JP2003053520A - METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER - Google Patents

METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER

Info

Publication number
JP2003053520A
JP2003053520A JP2001251353A JP2001251353A JP2003053520A JP 2003053520 A JP2003053520 A JP 2003053520A JP 2001251353 A JP2001251353 A JP 2001251353A JP 2001251353 A JP2001251353 A JP 2001251353A JP 2003053520 A JP2003053520 A JP 2003053520A
Authority
JP
Japan
Prior art keywords
brazing
joining
brazing material
alloy
filler metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001251353A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawaura
宏之 川浦
Kazuaki Nishino
和彰 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001251353A priority Critical patent/JP2003053520A/en
Publication of JP2003053520A publication Critical patent/JP2003053520A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Supercharger (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of joining Ti-Al-base alloy members which are capable of satisfactorily brazing these members even in the atmosphere air while suppressing the hike of a cost. SOLUTION: A brazing filler metal containing at least either of silicon and chromium as a main component is arranged at the joining boundary between the first member 1 and the second member 2. The first member 1 and the second member 2 are brazed in the atmosphere air by loading the surface pressure of >=0.1 MPa and below the yield stress of the first member 1 and the second member 2 to the joining boundary, heating the joining boundary to a brazing temperature region in the atmosphere air and specifying the time for holding the members in the brazing temperature region to 15 to 40 seconds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はTi−Al系合金を
基材とする第1部材と鋼系合金を基材とする第2部材と
を接合するTi−Al系合金部材の接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining method for a Ti-Al alloy member, which joins a first member having a Ti-Al alloy as a base material and a second member having a steel alloy as a base material.

【0002】[0002]

【従来の技術】車両用ターボチャージャに装備されるタ
ービンロータを例にとって、従来技術について説明す
る。従来、車両用ターボチャージャに装備されるタービ
ンロータは、Ni基超合金(lnconel 713
c)の精密鋳造品が使用されており、合金鋼で形成され
たシャフトとは摩擦圧接法や電子ビーム溶接法によって
接合されているのが一般的である。
2. Description of the Related Art The prior art will be described by taking a turbine rotor mounted on a vehicle turbocharger as an example. BACKGROUND ART Conventionally, a turbine rotor installed in a turbocharger for a vehicle has a Ni-base superalloy (lnconel 713).
The precision cast product of c) is used, and it is generally joined to the shaft made of alloy steel by a friction welding method or an electron beam welding method.

【0003】また最近では、軽量化によるタービンロー
タのレスポンスの更なる向上を狙って、窒化珪素を基材
とするセラミック製のタービンロータが実用化されてい
る。しかし、このセラミック製のタービンロータは、
(1)従来の金属製ロータに比べて、靱性が乏しく翼厚
を厚くする必要があり、更に、(2)熱膨張が金属とか
なり異なるため、タービンロータを収容する金属製のハ
ウジングとのクリアランスを大きくする必要がある。こ
れらの理由から、ターボ性能の向上には限界がある。
In recent years, a ceramic turbine rotor based on silicon nitride has been put into practical use in order to further improve the response of the turbine rotor by reducing the weight. However, this ceramic turbine rotor
(1) Compared with the conventional metal rotor, the toughness is poor and it is necessary to increase the blade thickness, and (2) the thermal expansion is considerably different from that of the metal, so that the clearance between the turbine rotor and the metal housing is large. Needs to be increased. For these reasons, there is a limit to improving turbo performance.

【0004】さらに、セラミック製のタービンロータと
鋼系の軸状部材とをろう付けで接合する場合について
も、セラミック製のタービンロータと軸状部材との接合
界面に低熱膨張材をインサートし、コスト高を誘発する
真空雰囲気においてろう付けを行う必要があり、製造コ
ストが高くなるという問題があった。
Further, when the ceramic turbine rotor and the steel shaft-shaped member are joined by brazing, a low thermal expansion material is inserted at the joint interface between the ceramic turbine rotor and the shaft-shaped member to reduce the cost. There is a problem that it is necessary to perform brazing in a vacuum atmosphere that induces a high temperature, resulting in high manufacturing cost.

【0005】一方、Ti−Al系合金は、比重がセラミ
ックに近く、高温比強度はlnconel 713cと
同等または同等以上であり、タービンロータを形成する
材料として、近年、着目を浴びている。このTi−Al
系合金は、次世代の高レスポンス・高性能ターボチャー
ジャ材料として期待されており、一部のスポーツカーに
おいて採用されつつある。
On the other hand, the Ti-Al alloy has a specific gravity close to that of ceramics and a high temperature specific strength equal to or higher than that of lnconel 713c, and has recently attracted attention as a material for forming a turbine rotor. This Ti-Al
Series alloys are expected as next-generation high response and high performance turbocharger materials, and are being adopted in some sports cars.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、Ti−
Al系合金製のタービンロータを更に広めるためには、
材料自身の十分な耐久性、信頼性を確保することはいう
までもなく、Ti−Al系合金製のタービンロータと鋼
系合金製の軸状部材との接合コストを更に抑えることが
重要な課題として残されている。
However, Ti-
In order to further spread the turbine rotor made of Al alloy,
Needless to say, ensuring sufficient durability and reliability of the material itself, it is an important issue to further suppress the joining cost between the turbine rotor made of Ti-Al alloy and the shaft-shaped member made of steel alloy. It is left as.

【0007】このTi−Al系合金製のタービンロータ
と鋼系合金の軸状部材との接合技術については、特開平
10−118764号公報に係る技術が開示されてい
る。この公報技術によれば、Ti−Al系合金製のター
ビンロータと鋼系の軸状部材との接合界面にろう材を配
置した状態で、シールドガスとして機能する不活性ガス
を接合界面に供給しつつ、タービンロータと軸状部材と
の接合界面の回りに設けられた誘導加熱コイルに高周波
の交番電流を通電し、不活性ガス雰囲気において接合界
面と共にろう材をろう付け温度領域に誘導加熱し、これ
により両者をろう付けで接合することにしている。この
公報技術によれば、不活性ガス雰囲気においてろう付け
を行うため、Ti−Al系合金製のタービンロータと鋼
系の軸状部材との接合界面における酸化を防止すること
ができる。
Regarding the joining technique between the turbine rotor made of the Ti-Al alloy and the shaft member made of the steel alloy, the technique disclosed in Japanese Patent Laid-Open No. 10-118764 is disclosed. According to the technique of this publication, an inert gas that functions as a shield gas is supplied to the joint interface in a state where a brazing filler metal is arranged at the joint interface between a turbine rotor made of a Ti-Al alloy and a steel shaft member. Meanwhile, a high-frequency alternating current is applied to an induction heating coil provided around the joining interface between the turbine rotor and the shaft-shaped member, and the brazing material is induction-heated in the brazing temperature region together with the joining interface in an inert gas atmosphere, As a result, the two will be joined by brazing. According to the technique of this publication, since brazing is performed in an inert gas atmosphere, it is possible to prevent oxidation at the bonding interface between the turbine rotor made of a Ti-Al alloy and the steel shaft member.

【0008】しかしながらこの公報技術によれば、不活
性ガス雰囲気において接合界面の接合を行うため、大気
を不活性ガスに置換するガス置換装置が必要となる。故
に、コストがかかるのみならず、ろう付けの際に不活性
ガス置換を行う工程が必要になり、大気雰囲気で接合す
る場合に比べて工数が増大し、工業的量産化の面では不
利となる。
However, according to the technique of this publication, since the bonding interface is bonded in an inert gas atmosphere, a gas replacement device for replacing the atmosphere with an inert gas is required. Therefore, not only is it costly, but it also requires a step of performing an inert gas replacement during brazing, which increases the number of steps compared to joining in an air atmosphere, which is disadvantageous in terms of industrial mass production. .

【0009】本発明は上記した実情に鑑みてなされたも
のであり、コストの高騰を抑えつつ、大気中であっても
良好にろう付けを行ない得るTi−Al系合金部材の接
合方法を提供することを課題とするにある。
The present invention has been made in view of the above circumstances, and provides a method for joining Ti-Al alloy members capable of performing good brazing even in the atmosphere while suppressing the cost increase. That is the issue.

【0010】[0010]

【課題を解決するための手段】本発明者は、Ti−Al
系合金を基材とする第1部材と、鋼系合金を基材とする
第2部材とを接合するTi−Al系合金部材の接合方法
について鋭意開発を進めている。そして、本発明者は、
第1部材と第2部材とのろう付けが大気中で行なわれれ
ば、コスト低減に有利であり、工業的量産化の面では有
利であるものの、接合界面における酸素成分の影響で高
い接合強度が得られにくいが、ろう材にシリコンやクロ
ムを積極的に含有させれば、第1部材と第2部材との接
合強度が向上することを知見した。ろう材に含まれるシ
リコンやクロムが自身の酸化に基づく還元作用を有する
ため、大気中で接合界面のろう付けが行われるときであ
っても、ろう材に含まれるシリコン及びクロムは接合前
の接合界面の酸素成分を効果的に消費でき、接合界面の
酸化を抑え得るものと推察される。
The present inventor has found that Ti--Al
The Ti-Al based alloy member joining method for joining a first member including a base alloy to a second member including a steel alloy as a base material is being intensively developed. And the inventor
If the brazing of the first member and the second member is performed in the atmosphere, it is advantageous for cost reduction and is advantageous in terms of industrial mass production, but a high bonding strength is obtained due to the influence of oxygen components at the bonding interface. Although it is difficult to obtain, it has been found that if the brazing material positively contains silicon or chromium, the bonding strength between the first member and the second member is improved. Since silicon and chromium contained in the brazing filler metal have a reducing action based on their own oxidation, the silicon and chromium contained in the brazing filler metal are bonded before joining even when brazing of the joint interface is performed in the atmosphere. It is presumed that the oxygen component at the interface can be effectively consumed and the oxidation at the bonding interface can be suppressed.

【0011】また本発明者は、ろう材に含まれるシリコ
ン及びクロムは、上記した酸素成分の消費を促進して接
合界面の酸化を抑え得る利点を有するものの、拡散が進
行すると、接合強度の低下を誘発する脆い化合物を発生
させ易いが、ろう付け温度領域に保持する時間を15〜
40秒と短時間とすれば、高い接合強度が得られること
を知見した。ろう付け温度領域に保持する時間が短時間
であるため、ろう材に含まれるシリコン及びクロムの拡
散を抑えることができ、脆い化合物の発生を抑えること
ができるものと推察される。
The present inventor has found that the silicon and chromium contained in the brazing filler metal have the advantage of promoting the consumption of the above-mentioned oxygen components and suppressing the oxidation of the bonding interface, but when diffusion progresses, the bonding strength decreases. It is easy to generate brittle compounds that induce
It was found that a high bonding strength can be obtained if the time is as short as 40 seconds. Since the time of holding in the brazing temperature region is short, it is presumed that the diffusion of silicon and chromium contained in the brazing material can be suppressed and the generation of brittle compounds can be suppressed.

