の
λ、へ処理を行った。
At2">6+ T I 2' glaze was impregnated with a molten alloy consisting of the remainder Ni, and the fiber-reinforced gold alloy with a W area ratio of 90% was bonded by υ diffusion bonding in the same manner as in Example 2. The surface was the shoulder surface of the fiber, and after bonding, processing was performed to λ similar to Example 2 and "C1".

この複8台金によればガスタービン用動翼の使用温f’
k150t?晶めることかできる。なお、この動翼全体
に厚さ10μmの白金を被f屡することが好ましい。
According to this double 8 base metal, the operating temperature f' of the gas turbine rotor blade is
k150t? I can crystallize it. Note that it is preferable that the entire rotor blade be coated with platinum with a thickness of 10 μm.

実施例5 実施例1の酸化物分散強化合金の代シに、班はで、ht
s?o、 ′riz、s%、C0,15%、 W 12
”io 。
Example 5 In place of the oxide dispersion strengthened alloy of Example 1, the group was
S? o, 'riz, s%, C0,15%, W 12
”io.

Co 10’3’o、 Cr9’3’o、 1N 1.
8%、 80.02%、Zr0.08%、残部Niから
なる一方向凝固合金を実施例1と同株の方法により拡散
接合させた。接合は真壁中で1.23I’で211加熱
することにより行い、凝固方間の/1間面ケ接合面とし
た。接合後、982CX4h加熱による時効処理及び8
71t;X20h加熱による時効処理ケ行った。この複
合合金によれは、ガスタービン用訃典の使用温度を約1
00C高貌にすることができる。
Co 10'3'o, Cr9'3'o, 1N 1.
A directionally solidified alloy consisting of 8%, 80.02%, Zr 0.08%, and the balance Ni was diffusion bonded by the same method as in Example 1. The bonding was performed by heating at 1.23 I' in a solid wall at 211° C., and the bonding surface was made between /1 and 211 mm during the solidification process. After joining, aging treatment by 982CX 4h heating and 8
Aging treatment was performed by heating for 71t; x20h. This composite alloy can lower the operating temperature of gas turbines by approximately 1
00C can be made to look tall.

実施例6 実施例2の酸化物分数強化合金の代りに、ijh量で、
CrlO%、At5%、1’11.5%、 Ta 12
”10 、 W4%、残部tq rからなる単結晶部材
を実施例1と同1〉メの方法によシ拡散接合させた。接
合後、1079CX4hの使用温度を約100C高める
ことができる。
Example 6 Instead of the oxide fractionally strengthened alloy of Example 2, with an amount of ijh,
CrlO%, At5%, 1'11.5%, Ta12
A single crystal member consisting of 10% W, 4% W, and the remainder tqr was diffusion bonded by the same method as in Example 1. After bonding, the operating temperature of 1079CX4h can be raised by about 100C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、接合強度の昂い複合合金部材が得られ
、!侍にガスタービン用11J翼及び静翼の便用温度を
顕著に高めることができる。
According to the present invention, a composite alloy member with high bonding strength can be obtained! It is possible to significantly increase the operating temperature of the 11J blades and stationary blades for the Samurai gas turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の合金を−51通用したガスタービン用
靜楓の一例ケ示す余1視図及び第2図は本発明の合金を
適用したガスタービン用is f4のfi視図である。 1.1′・・・サイドウオール、2,3・・・轟部、4
・・・シャンク、5・・・ダブテイル、2/、 2 L
/ 、 2r1/ 、 3’/日立市幸町3丁目1番1
号株式 会社日立製作所日立研究所内
Fig. 1 is a perspective view of an example of a gas turbine using the alloy of the present invention at -51, and Fig. 2 is a fi view of an IS F4 for a gas turbine to which the alloy of the present invention is applied. 1.1'...Side wall, 2,3...Todorobu, 4
...Shank, 5...Dovetail, 2/, 2 L
/ , 2r1/ , 3'/ 3-1-1 Saiwaimachi, Hitachi City
No.Hitachi, Ltd., Hitachi Research Institute

Claims (1)