【0012】本発明に係るTi−Al系合金部材の接合
方法は、上記した知見に基づいてなされたものである。
即ち、本発明に係るTi−Al系合金部材の接合方法
は、Ti−Al系合金を基材とする第1部材と、鋼系合
金を基材とする第2部材とを接合するTi−Al系合金
部材の接合方法において、シリコン及びクロムの少なく
とも一方を主要成分として含有するろう材を第1部材と
第2部材との接合界面に配置すると共に、0.1MPa
以上でかつ第1部材及び第2部材の降伏応力未満の面圧
を接合界面に負荷し、大気中で接合界面をろう付け温度
領域に加熱すると共に、ろう付け温度領域に保持する時
間を15〜40秒とし、第1部材と第2部材とを大気中
でろう付けすることを特徴とすることを特徴とするもの
である。
The method for joining Ti-Al alloy members according to the present invention is based on the above-mentioned findings.
That is, the joining method of the Ti-Al type alloy member which concerns on this invention joins the 1st member which uses a Ti-Al type alloy as a base material, and the 2nd member which uses a steel type alloy as a base material. In a method for joining a system-based alloy member, a brazing material containing at least one of silicon and chromium as a main component is arranged at a joining interface between the first member and the second member, and the pressure is 0.1 MPa.
The surface pressure less than the yield stress of the first member and the second member is applied to the bonding interface to heat the bonding interface in the brazing temperature region in the atmosphere and keep the time in the brazing temperature region for 15 to It is characterized in that the first member and the second member are brazed in the atmosphere for 40 seconds.

【0013】ろう材に含まれるシリコン及びクロムは、
自身の酸化に基づく還元作用を有する。従ってろう材に
含まれるシリコン及びクロムは、大気中でろう付けが行
われるときであっても、接合前の接合界面の酸素成分を
効果的に消費でき、接合界面の酸化を抑え得るものと推
察される。
Silicon and chromium contained in the brazing material are
It has a reducing action based on its own oxidation. Therefore, it is presumed that the silicon and chromium contained in the brazing filler metal can effectively consume the oxygen component at the bonding interface before bonding even when brazing is performed in the atmosphere, and can suppress the oxidation at the bonding interface. To be done.

【0014】またろう付け温度領域に保持する時間が1
5〜40秒と短時間とされているため、ろう材に含まれ
るシリコンやクロムの拡散を抑えることができ、接合強
度の低下を誘発する化合物の発生を抑えることができる
ものと推察される。
Further, the holding time in the brazing temperature range is 1
Since the time is 5 to 40 seconds, it is presumed that the diffusion of silicon and chromium contained in the brazing material can be suppressed and the generation of the compound that induces the decrease in the bonding strength can be suppressed.

【0015】[0015]

【発明の実施の形態】ろう材に含まれるシリコンやクロ
ムは、自身の酸化に基づく還元作用を有し、接合前の接
合界面に含まれている酸素成分を効果的に消費でき、高
い接合強度を得るのに有利であると推察される。しかし
シリコンやクロムはろう材に過剰に含まれていると、第
1部材と第2部材との接合強度の低下を誘発する脆い化
合物を過剰に形成し易いため、好まくない。この点を考
慮して、ろう材を100%としたとき、クロムとして
は、重量比で2.0〜20.0%、殊に3.0〜10.
0%、なかでも6.0〜8.0%とすることができる。
ろう材を100%としたとき、シリコンとしては、重量
比で1.0〜10.5%、殊に2.0〜8.0%、なか
でも4.0〜5.0%とすることができる。ろう材はシ
リコン及びクロムの双方を含む形態でも良いし、いずれ
か一方のみを含む形態でも良い。
BEST MODE FOR CARRYING OUT THE INVENTION Silicon and chromium contained in a brazing filler metal have a reducing action based on their own oxidation, can effectively consume oxygen components contained in the joint interface before joining, and have high joint strength. It is presumed that it is advantageous to obtain. However, when silicon or chromium is excessively contained in the brazing material, it is not preferable because a brittle compound that induces a decrease in the bonding strength between the first member and the second member is easily formed. Considering this point, when the brazing filler metal is 100%, chromium is 2.0 to 20.0% by weight, particularly 3.0 to 10% by weight.
It can be 0%, and especially 6.0 to 8.0%.
Assuming that the brazing material is 100%, the weight ratio of silicon is 1.0 to 10.5%, particularly 2.0 to 8.0%, and particularly 4.0 to 5.0%. it can. The brazing material may have a form containing both silicon and chromium, or may have a form containing only one of them.

【0016】ろう材に含まれている好ましい添加元素と
しては、融点降下元素として硼素(B)、さらに靱性向
上の元素として鉄(Fe)があげられる。ろう材を10
0%としたとき、Bとしては、重量比で1.0〜4.0
%、殊に2.0〜4.0%、、1.5〜3.0%を例示
できる。Feとしては、重量比で1.0〜4.0%、殊
に1.5〜3.0%を例示できる。ろう材としては、耐
熱性あるいはコストを考慮すると、Niを主成分とする
ろう材を用いることが好ましい。
As preferable additive elements contained in the brazing material, there are boron (B) as a melting point lowering element and iron (Fe) as an element for improving toughness. 10 brazing materials
When it is 0%, B is 1.0 to 4.0 by weight ratio.
%, Particularly 2.0 to 4.0% and 1.5 to 3.0% can be exemplified. As Fe, 1.0 to 4.0% by weight, particularly 1.5 to 3.0% can be exemplified. In consideration of heat resistance or cost, it is preferable to use a brazing material containing Ni as a main component as the brazing material.

【0017】上記した点を考慮し、ろう材の組成として
は次の(a)〜(g)を例示することができる。但し、
ろう材としてはこれらに限定されるものではない。 (a)ろう材を100%としたとき、重量比で、クロ
ム:2.0〜20.0%を含むろう材。クロムは耐酸化
性の改善に貢献できる。 (b)ろう材を100%としたとき、重量比で、Si:
1.5〜10.5%を含むろう材。Siはろう材の濡れ
性の改善に貢献できる。 (c)ろう材を100%としたとき、重量比で、クロ
ム:2.0〜20.0%を含み、残部がNi及び不可避
不純物の組成を有するろう材。クロムは耐酸化性の改善
に貢献できる。 (d)ろう材を100%としたとき、重量比で、Si:
1.5〜10.5%を含み、残部がNi及び不可避不純
物の組成を有するろう材。Siはろう材の濡れ性の改善
に貢献できる。 (e)ろう材を100%としたとき、重量比で、B:
1.0〜4.0%、Si:3.0〜5.0%を含み、残
部がNi及び不可避不純物の組成を有するろう材。 (f)ろう材を100%としたとき、重量比で、Cr:
6.0〜8.0%、B:2.75〜3.50%、Si:
4.0〜5.0%、Fe:2.0〜4.0%を含み、残
部がNi及び不可避不純物の組成を有するろう材。 (g)ろう材を100%としたとき、重量比で、Cr:
18.0〜20.0%、Si:9.75〜10.50%
を含み、残部がNi及び不可避不純物の組成を有するろ
う材。
Considering the above points, the following (a) to (g) can be exemplified as the composition of the brazing material. However,
The brazing material is not limited to these. (A) A brazing material containing chromium: 2.0 to 20.0% by weight when the brazing material is 100%. Chromium can contribute to the improvement of oxidation resistance. (B) When the brazing material is 100%, the weight ratio is Si:
A brazing material containing 1.5 to 10.5%. Si can contribute to improving the wettability of the brazing material. (C) A brazing material containing chromium: 2.0 to 20.0% by weight, with the balance being Ni and unavoidable impurities when the brazing material is 100%. Chromium can contribute to the improvement of oxidation resistance. (D) When the brazing material is 100%, the weight ratio is Si:
A brazing material containing 1.5 to 10.5% with the balance being Ni and inevitable impurities. Si can contribute to improving the wettability of the brazing material. (E) When the brazing material is 100%, the weight ratio is B:
A brazing filler metal containing 1.0 to 4.0%, Si: 3.0 to 5.0%, and the balance being Ni and unavoidable impurities. (F) When the brazing material is 100%, the weight ratio is Cr:
6.0-8.0%, B: 2.75-3.50%, Si:
A brazing material containing 4.0 to 5.0%, Fe: 2.0 to 4.0%, and the balance being Ni and inevitable impurities. (G) When the brazing material is 100%, the weight ratio is Cr:
18.0 to 20.0%, Si: 9.75 to 10.50%
A brazing filler metal containing Ni and the balance being Ni and inevitable impurities.

【0018】ろう材としては、シート状でも良いし、粉
末状でも良い。ろう材がシート状でる場合には、平均厚
みとしては20〜300μm、殊に40〜200μmと
することができる。ろう材が粉末状である場合には、平
均粒径としては5〜200μm、殊に10〜100μm
とすることができる。但しこれらに限定されるものでは
ない。
The brazing material may be in sheet form or powder form. When the brazing material is in the form of a sheet, it can have an average thickness of 20 to 300 μm, especially 40 to 200 μm. When the brazing material is in powder form, the average particle size is 5 to 200 μm, especially 10 to 100 μm.
Can be However, it is not limited to these.

【0019】本発明に係る第1部材を構成するTi−A
l系合金としては、高温強度、耐酸化性に優れているこ
とが好ましい。この場合、高温雰囲気で使用される用途
に適用するのに有利である。殊に、高温で高速回転条件
下で使用される用途に適用するのに有利である。例え
ば、車両用等のターボチャージャに装備されるタービン
ロータに適する。
Ti-A constituting the first member according to the present invention
The l-based alloy is preferably excellent in high temperature strength and oxidation resistance. In this case, it is advantageous to be applied to the application used in a high temperature atmosphere. In particular, it is advantageous for application to applications used under high temperature and high speed rotation conditions. For example, it is suitable for a turbine rotor installed in a turbocharger for a vehicle or the like.

【0020】上記のようなTi−Al系合金としては、
TiAl金属間化合物、Al含有により(α+β)の混
合組織をもつ合金が例示される。Ti−Al系合金は耐
損傷性にも優れていることが好ましい。殊に、ターボチ
ャージャにおいては、タービンロータが高速回転してい
るときに、酸化スケール、鋳物砂などの異物がタービン
ロータに衝突するおそれがあるため、Ti−Al系合金
は耐異物損傷性等の耐損傷性にも優れていることが好ま
しい。Ti−Al系合金の耐異物損傷性等の耐損傷性に
向上させるためには、Ti−Al系合金はV,Hf,Z
rのうちの少なくとも1種を含むことが好ましい。
As the Ti-Al type alloy as described above,
TiAl intermetallic compounds and alloys having a mixed structure of (α + β) due to the inclusion of Al are exemplified. It is preferable that the Ti-Al alloy is also excellent in damage resistance. Particularly, in a turbocharger, when the turbine rotor is rotating at a high speed, foreign matter such as oxide scale and foundry sand may collide with the turbine rotor. It is also preferable that it has excellent damage resistance. In order to improve the damage resistance such as foreign material damage resistance of the Ti-Al alloy, the Ti-Al alloy is V, Hf, Z.
It is preferable to include at least one of r.

【0021】上記した点を考慮すれば、本発明に係るT
i−Al系合金の好ましい組成としては以下の(1)〜
(4)を例示できる。但し、Ti−Al系合金としては
これらに限定されるものではない。 (1)Ti−Al系合金を100%としたとき、重量比
でAl:30〜35%を含み、残部がTi及び不可避不
純物の組成をからなるTi−Al系合金。 (2)耐異物損傷性等の耐損傷性を高めるため、Ti−
Al系合金を100%としたとき、重量比で、Al:3
0〜35%、V:2〜5%含み、残部がTi及び不可避
不純物の組成をからなるTi−Al系合金。Vは常温伸
びの向上、耐損傷性の向上に貢献する。 (3)上記した(1)(2)の組成に加えて、Ti−A
l系合金を100%としたとき、重量比で、Zr及びH
fの1種または2種を合計量で0.2〜5%含むTi−
Al系合金。Zr及びHfは耐力、耐損傷性に寄与す
る。 (4)上記した(1)(2)(3)の組成に加えて、耐
酸化性を更に向上させるため、Ti−Al系合金を10
0%としたとき、重量比で、Nb、Ta、Mo、Wの1
種または2種以上の合計量を0.2〜5%含むTi−A
l系合金。
Considering the above points, the T according to the present invention is
The preferable composition of the i-Al alloy is as follows (1) to
(4) can be illustrated. However, the Ti-Al based alloy is not limited to these. (1) A Ti-Al alloy containing Al: 30 to 35% by weight when the Ti-Al alloy is 100%, and the balance of Ti and unavoidable impurities. (2) To enhance damage resistance such as foreign material damage resistance, Ti-
When the Al alloy is 100%, the weight ratio is Al: 3.
A Ti-Al based alloy containing 0 to 35%, V: 2 to 5%, and the balance being Ti and inevitable impurities. V contributes to improvement of room temperature elongation and damage resistance. (3) In addition to the composition of (1) and (2) described above, Ti-A
When the l-based alloy is 100%, the weight ratio is Zr and H.
Ti-containing one or two kinds of f in a total amount of 0.2 to 5%
Al-based alloy. Zr and Hf contribute to proof stress and damage resistance. (4) In addition to the compositions of (1), (2), and (3) described above, in order to further improve the oxidation resistance, a Ti-Al based alloy is added to
When set to 0%, the weight ratio is 1 of Nb, Ta, Mo and W.
-A containing 0.2 to 5% of the total amount of two or more kinds
L-based alloy.

【0022】本発明に係る第2部材としては、鋼系合金
を基材とする。鋼系合金としては用途によって相違する
ものの、合金鋼(ステンレス鋼、ニッケル−クロム含有
鋼、クロム鋼を含む)、炭素鋼を採用することができ
る。
The second member according to the present invention has a steel alloy as a base material. As the steel-based alloy, alloy steel (including stainless steel, nickel-chromium containing steel, chrome steel) and carbon steel can be adopted, although they differ depending on the application.

【0023】加熱形態としては、誘導加熱が好ましい。
誘導加熱の場合には、第1部材と第2部材との接合界面
の近傍に誘導加熱用導電部材を設けることが好ましい。
誘導加熱では、誘導加熱用導電部材に高周波の交番電流
を通電させる。周波数としては適宜選択できるものの、
10kHz〜200kHz、特に50kHz〜150k
Hzを例示できるが、これらに限定されるものではな
い。誘導加熱用導電部材としては誘導加熱コイルを例示
できるが、必ずしもコイル状でなくても良い。誘導加熱
コイルは第1部材及び第2部材に対して同軸的配置とす
ることもできるが、これに限られるものではなく、要す
るに接合界面の近傍に設けられていれば良い。
As a heating mode, induction heating is preferable.
In the case of induction heating, it is preferable to provide a conductive member for induction heating near the bonding interface between the first member and the second member.
In induction heating, a high-frequency alternating current is passed through the conductive member for induction heating. Although the frequency can be selected as appropriate,
10 kHz to 200 kHz, especially 50 kHz to 150 kHz
Hz can be exemplified, but the present invention is not limited thereto. As the conductive member for induction heating, an induction heating coil can be exemplified, but it does not necessarily have to be a coil shape. The induction heating coil may be arranged coaxially with respect to the first member and the second member, but it is not limited to this, and in short, it may be provided near the bonding interface.

【0024】加熱形態が誘導加熱であれば、短時間加熱
に有利であり、大気中における加熱においても、第1部
材と第2部材との接合界面における酸化を抑え得る。誘
導加熱コイルとしては、第1部材と第2部材との接合界
面に同軸的に配置しても良いし、同軸的配置でない場合
でも良い。
If the heating mode is induction heating, it is advantageous for short-time heating, and even in heating in the atmosphere, oxidation at the bonding interface between the first member and the second member can be suppressed. The induction heating coil may be coaxially arranged at the joint interface between the first member and the second member, or may not be coaxially arranged.

【0025】加熱形態としては、通電抵抗加熱、更には
レーザビーム等を用いた他の加熱形態でも良い。通電抵
抗加熱の場合には、第1部材に電極を接続させると共
に、第2部材に電極を接続させた状態で、両電極間に電
流(直流または交番電流)を通電し、ジュール熱で発熱
させる形態を例示できる。接合界面における接触電気抵
抗を利用することができる。
The heating mode may be electric resistance resistance heating, or another heating mode using a laser beam or the like. In the case of current resistance heating, while the electrode is connected to the first member and the electrode is connected to the second member, a current (direct current or alternating current) is applied between both electrodes to generate heat by Joule heat. The form can be illustrated. The contact electric resistance at the bonding interface can be used.

【0026】本発明によれば、ろう付け温度領域に保持
する保持時間が15〜40秒と短時間とされている。ろ
う付け温度領域は、ろう材の溶融開始温度から、100
℃上方までの温度領域を意味する。ろう材がシート状で
ある場合には、保持時間は15〜40秒、殊に15〜3
0秒にすることができる。ろう材が粉末状である場合に
は、保持時間は15〜40秒、殊に20〜40秒にする
ことができる。ろう材が粉末状である場合には、ろう材
がシート状である場合に比較して、保持時間を長めとす
ることができる。なお常温領域からろう付け温度領域に
昇温させる昇温時間としては、酸化抑制を考慮すると、
速い方が好ましい。昇温時間としては、第1部材及び第
2部材の種類にもよるが、一般的には10〜120秒、
20〜60秒とすることができる。
According to the present invention, the holding time for holding in the brazing temperature range is as short as 15 to 40 seconds. The brazing temperature range is 100 from the melting start temperature of the brazing material.
It means the temperature range up to ℃. When the brazing material is sheet-shaped, the holding time is 15 to 40 seconds, especially 15 to 3 seconds.
It can be 0 seconds. If the brazing material is in powder form, the holding time can be 15-40 seconds, in particular 20-40 seconds. When the brazing material is in powder form, the holding time can be made longer than in the case where the brazing material is in sheet form. As the temperature rise time for raising the temperature from the room temperature region to the brazing temperature region, considering oxidation suppression,
Faster is preferable. The temperature rising time depends on the types of the first member and the second member, but is generally 10 to 120 seconds,
It can be 20-60 seconds.

【0027】接合の際には、第1部材及び第2部材を縦
方向に沿って並設しても良いし、横方向に沿って並設し
ても良いし、斜め方向に沿って並設しても良い。第1部
材及び第2部材を縦方向に沿って並設する場合、第1部
材を上側、第2部材を下側に配置しても良いし、第1部
材を下側、第2部材を上側に配置しても良い。
At the time of joining, the first member and the second member may be arranged side by side along the vertical direction, may be arranged side by side along the horizontal direction, or may be arranged side by side along an oblique direction. You may. When the first member and the second member are arranged side by side in the longitudinal direction, the first member may be arranged on the upper side and the second member may be arranged on the lower side, or the first member may be arranged on the lower side and the second member may be arranged on the upper side. It may be placed in.

【0028】[0028]

【実施例】以下、本発明の実施例について図面を参照し
て試験例と共に説明する。 (実施例1)図1は実施例1の接合形態を示す。第1部
材1はTi−Al系合金を基材とする軸状部材とした。
Ti−Al系合金としては、Ti−33.5重量%Al
を用いた。これはチタンアルミナイドとも呼ばれるもの
であり、TiAl金属間化合物である。第2部材2は合
金鋼(鋼系合金)を基材とする軸状部材とした。合金鋼
としては、クロム鋼(JIS SCr40)である。S
Cr40は重量比でC:0.38〜0.43%、Si:
0.15〜0.35%、Mn:0.60〜0.85%、
Cr:0.90〜1.20%を含有する。なお、接合界
面を形成する第1部材1の端面1aと第2部材2の端面
2aとは、同一投影面積とされている。第1部材1の端
面1a及び第2部材2の端面2aは、平坦面とされてい
る。
EXAMPLES Examples of the present invention will now be described with reference to the drawings together with test examples. (Embodiment 1) FIG. 1 shows a joining form of Embodiment 1. The first member 1 was a shaft-shaped member having a Ti-Al alloy as a base material.
As a Ti-Al alloy, Ti-33.5 wt% Al
Was used. This is also called titanium aluminide and is a TiAl intermetallic compound. The second member 2 is a shaft-shaped member whose base material is alloy steel (steel alloy). The alloy steel is chrome steel (JIS SCr40). S
Cr40 is C: 0.38 to 0.43% in weight ratio, and Si:
0.15 to 0.35%, Mn: 0.60 to 0.85%,
Cr: 0.90 to 1.20% is contained. Note that the end surface 1a of the first member 1 and the end surface 2a of the second member 2 that form the bonding interface have the same projected area. The end surface 1a of the first member 1 and the end surface 2a of the second member 2 are flat surfaces.

【0029】本実施例によれば、ろう材4としてはBN
i−2(JIS−BNi−2)のNiろう(平均厚さ4
0μm)を用いた。BNi−2の組成は、重量比で、N
i−7%Cr−4.5%Si−3.0%Fe−3.2%
B−0.15%以下Cである。
According to this embodiment, BN is used as the brazing material 4.
Ni braze of i-2 (JIS-BNi-2) (average thickness 4
0 μm) was used. The composition of BNi-2 is N by weight.
i-7% Cr-4.5% Si-3.0% Fe-3.2%
B-0.15% or less and C.

【0030】本実施例によれば、接合の際には、図1に
示すように、直径10mm、長さ600mmに加工した
上記Ti−Al系合金製の軸状部材で形成された第1部
材1の端面1aと、上記した合金鋼製の軸状部材で形成
された第2部材2の端面2aとを突き合わせた。この場
合、第1部材1の端面1aと第2部材2の端面2aとで
形成される接合界面に、上記したろう材4が配置されて
いる。
According to the present embodiment, at the time of joining, as shown in FIG. 1, the first member formed of the shaft member made of the above Ti--Al alloy processed into a diameter of 10 mm and a length of 600 mm. The end surface 1a of No. 1 and the end surface 2a of the second member 2 formed of the above-mentioned alloy steel shaft-shaped member were butted against each other. In this case, the brazing material 4 described above is arranged at the joint interface formed by the end surface 1a of the first member 1 and the end surface 2a of the second member 2.

【0031】そして、第1軸材及び第2部材2の軸長方
向に沿って外力を負荷し、第1部材1及び第2部材2の
接合界面に0.2MPaの面圧を負荷させた。更に、第
1部材1及び第2部材2の接合界面の回りに隣設して同
軸的に配置されている誘導加熱用導電部材として機能す
る誘導加熱コイル5に、高周波の交番電流(周波数:1
00kHz,出力:2kW〜5kW)を通電した。これ
により第1部材1及び第2部材2の接合界面及びろう材
4が誘導電流で集中的に誘導加熱された。誘導加熱は大
気中で行った。この場合、大気中で1040℃/分の昇
温速度で、第1部材1及び第2部材2の接合界面を加熱
した。
Then, an external force was applied along the axial direction of the first shaft member and the second member 2 to apply a surface pressure of 0.2 MPa to the joint interface between the first member 1 and the second member 2. Further, a high-frequency alternating current (frequency: 1: 1) is applied to the induction heating coil 5 that functions as an induction heating conductive member that is coaxially arranged adjacent to the joint interface between the first member 1 and the second member 2.
00 kHz, output: 2 kW to 5 kW) was energized. As a result, the bonding interface between the first member 1 and the second member 2 and the brazing material 4 were intensively induction-heated by the induction current. Induction heating was performed in the atmosphere. In this case, the bonding interface between the first member 1 and the second member 2 was heated in the atmosphere at a temperature rising rate of 1040 ° C./min.