【特許請求の範囲】 1、酸化物分散強化合金部材、繊維強化合金部材、一方
向凝固合金部材及び単結晶金属部材の1程からなる超合
金部材と該超合金部材以外の耐熱合金部材とが、これら
の合金部杓と合金化して該合金部材の融点を低下さる金
属を介在させて拡散接合された部材であって、前記超合
金の接合部は接合前の組織が維持されていること全特徴
とする耐熱性複合合金部材。 2、前記金属はポロンであシ、接合部のボロン量が0,
2重量%以下である特許請求の範囲第1項に記載の耐熱
複合合金部材。 3、前記複合部材はガスタービン用ブレードであシ、そ
の翼部の少なくとも先端部分の1/4を前記超合金部相
によって構成した特許請求の範囲第1項又は第2項に記
載の耐熱複合合金部材。 4゜前記ブレードは、少なくともその残部の先端部分ノ
1 / 4−+除イ’+、itで、CO,05〜0.2
’10 。 841%以下、Mn1%以下、Cr10〜25%。 Mo及びWの11ft以上2〜lO%、AtO,5〜7
%、Ti0.5〜7%、80.005〜O,o5’3.
、及び残部Niからなシ、Az−t−’ri量が3〜1
0%でおシ、r′相の析出によって強化されたNi基鈎
造合金からなる特許請求の範囲第3項に記載の耐熱複合
合金部材。 5、前記複合部材はガスタービン用ノズルであシ、その
翼部の少なくともトレーリングエッヂ部を前記超合金部
材によって構成した特許請求の範囲第1項又は第2項に
記載の耐熱合金部拐。 6、前記ノズルは、少なくともその翼部のトレーリング
エッヂ部を除いて重量で、C0,1〜0.6%。 Si2%以下、Mn2%以下、Cr2O〜40%。 C010〜35%、MO及びWの1種以上5〜10%、
Bo、005〜0.05%、残部Niからなシ、共晶炭
化物及び二次辰化物の析出によって強化されたCo基鋳
造合金からなる特許MrJ求の範囲第5項に記載の耐熱
合金部杓。 7、前記ノズルは、少なくともその翼部のトレーリング
エッチ部金除いて亀竜で、C0,2〜0.6%。 Cr 20〜40’佑、Ni5〜15%、Mo及びWの
1種以上5〜10%、Bo、005〜0.05%残部C
oからなシ、共晶炭化物及び二次炭化物の析出によって
強化されたNi基鋳造合金からなる特許請求の範囲第5
項に記載の耐熱複合合金部材。 8、前記酸化物分散強化合金部材は、重量で、C0,0
2〜0.2%、y、oso、a〜1.5%、Ti002
〜5%、AtO,2〜6%、Cr12〜25%を含み、
Fe、 Ni及びCOの少なくとも1種以上を40%以
上有するFe基、Ni基又はCo基超超合金ある特#/
[請求の範囲第1項〜第7項のいずれかに記載の耐熱複
合合金部材。 9、前記一方向凝固合金部材は、重量でC0,02〜0
.2%、811%以下、Mn1%以下、Cr5〜20%
、A10.5〜6%、lo、s〜6%IMO及びWの1
種以上2〜10%、C05〜20%。 残部Niからなシ、一方向に凝固させた鋳造組織を有す
るものであり、前記鋳造組織の成長方向に垂直な面を前
記耐熱合金部材に接合されている特許請求の範囲第1項
〜第7項のいずれかに記載の耐熱性複合合金部材。 10、前記単結晶金属部材は、重量で、A12〜7%、
Ti3〜6%、Cr6〜20%、Ta5〜15%及び6
015〜35%を含み、Ni40%以上のNi基合金か
らなる特許請求の範囲第1項〜第7項のいずれかに記載
の耐熱性複合合金部材。 11、酸化物分散強化合金部材、繊維強化合金部材、一
方向凝固合金部材及び単結晶金属部材の1種からなる超
合金部材と該超合金部材以外の面1熱合金部材とを、こ
れらの合金部材と合金化して該合金部材の融点全低下さ
せる金属を介在させて拡散接合する′方法において、前
記耐熱合金部材の接合面に前記金rt−予め拡散浸透さ
せ、その面に前記超合金部材を接触させて、非酸化性雰
囲気中で加熱することt%徴とする耐熱性複合合金部材
の製法。 12、前記加熱する間中、前記合金部材に対し、接合面
間に圧力を加える特許請求の範囲第11項に記載の耐熱
性複合合金部材の製法。 13、前記金属からなる粉末及−び前記金属と反応して
拡散浸透する温度でガス化する拡散促進剤を含む粉末中
に前記耐熱合金を埋め込み、所定の温度で非酸化性雰囲
気中で加熱し、接合面に前記金員の拡散浸透層を形成さ
せる特許請求の範囲第11項又は第12項に記載の耐熱
性複合合金部材の製法。 14、前記拡散浸透層は、最外表面で5〜15重量%の
B金倉み、5〜20μmの厚さを有する特許請求の範囲
第11項〜第13項のいずれかに記載の耐熱性複合合金
部材の製法。
[Claims] 1. A superalloy member consisting of one of an oxide dispersion reinforced alloy member, a fiber reinforced alloy member, a directionally solidified alloy member, and a single crystal metal member, and a heat-resistant alloy member other than the superalloy member. , a member that is diffusion bonded with a metal that is alloyed with these alloy parts and lowers the melting point of the alloy member, and the superalloy joint part must maintain its structure before joining. Features a heat-resistant composite alloy member. 2. The metal is poron, and the amount of boron in the joint is 0.
The heat-resistant composite alloy member according to claim 1, wherein the content is 2% by weight or less. 3. The heat-resistant composite according to claim 1 or 2, wherein the composite member is a blade for a gas turbine, and at least 1/4 of the tip portion of the blade portion is constituted by the superalloy phase. Alloy parts. 4° Said blade has at least the remainder of its distal end portion 1/4-+dil'+, it of CO,05 to 0.2
'10. 841% or less, Mn 1% or less, Cr 10-25%. Mo and W over 11ft 2-1O%, AtO, 5-7
%, Ti0.5-7%, 80.005-O, o5'3.
, and the remainder is Ni, the amount of Az-t-'ri is 3 to 1
4. The heat-resistant composite alloy member according to claim 3, which is made of a Ni-based hooked alloy strengthened by precipitation of 0% and r' phase. 5. The heat-resistant alloy member according to claim 1 or 2, wherein the composite member is a gas turbine nozzle, and at least the trailing edge portion of the blade portion thereof is made of the superalloy member. 6. The nozzle has a weight of C0.1 to 0.6%, excluding at least the trailing edge of its wing. Si2% or less, Mn2% or less, Cr2O~40%. C010-35%, 5-10% of one or more of MO and W,