【0032】本実施例においては、ろう付け温度(10
40℃)での保持時間を20秒とした。ろう付け温度
は、ろう材4の溶融が開始される温度を越える温度領域
を意味し、ろう付けが良好に実行される温度領域であ
る。
In this embodiment, the brazing temperature (10
The holding time at 40 ° C.) was 20 seconds. The brazing temperature means a temperature range that exceeds the temperature at which melting of the brazing material 4 is started, and is a temperature range in which brazing is performed well.

【0033】ろう付け温度(1040℃)で20秒経過
して接合を行った後、誘導加熱コイル5を断電し、第1
部材1及び第2部材2の接合界面付近をアルゴンガスに
より急冷した。その後、平行部径8mmの引張試験用の
試験片を形成した。その試験片について、引張速度1m
m/min、引張試験温度を室温として引張試験を行っ
た。試験結果によれば、第1部材1及び第2部材2の接
合強度は300〜320MPa程度であり、かなり高か
った。
After 20 seconds have passed at the brazing temperature (1040 ° C.) to perform the joining, the induction heating coil 5 is cut off and the first
The vicinity of the bonding interface between the member 1 and the second member 2 was quenched with argon gas. Then, a test piece for a tensile test having a parallel part diameter of 8 mm was formed. About the test piece, pulling speed 1m
A tensile test was conducted at m / min and a tensile test temperature of room temperature. According to the test results, the bonding strength between the first member 1 and the second member 2 was about 300 to 320 MPa, which was considerably high.

【0034】本実施例によれば、大気中で誘導加熱によ
り第1部材1及び第2部材2を接合することにしてい
る。このため誘導加熱コイル5を接合界面にできるだけ
接近させることができる。故に誘導加熱の際の近接効果
により、接合界面及びろう材4の誘導加熱を効率よく行
い得、ろう材4をろう付け温度領域に短時間で昇温加熱
するのに有利となる。
According to this embodiment, the first member 1 and the second member 2 are joined by induction heating in the atmosphere. Therefore, the induction heating coil 5 can be brought as close as possible to the bonding interface. Therefore, due to the proximity effect at the time of induction heating, induction heating of the bonding interface and the brazing material 4 can be efficiently performed, which is advantageous for heating the brazing material 4 to the brazing temperature region in a short time.

【0035】ところで、第1部材1及び第2部材2の接
合界面を耐熱ガラス製の箱状カバーで覆い、箱状カバー
の外側に配置した誘導加熱コイルに通電して接合界面を
誘導加熱することも考えられる。この場合、耐熱ガラス
製の箱状カバーを用いているため、誘導加熱コイル5を
接合界面に接近させことができず、誘導加熱コイル5が
接合界面から離れてしまう不具合がある。誘導加熱の際
には、誘導加熱コイルが対象物から離れると、近接効果
が希薄となり、誘導加熱効果は激しく低下する傾向があ
る。従って接合界面及びろう材4の誘導加熱を効率よく
行なうには不利となる。更に誘導加熱の際に発生する磁
束が箱状カバーの影響で接合界面に透過しにくくなる不
具合もあり、この意味においても、接合界面及びろう材
4の誘導加熱を効率よく行なうには不利となる。
By the way, the joint interface between the first member 1 and the second member 2 is covered with a box cover made of heat-resistant glass, and the induction heating coil arranged outside the box cover is energized to inductively heat the joint interface. Can also be considered. In this case, since the box-shaped cover made of heat-resistant glass is used, the induction heating coil 5 cannot be brought close to the bonding interface, and the induction heating coil 5 is separated from the bonding interface. In the case of induction heating, if the induction heating coil is separated from the object, the proximity effect becomes weak and the induction heating effect tends to be significantly reduced. Therefore, it is disadvantageous to efficiently perform the induction heating of the joint interface and the brazing material 4. Further, there is a problem that the magnetic flux generated at the time of induction heating is less likely to permeate to the joint interface due to the influence of the box-shaped cover. In this sense, it is disadvantageous to efficiently perform the induction heating of the joint interface and the brazing material 4. .

【0036】(試験例1)試験例1においては、ろう付
け温度(1040℃)での保持時間を10〜60秒の間
において10秒間隔で変化させ、同様の接合条件で第1
部材1と第2部材2の接合を行なった。そして同様の引
張試験条件で試験を行い、ろう付け温度(1040℃)
での保持時間の長短の影響を調べた。比較例に係る試験
片についても同様に接合を行い、引張試験を行った。比
較例については、0.01MPaの面圧を接合界面に負
荷させた点を除いて、実施例1と同様な条件とした。
Test Example 1 In Test Example 1, the holding time at the brazing temperature (1040 ° C.) was changed at 10-second intervals for 10 to 60 seconds, and the first joining was performed under the same joining conditions.
The member 1 and the second member 2 were joined. Then, the test is performed under the same tensile test conditions, and the brazing temperature (1040 ° C)
The effect of holding time on and off was investigated. The test pieces according to the comparative examples were also joined in the same manner and a tensile test was performed. For the comparative example, the conditions were the same as those of the example 1 except that a surface pressure of 0.01 MPa was applied to the bonding interface.

【0037】試験結果を図2に示す。図2において、●
で規定された特性線A1は実施例1に係る試験結果を示
し、○で規定された特性線A2は比較例に係る試験結果
を示す。図2の特性線A2に示すように、面圧が0.0
1MPaと低い場合には、保持時間の長短の影響は少な
く、接合強度がせいぜい50〜100MPaと低い値で
あった。即ち、面圧が0.01MPaと低い場合には、
保持時間を短縮しても、接合強度の改善効果は認められ
なかった。
The test results are shown in FIG. In Figure 2, ●
A characteristic line A1 defined by means the test result of Example 1, and a characteristic line A2 defined by the circle shows the test result of comparative example. As shown by the characteristic line A2 in FIG. 2, the surface pressure is 0.0
When it was as low as 1 MPa, the influence of the length of the holding time was small, and the bonding strength was as low as 50 to 100 MPa at most. That is, when the surface pressure is as low as 0.01 MPa,
Even if the holding time was shortened, the effect of improving the bonding strength was not recognized.

【0038】しかしながら図2の特性線A1に示すよう
に、面圧を20倍に設定して0.2MPaとかなり高く
した場合には、1040℃に保持する時間が15〜40
秒の間において接合強度が飛躍的に改善される臨界的効
果が認められた。
However, as shown by the characteristic line A1 in FIG. 2, when the surface pressure is set to 20 times and considerably increased to 0.2 MPa, the time for holding at 1040 ° C. is 15 to 40.
The critical effect that the bonding strength was dramatically improved during the second was confirmed.

【0039】換言すれば、図2の特性線A1に示すよう
に、1040℃に10秒保持した加熱条件では接合強度
が140MPa程度と低めであったが、20秒保持した
加熱条件では、接合強度が300〜320MPaと急激
に増加した。30秒保持した加熱条件では、接合強度が
やや低下したものの、280〜300MPaとかなり高
かった。図2の特性線A1に示すように、40秒保持し
た加熱条件では、接合強度がやや低下したものの240
〜260MPaと十分に高かった。
In other words, as shown by the characteristic line A1 in FIG. 2, the bonding strength was as low as about 140 MPa under the heating condition of holding at 1040 ° C. for 10 seconds, but under the heating condition of holding for 20 seconds, the bonding strength was low. Rapidly increased from 300 to 320 MPa. Under the heating condition of holding for 30 seconds, the bonding strength was slightly lowered, but it was considerably high at 280 to 300 MPa. As shown by the characteristic line A1 in FIG. 2, under the heating condition of holding for 40 seconds, although the bonding strength was slightly lowered, it was 240
It was as high as ~ 260 MPa.

【0040】しかしながら保持時間が40秒を経過する
と、図2の特性線A1に示すように、接合強度がかなり
低めとなる傾向が見られた。
However, when the holding time passed 40 seconds, the bonding strength tended to be considerably low as shown by the characteristic line A1 in FIG.

【0041】なお、引張試験温度を700℃とした場合
には、接合界面で切断することなく、鋼側で破断し、破
断強度は150MPaの値を示した。
When the tensile test temperature was 700 ° C., the steel was fractured on the steel side without cutting at the joint interface, and the fracture strength was 150 MPa.

【0042】図2の特性線A1,A2を考慮すると、接
合界面の面圧が0.01MPaと小さいときには、ろう
付け部において接合強度の低下を誘発する脆い化合物の
発生頻度が高いものの、接合界面の面圧が0.2MPa
と大きいときには、ろう付け部において接合強度の低下
を誘発する脆い化合物の発生頻度が抑えられるものと推
察される。
Considering the characteristic lines A1 and A2 in FIG. 2, when the surface pressure of the joint interface is as small as 0.01 MPa, the frequency of generation of brittle compounds that induces a decrease in joint strength in the brazed portion is high, but the joint interface is high. Surface pressure of 0.2MPa
It is presumed that when the value is large, the frequency of generation of brittle compounds that induces a decrease in bonding strength in the brazed part can be suppressed.

【0043】接合時間を20秒に設定した場合におい
て、接合部の分析結果(EPMA線分析結果)を図6に
示す。接合時間を60秒に設定した場合において、接合
部の分析結果(EPMA線分析結果)を図7に示す。図
6及び図7の横軸は軸長方向の位置を示し、縦軸は元素
の含有量を示す。混同を避けるため、含有量の0点は元
素毎にずらしている。図6、図7において、横軸の右側
部分であるTi,Alリッチの領域が、Ti−Al系合
金である第1部材1に相当すると推察される。Niリッ
チの領域が、ろう付けによる接合部に相当すると推察さ
れる。図6、図7において、横軸の左側部分であるFe
リッチの領域が、鋼系合金である第2部材2に相当する
と推察される。
FIG. 6 shows the analysis result (EPMA line analysis result) of the bonded portion when the bonding time was set to 20 seconds. FIG. 7 shows the analysis result (EPMA line analysis result) of the bonded portion when the bonding time was set to 60 seconds. The horizontal axis in each of FIGS. 6 and 7 indicates the position in the axial direction, and the vertical axis indicates the element content. In order to avoid confusion, the zero point of the content is shifted for each element. In FIG. 6 and FIG. 7, it is presumed that the Ti and Al rich region on the right side of the horizontal axis corresponds to the first member 1 which is a Ti—Al based alloy. It is presumed that the Ni-rich region corresponds to the brazed joint. In FIG. 6 and FIG. 7, Fe which is the left side portion of the horizontal axis
It is assumed that the rich region corresponds to the second member 2 which is a steel alloy.

【0044】接合時間20秒ではインサート材であるろ
う材4の組成に基づいて形成された接合部においては、
図6に示すように、接合部においてはSi濃度は2%前
後でほぼ一定の値を示していた。接合部においてCr濃
度の凸ピークP1は15%程度であったが、Ti−Al
系合金側に移行するにつれて、Cr濃度は低下してい
た。
At the joining time of 20 seconds, the joining portion formed on the basis of the composition of the brazing material 4 as the insert material,
As shown in FIG. 6, the Si concentration in the joint had a substantially constant value around 2%. The convex peak P1 of the Cr concentration at the joint was about 15%, but Ti-Al
The Cr concentration decreased as it moved to the system alloy side.

【0045】これに対して接合時間を60秒と長くした
場合には、図7に示すように、接合部におけるSi元素
の拡散は激しく、凸ピークP3,凹ピークP4,凸ピー
クP5を形成しており、Si化合物が接合界面において
形成されているものと推察される。これは、ろう付け温
度での保持時間が60秒と長くなると、Si化合物が形
成されるため、第1部材1と第2部材2との接合強度が
低下することを示唆している。またクロムの凸ピークP
7はCr:20%付近を示していた。ろう材4に含まれ
ているクロムの拡散が進行したものと推察される。
On the other hand, when the bonding time is increased to 60 seconds, as shown in FIG. 7, the diffusion of the Si element in the bonded portion is severe and a convex peak P3, a concave peak P4 and a convex peak P5 are formed. Therefore, it is presumed that the Si compound is formed at the bonding interface. This suggests that, if the holding time at the brazing temperature becomes long, which is 60 seconds, a Si compound is formed, so that the bonding strength between the first member 1 and the second member 2 decreases. Also, the convex peak P of chromium
No. 7 had Cr: around 20%. It is presumed that the diffusion of chromium contained in the brazing material 4 has progressed.

【0046】(実施例2)実施例2は実施例1と基本的
には同様な構成である。即ち、上記Ti−Al系合金製
の軸状部材で形成された第1部材1と、上記した合金鋼
製の軸状部材で形成された第2部材2とを用い、第1部
材1及び第2部材2の接合界面に上記したろう材4を挿
入した。その状態で、第1部材1の端面1a及び第2部
材2の端面2aの接合界面に1MPaの面圧を負荷させ
つつ、誘導加熱コイル5に高周波の交番電流(周波数:
100kHz)を通電した。これにより誘導加熱により
接合界面及びろう材4を大気中において加熱し、第1部
材1及び第2部材2を大気中において接合した。
(Embodiment 2) Embodiment 2 has basically the same configuration as Embodiment 1. That is, using the first member 1 formed of the shaft-shaped member made of the Ti-Al alloy and the second member 2 formed of the shaft-shaped member made of the alloy steel described above, the first member 1 and the first member 1 The brazing material 4 described above was inserted into the bonding interface between the two members 2. In that state, a high-pressure alternating current (frequency: frequency) is applied to the induction heating coil 5 while applying a surface pressure of 1 MPa to the bonding interface between the end surface 1a of the first member 1 and the end surface 2a of the second member 2.
100 kHz) was energized. As a result, the bonding interface and the brazing material 4 were heated in the atmosphere by induction heating, and the first member 1 and the second member 2 were bonded in the atmosphere.

【0047】実施例2においては、ろう材4としては、
平均厚み40μmのシートと平均粒径50μmの粉末と
2種類を用いた。
In Example 2, as the brazing material 4,
A sheet having an average thickness of 40 μm and a powder having an average particle size of 50 μm were used.

【0048】そして、第1部材1及び第2部材2の軸長
方向に沿って外力を作用させることにより、面圧1MP
aの圧力を接合界面に負荷した。その状態でろう付けを
行った。シート状のろう材4を用いた場合には、ろう付
け温度(1040℃)での保持時間を20秒とした。粉
末状のろう材4を用いた場合には、ろう付け温度(10
40℃)での保持時間を30秒とした。第1部材1と第
2部材2との接合強度としては、シート状のろう材4を
用いた場合には、接合強度は300〜340MPaとか
なり高かった。粉末状のろう材4を用いた場合にも、接
合強度は330〜340MPaとかなり高かった。
Then, by applying an external force along the axial direction of the first member 1 and the second member 2, the surface pressure of 1MP
The pressure of a was applied to the bonding interface. I brazed in that state. When the sheet-shaped brazing material 4 was used, the holding time at the brazing temperature (1040 ° C.) was 20 seconds. When the powdered brazing material 4 is used, the brazing temperature (10
The holding time at 40 ° C.) was set to 30 seconds. Regarding the bonding strength between the first member 1 and the second member 2, when the sheet-shaped brazing material 4 was used, the bonding strength was considerably high at 300 to 340 MPa. Even when the powdery brazing material 4 was used, the bonding strength was considerably high at 330 to 340 MPa.

【0049】(試験例2)試験例2においては、ろう付
け温度(1040℃)での保持時間を10〜60秒の間
において10秒間隔で変化させ、実施例2と基本的には
同様の接合条件で第1部材1と第2部材2の接合を行
い、基本的には同様の引張試験条件で試験を行い、ろう
付け温度(1040℃)での保持時間の長短の影響を調
べた。
Test Example 2 In Test Example 2, the holding time at the brazing temperature (1040 ° C.) was changed at 10 second intervals for 10 to 60 seconds, and basically the same as in Example 2. The first member 1 and the second member 2 were joined under the joining conditions, and the tests were basically conducted under the same tensile test conditions to examine the influence of the holding time at the brazing temperature (1040 ° C.).

【0050】試験結果を図3に示す。図3において、●
で規定された特性線B1はシート状(厚み:40μm)
のろう材4を用いた場合の試験結果を示し、○で規定さ
れた特性線B2は粉末状(平均粒径:50μm)のろう
材4を用いた場合の試験結果を示す。
The test results are shown in FIG. In Figure 3, ●
The characteristic line B1 defined by is sheet-like (thickness: 40 μm)
The test result when the brazing material 4 of No. 4 is used, and the characteristic line B2 defined by ◯ shows the test result when the brazing material 4 in powder form (average particle diameter: 50 μm) is used.

【0051】シート状のろう材4を用いた場合には、図
3の特性線B1に示すように、1040℃に保持する時
間が15〜40秒の間において接合強度が飛躍的に改善
される臨界的効果が認められた。粉末状のろう材4を用
いた場合には、図3の特性線B2に示すように、104
0℃に保持する時間が20〜40秒の間において接合強
度が飛躍的に改善される臨界的効果が認められた。
When the sheet-shaped brazing material 4 is used, as shown by the characteristic line B1 in FIG. 3, the bonding strength is remarkably improved during the time of holding at 1040 ° C. for 15 to 40 seconds. A critical effect was observed. When the powdered brazing material 4 is used, as shown by the characteristic line B2 in FIG.
A critical effect of dramatically improving the bonding strength was observed when the time of holding at 0 ° C. was 20 to 40 seconds.

【0052】換言すれば、シート状のろう材4を用いた
場合には、図3の特性線B1に示すように、1040℃
に10秒保持した加熱条件では、接合強度が180〜2
00MPa程度であった。20秒保持した加熱保持条件
では、前記したように接合強度が300〜340MPa
程度と高く、最高域を示した。30秒保持した加熱保持
条件では、接合強度が280〜300MPa程度と高か
った。40秒保持した加熱保持条件では、前記したよう
に接合強度が240〜280MPa程度と高かった。即
ち、1040℃で15〜40秒保持する加熱保持条件で
あれば、250〜340MPa程度と高い接合強度が得
られた。
In other words, when the sheet-shaped brazing material 4 is used, as shown by the characteristic line B1 in FIG.
Under the heating condition of holding for 10 seconds, the bonding strength is 180 to 2
It was about 00 MPa. Under the heating and holding condition of holding for 20 seconds, the bonding strength is 300 to 340 MPa as described above.
The level was high and showed the highest range. Under the heating and holding condition of holding for 30 seconds, the bonding strength was as high as about 280 to 300 MPa. Under the heating and holding condition of holding for 40 seconds, the bonding strength was as high as about 240 to 280 MPa as described above. That is, under the heating and holding condition of holding at 1040 ° C. for 15 to 40 seconds, a high bonding strength of about 250 to 340 MPa was obtained.

【0053】一方、粉末のろう材4を用いた場合には、
図3の特性線B2に示すように、1040℃に10秒保
持した加熱条件では接合強度が220MPa程度であっ
たが、20秒保持した加熱条件では接合強度が270M
Pa程度と急激に増加した。更に30秒保持した加熱条
件では接合強度が330MPa程度と更に増加し、最高
域を示した。40秒保持した加熱条件では接合強度が2
80〜300MPa程度と高かった。即ち、粉末のろう
材4を用いた場合には、1040℃で20〜40秒保持
する加熱保持条件であれば、260〜325MPa程度
とかなり高い接合強度が得られた。
On the other hand, when the powdered brazing material 4 is used,
As shown by the characteristic line B2 in FIG. 3, the bonding strength was about 220 MPa under the heating condition of holding at 1040 ° C. for 10 seconds, but the bonding strength was 270 M under the heating condition of holding for 20 seconds.
It increased sharply to about Pa. Under the heating condition of holding for 30 seconds, the bonding strength further increased to about 330 MPa and reached the maximum range. Bonding strength is 2 under the heating condition of 40 seconds
It was as high as about 80 to 300 MPa. That is, when the powdered brazing filler metal 4 was used, under a heating and holding condition of holding at 1040 ° C. for 20 to 40 seconds, a considerably high bonding strength of about 260 to 325 MPa was obtained.

【0054】上記したようにろう材が粉末状である場合
には、ろう材4がシート状である場合に比較して、接合
強度の最高域を発現させるための保持時間が長くなる傾
向がある。その理由としては、ろう材が粉末である場合
には、隣接する粉末粒子間は磁気ギャップとなるため、
隣接する粉末粒子間の透磁率が粉末粒子内部よりも高く
なり、透磁性の向上に限界があり、誘導加熱による加熱
速度がシートの場合の比較して遅れがちとなるためと推
察される。
As described above, when the brazing material is in the powder form, the holding time for developing the maximum bonding strength region tends to be longer than that in the case where the brazing material 4 is in the sheet form. . The reason is that when the brazing material is powder, there is a magnetic gap between adjacent powder particles,
It is presumed that the magnetic permeability between the adjacent powder particles is higher than that inside the powder particles, the magnetic permeability is limited, and the heating rate by induction heating tends to be delayed as compared with the case of the sheet.

【0055】なお図3の特性線B1,B2に示すよう
に、シート状のろう材4を用いた場合であっても、粉末
のろう材4を用いた場合であっても、1040℃に保持
する時間が長くなると、第1部材1と第2部材2の接合
強度が次第に減少する傾向が見られた。さらに、ろう材
4がシートのとき、引張試験温度を700℃とした場合
には、接合界面で切断することなく、鋼部材で破断し、
破断強度は100MPaの値を示した。
As shown by characteristic lines B1 and B2 in FIG. 3, the temperature is maintained at 1040 ° C. regardless of whether the sheet-shaped brazing material 4 is used or the powder brazing material 4 is used. There was a tendency that the bonding strength between the first member 1 and the second member 2 gradually decreased as the heating time became longer. Furthermore, when the brazing material 4 is a sheet and the tensile test temperature is 700 ° C., the brazing material 4 is broken at the steel member without cutting at the joint interface,
The breaking strength showed a value of 100 MPa.