The heat-resistant alloy part according to item 5 of the scope of patent MrJ, consisting of a Co-based cast alloy strengthened by precipitation of Bo, 0.005 to 0.05%, balance Ni, eutectic carbide and secondary cinnamate. . 7. The nozzle has a carbon content of 0.2 to 0.6%, except for at least the trailing etch portion of the wing. Cr 20-40', Ni 5-15%, one or more of Mo and W 5-10%, Bo, 005-0.05% balance C
Claim 5 consisting of a Ni-based cast alloy strengthened by the precipitation of eutectic carbides and secondary carbides.
The heat-resistant composite alloy member described in . 8. The oxide dispersion strengthened alloy member has a weight of C0,0
2-0.2%, y, oso, a-1.5%, Ti002
~5%, AtO, 2~6%, Cr12~25%,
A Fe-based, Ni-based or Co-based superalloy containing at least 40% of at least one of Fe, Ni and CO
[The heat-resistant composite alloy member according to any one of claims 1 to 7. 9. The directionally solidified alloy member has a weight of C0.02~0
.. 2%, 811% or less, Mn 1% or less, Cr5-20%
, A10.5-6%, lo, s-6% IMO and 1 of W
2-10% of seeds and above, C05-20%. Claims 1 to 7 have a cast structure solidified in one direction, with the remainder being Ni, and a surface perpendicular to the growth direction of the cast structure is joined to the heat-resistant alloy member. The heat-resistant composite alloy member according to any one of Items 1-2. 10. The single crystal metal member has A12 to 7% by weight,
Ti3-6%, Cr6-20%, Ta5-15% and 6
The heat-resistant composite alloy member according to any one of claims 1 to 7, comprising a Ni-based alloy containing 40% or more of Ni and 40% or more of Ni. 11. A superalloy member made of one of the following: an oxide dispersion reinforced alloy member, a fiber reinforced alloy member, a directionally solidified alloy member, and a single crystal metal member; In the method of diffusion bonding using a metal that is alloyed with a member and lowers the melting point of the alloy member, the gold rt is pre-diffused into the bonding surface of the heat-resistant alloy member, and the superalloy member is applied to that surface. A method for producing a heat-resistant composite alloy member, which comprises contacting the member and heating it in a non-oxidizing atmosphere. 12. The method for manufacturing a heat-resistant composite alloy member according to claim 11, wherein pressure is applied between joint surfaces of the alloy member during the heating. 13. Embed the heat-resistant alloy in a powder made of the metal and a diffusion promoter that reacts with the metal and gasifies at a temperature at which it diffuses and permeates, and heat it at a predetermined temperature in a non-oxidizing atmosphere. The method for manufacturing a heat-resistant composite alloy member according to claim 11 or 12, wherein a diffusion permeation layer of the metal is formed on the joint surface. 14. The heat-resistant composite according to any one of claims 11 to 13, wherein the diffusion permeation layer has a B content of 5 to 15% by weight on the outermost surface and a thickness of 5 to 20 μm. Manufacturing method for alloy parts.
JP18460582A 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production Granted JPS5976839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18460582A JPS5976839A (en) 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18460582A JPS5976839A (en) 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production

Publications (2)

Publication Number Publication Date
JPS5976839A true JPS5976839A (en) 1984-05-02
JPH023674B2 JPH023674B2 (en) 1990-01-24

Family

ID=16156135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18460582A Granted JPS5976839A (en) 1982-10-22 1982-10-22 Heat resistant composite alloy member and its production

Country Status (1)

Country Link
JP (1) JPS5976839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148562A (en) * 1984-08-10 1986-03-10 Hitachi Ltd Manufacture of body to be joined
JPH02290938A (en) * 1989-02-08 1990-11-30 Inco Alloys Internatl Inc Mechanically-alloyed nickel-cobalt- chromium-iron composition
CN111218584A (en) * 2018-11-23 2020-06-02 中国科学院金属研究所 Large-gap brazing repair method for DZ40M alloy part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
JPS4913060A (en) * 1972-03-20 1974-02-05
JPS5277854A (en) * 1975-12-19 1977-06-30 United Technologies Corp Construct made by diffusion joining
JPS5434087A (en) * 1977-08-22 1979-03-13 Hitachi Cable Ltd Oil feeding tank for oil filled power cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3678570A (en) * 1971-04-01 1972-07-25 United Aircraft Corp Diffusion bonding utilizing transient liquid phase
JPS4913060A (en) * 1972-03-20 1974-02-05
JPS5277854A (en) * 1975-12-19 1977-06-30 United Technologies Corp Construct made by diffusion joining
JPS5434087A (en) * 1977-08-22 1979-03-13 Hitachi Cable Ltd Oil feeding tank for oil filled power cable

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148562A (en) * 1984-08-10 1986-03-10 Hitachi Ltd Manufacture of body to be joined
JPH02290938A (en) * 1989-02-08 1990-11-30 Inco Alloys Internatl Inc Mechanically-alloyed nickel-cobalt- chromium-iron composition
JP2672386B2 (en) * 1989-02-08 1997-11-05 インコ、アロイス、インターナショナル インコーポレーテッド Mechanically alloyed nickel-cobalt-chromium-iron compositions
CN111218584A (en) * 2018-11-23 2020-06-02 中国科学院金属研究所 Large-gap brazing repair method for DZ40M alloy part

Also Published As

Publication number Publication date
JPH023674B2 (en) 1990-01-24

Similar Documents

Publication Publication Date Title
US6648596B1 (en) Turbine blade or turbine vane made of a ceramic foam joined to a metallic nonfoam, and preparation thereof
US4869645A (en) Composite gas turbine blade and method of manufacturing same
DE2637443C2 (en)
US5451142A (en) Turbine engine blade having a zone of fine grains of a high strength composition at the blade root surface
Kear et al. Aircraft gas turbine materials and processes
Schafrik et al. Gas turbine materials
KR19990035738A (en) Gas Turbine Nozzles, Power Generation Gas Turbines, and CO-Base Alloys and Welding Materials
CN110524082B (en) Method for quickly wetting carbon fibers in ceramic matrix composite by taking Fe as active element
US6165290A (en) Cobalt-chromium-palladium-based brazing alloys
US6602548B2 (en) Ceramic turbine blade attachment having high temperature, high stress compliant layers and method of fabrication thereof
US6544003B1 (en) Gas turbine blisk with ceramic foam blades and its preparation
US4103063A (en) Ceramic-metallic eutectic structural material
Darolia et al. NiAl alloys for turbine airfoils
JPS5976839A (en) Heat resistant composite alloy member and its production
CN106947902B (en) Gas turbine component and method for producing such a gas turbine component
Petrasek et al. Tungsten‐Fiber‐Reinforced Superalloys—A Status Review
US6582812B1 (en) Article made of a ceramic foam joined to a metallic nonfoam, and its preparation
Mehan et al. Nickel Alloys Reinforced with a-A1203 Filaments
Khorram et al. Surface modification of IN713 LC superalloy with Metco 204NS by laser surface alloying
US6378755B1 (en) Joined structure utilizing a ceramic foam bonding element, and its fabrication
EP0532252A1 (en) Superalloy component with dispersion-containing protective coating, and method of preparation
Petrasek et al. Fiber reinforced superalloys
JP3534633B2 (en) Joint member and turbine member
Signorelli Review of status and potential of tungsten-wire: Superalloy composites for advanced gas turbine engine blades
Larsen et al. An overview of potential titanium aluminide composites in aerospace applications