【0056】(実施例3)実施例3は実施例1と基本的
には同様な構成である。即ち、上記Ti−Al系合金製
の軸状部材で形成された第1部材1と、上記した合金鋼
製の軸状部材で形成された第2部材2とを用い、第1部
材1の端面1a及び第2部材2の端面2aの接合界面に
上記したろう材4を挿入した。その状態で、第1部材1
及び第2部材2の接合界面に上記したろう材4を挿入し
た。その状態で、第1部材1及び第2部材2の接合界面
に1MPaの面圧を負荷させつつ、誘導加熱コイル5に
高周波の交番電流(周波数:100kHz)を通電し
た。誘導加熱により接合界面及びろう材4を大気中にお
いて誘導加熱し、第1部材1及び第2部材2を大気中に
おいて接合した。
(Third Embodiment) The third embodiment has basically the same configuration as the first embodiment. That is, using the first member 1 formed of the shaft-shaped member made of the Ti-Al alloy and the second member 2 formed of the shaft-shaped member made of the alloy steel described above, the end face of the first member 1 is used. The brazing material 4 described above was inserted into the bonding interface between the end surface 2a of the first member 1a and the end surface 2a of the second member 2. In that state, the first member 1
And the brazing material 4 described above was inserted into the bonding interface of the second member 2. In that state, a high-frequency alternating current (frequency: 100 kHz) was applied to the induction heating coil 5 while applying a surface pressure of 1 MPa to the bonding interface between the first member 1 and the second member 2. The bonding interface and the brazing material 4 were induction-heated in the air by induction heating, and the first member 1 and the second member 2 were bonded in the air.

【0057】実施例3によれば、合金鋼としてフェライ
ト系のステンレス鋼(SUS430)とした。ろう材4
としては、BNi−2(重量比で、Ni−7%Cr−
4.5%Si−3.0%Fe−3.2%B)のNiろう
を用いた。そして、直径10mm、長さ600mmに加
工した上記Ti−Al系合金製の軸状部材からなる第1
部材1と、合金鋼製の軸状部材からなる第2部材2を用
い、第1部材1と第2部材2との間にろう材4を挿入し
た。ろう材4としては、平均厚み40μmのシートおよ
び平均粒径50μmの粉末の2種類をそれぞれ用いた。
According to the third embodiment, ferritic stainless steel (SUS430) was used as the alloy steel. Brazing material 4
BNi-2 (by weight, Ni-7% Cr-
Ni braze of 4.5% Si-3.0% Fe-3.2% B) was used. The first member is made of the shaft member made of the Ti-Al alloy and processed into a diameter of 10 mm and a length of 600 mm.
A brazing material 4 was inserted between the first member 1 and the second member 2 by using the member 1 and the second member 2 made of an alloy steel shaft member. As the brazing material 4, there were used two types, that is, a sheet having an average thickness of 40 μm and a powder having an average particle size of 50 μm.

【0058】シート状のろう材4を用いた場合には、ろ
う付け温度(1040℃)での保持時間を20秒とし
た。粉末状のろう材4を用いた場合には、ろう付け温度
(1040℃)での保持時間を30秒とした。
When the sheet-shaped brazing material 4 was used, the holding time at the brazing temperature (1040 ° C.) was 20 seconds. When the powdered brazing material 4 was used, the holding time at the brazing temperature (1040 ° C.) was 30 seconds.

【0059】第1部材1と第2部材2との接合強度とし
ては、シート状のろう材4を用いた場合には、接合強度
は300〜330MPaとかなり大きかった。粉末状の
ろう材4を用いた場合にも、接合強度は330〜340
MPaとかなり大きかった。
As for the bonding strength between the first member 1 and the second member 2, when the sheet-shaped brazing material 4 was used, the bonding strength was 300 to 330 MPa, which was considerably large. Even when the powdery brazing material 4 is used, the bonding strength is 330 to 340.
It was considerably large as MPa.

【0060】(試験例3)試験例3においては、実施例
3に基づいて試験を行ない、ろう付け温度(1040
℃)での保持時間を10〜60秒の間において10秒間
隔で変化させ、同様の接合条件で第1部材1と第2部材
2の接合を行い、同様の引張試験条件で試験を行い、ろ
う付け温度(1040℃)での保持時間の長短の影響を
調べた。試験結果を図4に示す。●で規定された特性線
C1はシート状のろう材4を用いた場合の試験結果を示
す。○で規定された特性線C2は粉末状のろう材4を用
いた場合の試験結果を示す。
(Test Example 3) In Test Example 3, a test was conducted based on Example 3, and the brazing temperature (1040) was used.
The holding time at (° C) is changed at 10 second intervals for 10 to 60 seconds, the first member 1 and the second member 2 are joined under the same joining condition, and the test is conducted under the same tensile test condition. The influence of the length of the holding time at the brazing temperature (1040 ° C) was investigated. The test results are shown in FIG. A characteristic line C1 defined by ● indicates the test result when the sheet-shaped brazing material 4 is used. A characteristic line C2 defined by ◯ shows the test result when the powdery brazing material 4 is used.

【0061】シート状のろう材4を用いた場合には、図
4の特性線C1に示すように、1040℃に保持する時
間が15〜30秒の間において接合強度が飛躍的に改善
される臨界的効果が認められた。粉末状のろう材4を用
いた場合には、図4の特性線C2に示すように、104
0℃に保持する時間が20〜40秒の間において接合強
度が飛躍的に改善される臨界的効果が認められた。
When the sheet-shaped brazing material 4 is used, as shown by the characteristic line C1 in FIG. 4, the bonding strength is remarkably improved during the time of holding at 1040 ° C. for 15 to 30 seconds. A critical effect was observed. When the powdered brazing material 4 is used, as shown by the characteristic line C2 in FIG.
A critical effect of dramatically improving the bonding strength was observed when the time of holding at 0 ° C. was 20 to 40 seconds.

【0062】換言すると、シート状のろう材4を用いた
場合には、図4の特性線C1に示すように、1040℃
に10秒保持した加熱条件では接合強度が180〜20
0MPa程度と低めであった。20秒保持した加熱保持
条件で、接合強度が320〜340MPa程度と急激に
増加し、最高域を示した。30秒保持した加熱保持条件
で、接合強度が240〜270MPa程度と高かった。
即ち、1040℃で15〜30秒保持する加熱保持条件
であれば、240〜340MPa程度とかなり高い接合
強度が得られた。
In other words, when the sheet-shaped brazing material 4 is used, as shown by the characteristic line C1 in FIG.
The bonding strength is 180 to 20 under the heating condition of holding for 10 seconds.
It was as low as about 0 MPa. Under the heating and holding condition of holding for 20 seconds, the bonding strength rapidly increased to about 320 to 340 MPa and reached the highest range. The bonding strength was as high as about 240 to 270 MPa under the heating and holding condition of holding for 30 seconds.
That is, under the heating and holding condition of holding at 1040 ° C. for 15 to 30 seconds, a considerably high bonding strength of 240 to 340 MPa was obtained.

【0063】一方、粉末のろう材4を用いた場合には、
図4の特性線C2に示すように、1040℃に10秒保
持した加熱条件では接合強度が220MPa程度と低め
であったが、1040℃で20秒保持した加熱保持条件
では、接合強度が270〜280MPa程度と急激に増
加した。更に30秒保持した加熱保持条件では、接合強
度が325MPa程度と最高域を示した。40秒保持し
た加熱保持条件では、接合強度が240〜280MPa
程度と高かった。即ち、粉末のろう材4を用いた場合に
は、1040℃で20〜40秒保持する加熱保持条件で
あれば、250〜325MPa程度とかなり高い接合強
度が得られた。
On the other hand, when the powdered brazing material 4 is used,
As shown by the characteristic line C2 in FIG. 4, the bonding strength was as low as about 220 MPa under the heating condition of holding at 1040 ° C. for 10 seconds, but the bonding strength was 270 to 270 under the heating holding condition of holding at 1040 ° C. for 20 seconds. It rapidly increased to about 280 MPa. Under the condition of heating and holding for 30 seconds, the bonding strength showed the highest range of about 325 MPa. Under the heating and holding condition of holding for 40 seconds, the bonding strength is 240 to 280 MPa.
The degree was high. That is, when the powdered brazing filler metal 4 was used, under a heating and holding condition of holding at 1040 ° C. for 20 to 40 seconds, a considerably high bonding strength of about 250 to 325 MPa was obtained.

【0064】しかしながら図4の特性線C1,C2に示
すように、シート状のろう材4を用いた場合であって
も、粉末のろう材4を用いた場合であっても、1040
℃に保持する時間が40秒を越えると、第1部材1と第
2部材2の接合強度がかなり低めとなった。さらに、ろ
う材4がシートのとき、引張試験温度を700℃とした
場合には、接合界面で切断することなく、鋼部材で破断
し、破断強度は120MPaの値を示した。
However, as shown by the characteristic lines C1 and C2 in FIG. 4, 1040 is obtained regardless of whether the sheet-shaped brazing material 4 is used or the powder brazing material 4 is used.
When the temperature was kept at 40 ° C. for more than 40 seconds, the bonding strength between the first member 1 and the second member 2 became considerably low. Furthermore, when the tensile test temperature was 700 ° C. when the brazing material 4 was a sheet, the brazing material 4 was broken at the steel member without cutting at the joint interface, and the breaking strength showed a value of 120 MPa.

【0065】(試験例4)試験例4は実施例1と基本的
には同様な構成である。即ち、上記Ti−Al系合金製
の軸状部材で形成された第1部材1と、上記した合金鋼
製の軸状部材で形成された第2部材2とを用い、第1部
材1及び第2部材2の接合界面に上記したろう材4を挿
入した状態で、誘導加熱により接合界面及びろう材4を
大気中において誘導加熱し、第1部材1及び第2部材2
を大気中において接合した。
Test Example 4 Test Example 4 has basically the same configuration as that of Example 1. That is, using the first member 1 formed of the shaft-shaped member made of the Ti-Al alloy and the second member 2 formed of the shaft-shaped member made of the alloy steel described above, the first member 1 and the first member 1 In the state where the brazing material 4 described above is inserted into the joining interface of the two members 2, the joining interface and the brazing material 4 are induction-heated in the atmosphere by induction heating, and the first member 1 and the second member 2
Were bonded in the atmosphere.

【0066】そして大気中での接合において、接合強度
に及ぼす加圧力の影響を調べた。この場合、実施例3と
同様な方法で、合金鋼としてSUS430を用いた。ろ
う材4としては厚さ40μmのBNi2箔(重量比で、
Ni−7Cr−4.5Si−3.0Fe−3.2B)の
Niろうを用いた。
Then, in the bonding in the atmosphere, the influence of the pressing force on the bonding strength was examined. In this case, SUS430 was used as the alloy steel in the same manner as in Example 3. As the brazing material 4, a 40 μm thick BNi2 foil (weight ratio:
Ni-7Cr-4.5Si-3.0Fe-3.2B) Ni solder was used.

【0067】接合の際には、直径10mm、長さ600
mmに加工した上記Ti−Al系合金製の第1部材1と
合金鋼製の第2部材2との間にろう材4を挿入した。ろ
う材4は40μmのシートおよび平均粒径50μmの粉
末の2種類用い、圧力0.01〜10MPaと変化さ
せ、接合を行った。
When joining, a diameter of 10 mm and a length of 600
A brazing material 4 was inserted between the first member 1 made of the Ti-Al alloy and the second member 2 made of alloy steel, which were processed to have a thickness of mm. As the brazing material 4, two kinds of 40 μm sheet and powder having an average particle size of 50 μm were used, and the pressure was changed to 0.01 to 10 MPa, and joining was performed.

【0068】試験結果を図5に示す。図5において、●
で規定された特性線D1はシート状(厚み:40μm)
のろう材4を用いた場合の試験結果を示し、○で規定さ
れた特性線D2は粉末状(平均粒径:50μm)のろう
材4を用いた場合の試験結果を示す。シート状のろう材
4を用いた場合には、図5の特性線D1に示すように、
面圧0.08〜0.1MPaを越えるあたりから、接合
強度は飛躍的に増加し、更に面圧0.5〜0.6MPa
の領域で、280〜300MPaとかなり高い接合強度
が得られた。
The test results are shown in FIG. In Figure 5, ●
The characteristic line D1 defined by is sheet-like (thickness: 40 μm)
The test result when the brazing material 4 of No. 4 is used, and the characteristic line D2 defined by ◯ shows the test result when the brazing material 4 in powder form (average particle diameter: 50 μm) is used. When the sheet-shaped brazing material 4 is used, as shown by the characteristic line D1 in FIG.
When the surface pressure exceeds 0.08 to 0.1 MPa, the bonding strength increases dramatically, and the surface pressure becomes 0.5 to 0.6 MPa.
In this region, a considerably high bonding strength of 280 to 300 MPa was obtained.

【0069】粉末のろう材4を用いた場合には、図5の
特性線D2に示すように、面圧0.1MPaを越えるあ
たりから、接合強度は飛躍的に増加し、面圧0.5〜
0.6MPaの領域で300〜330MPaとかなり高
い接合強度が得られた。
When the powdered brazing material 4 is used, as shown by the characteristic line D2 in FIG. 5, the bonding strength dramatically increases from the point where the surface pressure exceeds 0.1 MPa, and the surface pressure becomes 0.5. ~
A fairly high bonding strength of 300 to 330 MPa was obtained in the region of 0.6 MPa.

【0070】シート状のろう材4を用いた場合、粉末状
のろう材4を用いた場合のいずれにおいても、面圧5M
Paを越えるまでの面圧領域では、接合強度の改善効果
はほぼ飽和しており、接合強度はあまり増加しなかっ
た。
In both cases where the sheet-shaped brazing material 4 and the powder-shaped brazing material 4 are used, the surface pressure is 5M.
In the surface pressure region up to Pa, the effect of improving the bonding strength was almost saturated, and the bonding strength did not increase so much.

【0071】更に、シート状のろう材4を用いた場合、
粉末状のろう材4を用いた場合のいずれにおいても、面
圧5MPaを越えると、接合強度は急激に低下した。そ
の理由は、被接合材である鋼部材が変形すると共に、溶
融したろう材が接合界面から押し出され、接合界面に残
存するろう材が減少するためである。
Further, when the sheet-shaped brazing material 4 is used,
In all cases where the brazing material 4 in powder form was used, the bonding strength drastically decreased when the surface pressure exceeded 5 MPa. The reason is that the steel member, which is the material to be joined, is deformed and the molten brazing material is extruded from the joining interface, and the brazing material remaining at the joining interface is reduced.

【0072】換言すれば、シート状のろう材4を用いた
場合、粉末状のろう材4を用いた場合のいずれにおいて
も、面圧0.1〜5MPaの領域内で、300MPa以
上の高い接合強度を確保できた。
In other words, in both cases where the sheet-shaped brazing material 4 is used and the powder-shaped brazing material 4 is used, high bonding of 300 MPa or more is achieved in the area of the surface pressure of 0.1 to 5 MPa. The strength was secured.

【0073】(試験例5)試験例5においては、大気中
での接合において、接合強度に及ぼすろう材4の組成の
影響を調べた。この場合、実施例1と同様な方法で行
い、第1部材1を構成するTi−Al系合金としては、
Ti−33.5重量%Alを用いた。第2部材2を構成
する合金鋼として、クロム鋼(JIS SCr40)を
用いた。ろう材4としては、表1に示すようなろう材A
〜ろう材Hを用いた。
(Test Example 5) In Test Example 5, the effect of the composition of the brazing filler metal 4 on the bonding strength in the bonding in the atmosphere was examined. In this case, the same method as in Example 1 was performed, and as the Ti—Al based alloy forming the first member 1,
Ti-33.5 wt% Al was used. Chromium steel (JIS SCr40) was used as the alloy steel forming the second member 2. As the brazing material 4, a brazing material A as shown in Table 1 is used.
~ Brazing filler metal H was used.

【0074】[0074]

【表1】 [Table 1]

【0075】表1に示すように、実施例に係るろう材
A,ろう材B,ろう材Cは、それぞれを、Cr及びSiの
双方を主要成分として含有するNi系ろう材とした。
As shown in Table 1, the brazing filler metal A, the brazing filler metal B, and the brazing filler metal C according to the examples were Ni-based brazing filler metals containing both Cr and Si as main components.

【0076】そして、第1部材1と第2部材2との接合
界面に面圧(1MPa)を負荷させた状態で、誘導加熱
により接合界面及びろう材4を加熱した。この場合、ろ
う付温度(1040℃)まで1分で昇温し、そのろう付
け温度で保持温度20秒で第1部材1と第2部材2との
接合を行った。前述同様に引張試験を行い、接合強度
(引張強度)を測定した。その結果を表1に示す。
Then, the bonding interface and the brazing material 4 were heated by induction heating in the state where the surface pressure (1 MPa) was applied to the bonding interface between the first member 1 and the second member 2. In this case, the temperature was raised to the brazing temperature (1040 ° C.) in 1 minute, and the first member 1 and the second member 2 were joined at the brazing temperature at the holding temperature of 20 seconds. A tensile test was conducted in the same manner as described above to measure the bonding strength (tensile strength). The results are shown in Table 1.

【0077】表1に示すように、還元作用の強いCr及
びSiを含有するろう材A,ろう材B,ろう材4Cを用
いた場合には、280〜310MPaと高い接合強度が
得られた。一方、Si及びCrを含有していない比較例
に係るろう材D〜ろう材Hを用いた場合には、接合強度
が充分ではなく、試験片を加工中に接合界面が破断し
た。このことからもろう材に含まれているSi及びCr
が、第1部材1と第2部材2との接合界面の接合強度の
向上に有効であることがわかる。
As shown in Table 1, when the brazing material A, the brazing material B, and the brazing material 4C containing Cr and Si having a strong reducing action were used, a high bonding strength of 280 to 310 MPa was obtained. On the other hand, when the brazing materials D to H according to the comparative examples containing no Si and Cr were used, the bonding strength was not sufficient, and the bonding interface was broken during processing of the test piece. From this, Si and Cr contained in the brazing material are also included.
However, it is found that it is effective in improving the bonding strength at the bonding interface between the first member 1 and the second member 2.

【0078】(適用例)図8は適用例1を示す。図8に
示すように、車両等の内燃機関に搭載されるターボチャ
ージャーに装備されるTi−Al系合金製タービンロー
タである第1部材1Xと、合金鋼製の軸状部材からなる
第2部材2Xとを用いる。第1部材1Xの外径は第2部
材2Xの外径よりも大きい。第1部材1Xは、短軸部1
n、短軸部1nに連設された複数の羽根翼1m、後端面
2eを有する。そして、第1部材1Xの短軸部1nの端
面1aと第2部材2Xの端面2aとの接合界面に、シー
ト状または粉末状のろう材4を配置する。ろう材4はC
r及びSiを含むNi系ろう材とする。
(Application Example) FIG. 8 shows an application example 1. As shown in FIG. 8, a first member 1X, which is a turbine rotor made of a Ti—Al alloy, which is installed in a turbocharger mounted in an internal combustion engine such as a vehicle, and a second member which is an axial member made of alloy steel. 2X is used. The outer diameter of the first member 1X is larger than the outer diameter of the second member 2X. The first member 1X has a short shaft portion 1
n, a plurality of blade blades 1m connected to the short shaft portion 1n, and a rear end surface 2e. Then, a sheet-like or powder-like brazing material 4 is arranged at the joint interface between the end surface 1a of the short shaft portion 1n of the first member 1X and the end surface 2a of the second member 2X. Brazing material 4 is C
A Ni-based brazing material containing r and Si.

【0079】その状態で、第1部材1X及び第2部材2
Xの軸長方向に沿った外力を作用させ、ろう材4及び接
合界面に所定の面圧を負荷させる。面圧としては、0.
1MPa以上でかつ第1部材1X及び第2部材2Xの降
伏応力未満の圧力とする。そして第1部材1Xの短軸部
1nと第2部材2Xとの接合界面に隣設する誘導加熱コ
イル5に、高周波の交番電流(周波数:100kHz)
を通電する。誘導加熱コイル5は、第1部材1Xの複数
の羽根翼1m及び後端面2eに干渉しないように配置さ
れている。図8に示すように、誘導加熱コイル5は、第
1部材1X及び第2部材2Xに対して半径方向において
接近しており、同軸的配置とされている。第1部材1X
及び第2部材2Xの接合界面と、誘導加熱コイル5との
間には、他の部材は介在されておらず、誘導加熱コイル
5は接合界面に対面している。
In this state, the first member 1X and the second member 2
An external force is applied along the axial direction of X to apply a predetermined surface pressure to the brazing material 4 and the bonding interface. The surface pressure is 0.
The pressure is 1 MPa or more and less than the yield stress of the first member 1X and the second member 2X. Then, a high-frequency alternating current (frequency: 100 kHz) is applied to the induction heating coil 5 adjacent to the joint interface between the short axis portion 1n of the first member 1X and the second member 2X.
Energize. The induction heating coil 5 is arranged so as not to interfere with the blade blades 1m and the rear end surface 2e of the first member 1X. As shown in FIG. 8, the induction heating coil 5 is close to the first member 1X and the second member 2X in the radial direction, and is coaxially arranged. First member 1X
No other member is interposed between the joint interface of the second member 2X and the induction heating coil 5, and the induction heating coil 5 faces the joint interface.

【0080】上記した通電により、大気中で接合界面を
誘導加熱し、第1部材1Xと第2部材2Xとを大気中に
おいてろう付けで接合させる。ろう付け温度領域に保持
する時間を15〜40秒とした。本適用例によれば、第
1部材1X及び第2部材2Xの接合界面における接合強
度を高めることができる。なお図8において第1部材1
Xを下側、第2部材2Xを上側に配置しているが、逆
に、第1部材1Xを上側、第2部材2Xを下側に配置し
ても良い。
By the above-mentioned energization, the joining interface is induction-heated in the atmosphere, and the first member 1X and the second member 2X are joined by brazing in the atmosphere. The time of holding in the brazing temperature region was set to 15 to 40 seconds. According to this application example, the bonding strength at the bonding interface between the first member 1X and the second member 2X can be increased. In FIG. 8, the first member 1
Although X is arranged on the lower side and the second member 2X is arranged on the upper side, conversely, the first member 1X may be arranged on the upper side and the second member 2X may be arranged on the lower side.

【0081】図9は適用例2を示す。適用例2は適用例
1と基本的には同様の構成であり、同様の作用効果を奏
する。但し、接合面に介在しているろう材4は、シリコ
ン及びクロムが少ないか、あるいは、含まれていないろ
う材合金で形成された第1ろう材4Aと、第1ろう材4
Aよりもシリコン及びクロムが含有量が多くされたろう
材合金で形成された第2ろう材4Bとで形成されてい
る。これにより第1ろう材4Aで不足するシリコン及び
クロムを第2ろう材4Bが補充することができる。従っ
て市販の安価な第1ろう材4Aを使用すると、シリコン
及びクロムが不足するため、高い接合強度が得られにく
い場合に適する。
FIG. 9 shows an application example 2. The application example 2 has basically the same configuration as the application example 1 and exhibits the same operation effect. However, the brazing filler metal 4 interposed on the joint surface includes the first brazing filler metal 4A formed of a brazing filler metal alloy containing little or no silicon and chromium, and the first brazing filler metal 4
The second brazing material 4B is made of a brazing material alloy containing silicon and chromium in a larger amount than that of A. As a result, the second brazing filler metal 4B can replenish the silicon and chromium that are insufficient in the first brazing filler metal 4A. Therefore, when the commercially available inexpensive first brazing material 4A is used, silicon and chromium are deficient, which is suitable when it is difficult to obtain a high bonding strength.

【0082】第1ろう材4Aはシート状でも、粉末状で
も良い。また第2ろう材4Bはシート状でも、粉末状で
も良い。第1ろう材4Aをシート状とし、補充用の第2
ろう材4Bを粉末状とし、必要に応じて適宜添加しても
良い。第1ろう材4A及び第2ろう材4Bの割合は、必
要に応じて選択すれば良い。
The first brazing material 4A may be in the form of a sheet or powder. The second brazing material 4B may be in the form of a sheet or powder. The first brazing material 4A is made into a sheet shape, and the second
The brazing material 4B may be made into a powder and may be appropriately added if necessary. The ratio of the first brazing material 4A and the second brazing material 4B may be selected as necessary.

【0083】(その他)その他、本発明は上記した実施
例、適用例のみに限定されるものではなく、例えば、タ
ーボチャジャーに装備されるTi−Al系合金製タービ
ンロータ以外の部品の接合にも適用できるものであり、
例えばガスタービン部品やタービンブレードにも適用で
きるものであり、要旨を逸脱しない範囲内で適宜変更し
て実施できるものである。
(Others) In addition, the present invention is not limited to the above-described embodiments and application examples. For example, it is possible to join parts other than the Ti-Al alloy turbine rotor equipped in a turbocharger. Is also applicable,
For example, it can be applied to a gas turbine component or a turbine blade, and can be appropriately modified and implemented within a range not departing from the gist.

【0084】(付記)上記した記載から次の技術的思想
も把握できる。 (付記項1)各請求項において、0.1MPa〜5MP
aの面圧を接合界面に負荷させることを特徴とするTi
−Al系合金部材の接合方法。接合強度の改善の飽和化
に対処できる。 (付記項2)各請求項において、ろう材がシート状であ
り、ろう付け温度領域に保持する時間は15〜30秒で
あることを特徴とするTi−Al系合金部材の接合方
法。ろう材がシート状であるため、誘導加熱等の加熱が
粉末に比較して促進され、加熱時間を短時間にできる。 (付記項3)各請求項において、ろう材が粉末状であ
り、ろう付け温度領域に保持する時間は20〜40秒で
あることを特徴とするTi−Al系合金部材の接合方
法。ろう材が粉末状であるため、誘導加熱等の加熱がシ
ートに比較して遅れ、加熱時間が少し長めとなり易い。 (付記項4)Ti−Al系合金を基材とする第1部材
と、鋼系合金を基材とすると共にろう付け部を介して第
1部材に接合された第2部材とを有するTi−Al系合
金部材において、ろう付け部は、シリコン及びクロムの
少なくとも一方を主要成分として含有するNi系ろう材
で構成されていることを特徴とするTi−Al系合金部
材。 (付記項5)付記項4において、ろう付け部を構成する
ろう材は、ろう材を100%としたとき、重量比で、ク
ロム:2.0〜20.0%、シリコン:1.0〜10.
5%の少なくとも一方を含む組成を有するNi系ろう付
け合金で形成されていることを特徴とするTi−Al系
合金部材。 (付記項6)各請求項、各付記項において、接合界面の
引張強度は250MPa以上であることを特徴とするT
i−Al系合金部材、または、Ti−Al系合金部材の
接合方法。 (付記項7)各請求項、各付記項において、接合界面の
引張強度は300MPa以上であることを特徴とするT
i−Al系合金部材、または、Ti−Al系合金部材の
接合方法。 (付記項8)各請求項または各付記項に係るTi−Al
系合金製のタービンロータ、または、Ti−Al系合金
製のタービンロータの接合方法。 (付記項9)各請求項、各付記項において、第1部材及
び第2部材の接合界面と、誘導加熱用導電部材との間に
は、他の部材が介在されておらず、誘導加熱用導電部材
は接合界面に対面していることを特徴とするTi−Al
系合金部材の接合方法。
(Supplementary Note) From the above description, the following technical idea can be understood. (Appendix 1) In each claim, 0.1 MPa to 5 MP
Ti characterized by applying the surface pressure of a to the bonding interface
-A method of joining Al-based alloy members. It is possible to deal with the saturation of the improvement of the bonding strength. (Additional Item 2) In each of the claims, the brazing material is sheet-shaped, and the holding time in the brazing temperature region is 15 to 30 seconds. Since the brazing material is sheet-shaped, heating such as induction heating is promoted as compared with powder, and the heating time can be shortened. (Additional Item 3) In each of the claims, the brazing material is in the form of powder, and the holding time in the brazing temperature region is 20 to 40 seconds. Since the brazing material is in powder form, heating such as induction heating is delayed as compared with the sheet, and the heating time tends to be a little longer. (Additional Item 4) Ti— having a first member having a Ti—Al alloy as a base material and a second member having a steel alloy as a base material and joined to the first member via a brazing portion In the Al-based alloy member, the brazing part is made of a Ni-based brazing material containing at least one of silicon and chromium as a main component, a Ti-Al-based alloy member. (Additional Item 5) In Additional Item 4, when the brazing material is 100%, the brazing material constituting the brazing part is chromium: 2.0 to 20.0%, silicon: 1.0 to 10.
A Ti-Al-based alloy member formed of a Ni-based brazing alloy having a composition containing at least one of 5%. (Additional Item 6) In each of the claims and the additional items, the tensile strength of the joint interface is 250 MPa or more.
A method for joining an i-Al alloy member or a Ti-Al alloy member. (Additional remark 7) In each claim and each additional remark, the tensile strength of the bonding interface is 300 MPa or more.
A method for joining an i-Al alloy member or a Ti-Al alloy member. (Appendix 8) Ti-Al according to each claim or each claim
A method for joining a turbine rotor made of a system alloy or a turbine rotor made of a Ti-Al system alloy. (Additional remark 9) In each claim and each additional remark, there is no other member interposed between the bonding interface between the first member and the second member and the conductive member for induction heating. The conductive member faces the bonding interface, and Ti-Al is characterized.
Method for joining base alloy members.

【0085】[0085]

【発明の効果】本発明によれば、耐熱性に優れたTi−
Al系合金を基材とする第1部材と、鋼系合金を基材と
する第2部材とを、大気中において、良好に接合するこ
とができる。このため、ろう付け雰囲気を不活性ガスで
置換するガス置換装置、ろう付け雰囲気を真空とする真
空ろう付け装置を廃止することができる。また、ろう付
け雰囲気を不活性ガスで置換する工程、ろう付け雰囲気
を真空とする工程を廃止することができる。故に量産化
に適する。
According to the present invention, Ti- which is excellent in heat resistance
The first member having the Al-based alloy as the base material and the second member having the steel-based alloy as the base material can be satisfactorily joined in the atmosphere. Therefore, it is possible to eliminate the gas replacement device that replaces the brazing atmosphere with an inert gas and the vacuum brazing device that makes the brazing atmosphere a vacuum. Further, the step of replacing the brazing atmosphere with an inert gas and the step of making the brazing atmosphere a vacuum can be omitted. Therefore, it is suitable for mass production.

【0086】本発明によれば、大気中で接合を行う。こ
のため、第1部材及び第2部材の接合界面付近に不活性
ガスを充満させる箱カバーを廃止できる。故に、誘導加
熱により第1部材及び第2部材を接合する場合には、誘
導加熱コイル等の誘導加熱用導電部材を接合界面にでき
るだけ接近させることができ、接合界面及びろう材の誘
導加熱を効率よく行ない得、ろう材をろう付け温度領域
に短時間で昇温加熱するのに有利となる。
According to the present invention, the bonding is performed in the atmosphere. Therefore, the box cover that fills the inert gas near the bonding interface between the first member and the second member can be eliminated. Therefore, when the first member and the second member are joined by induction heating, the induction heating conductive member such as the induction heating coil can be brought as close as possible to the joint interface, and the joint interface and the brazing filler metal can be efficiently heated by induction heating. It can be performed well, which is advantageous for heating the brazing material in the brazing temperature region in a short time.

【0087】車両に搭載されるターボチャージャーに装
備されるTi−Al系合金製のタービンロータに適用し
た場合には、タービンロータの接合を良好に行うことが
できる。
When applied to a turbine rotor made of a Ti-Al alloy which is installed in a turbocharger mounted on a vehicle, the turbine rotor can be joined well.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1に係り、第1部材と第2部材とを接合
する接合形態を示す構成図である。
FIG. 1 is a configuration diagram illustrating a joining mode of joining a first member and a second member according to a first embodiment.

【図2】接合強度と保持時間との関係を示すグラフであ
る。
FIG. 2 is a graph showing the relationship between bonding strength and holding time.

【図3】接合強度と保持時間との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between bonding strength and holding time.

【図4】接合強度と保持時間との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between bonding strength and holding time.

【図5】接合強度と面圧との関係を示すグラフである。FIG. 5 is a graph showing the relationship between bonding strength and surface pressure.

【図6】保持時間が20秒のときの接合部付近における
EPMA分析結果を示すグラフである。
FIG. 6 is a graph showing an EPMA analysis result in the vicinity of a joint when the holding time is 20 seconds.

【図7】保持時間が20秒のときの接合部付近における
EPMA分析結果を示すグラフである。
FIG. 7 is a graph showing an EPMA analysis result in the vicinity of a joint when the holding time is 20 seconds.

【図8】適用例1に係り、タービンロータである第1部
材と軸状部材である第2部材とを接合する接合形態を示
す構成図である。
FIG. 8 is a configuration diagram showing a joining form for joining a first member that is a turbine rotor and a second member that is a shaft-like member according to Application Example 1;

【図9】適用例2に係り、タービンロータである第1部
材と軸状部材である第2部材とを接合する接合形態を示
す構成図である。
FIG. 9 is a configuration diagram showing a joining mode in which a first member that is a turbine rotor and a second member that is a shaft-shaped member are joined according to Application Example 2;

【符号の説明】[Explanation of symbols]

図中、1は第1部材、2は第2部材、4はろう材、5は
誘導加熱コイル(誘導加熱用導電部材)を示す。
In the figure, 1 is a first member, 2 is a second member, 4 is a brazing material, and 5 is an induction heating coil (conductive member for induction heating).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 35/30 310 B23K 35/30 310D C21D 1/42 C21D 1/42 Z C22C 14/00 C22C 14/00 Z 19/05 19/05 B F01D 5/04 F01D 5/04 5/28 5/28 F02B 39/00 F02B 39/00 R U F16H 41/28 F16H 41/28 // B23K 103:24 B23K 103:24 Fターム(参考) 3G002 AA01 AA04 BA01 BA06 BA10 3G005 EA16 FA04 FA41 GB75 GB79 KA03 KA07 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B23K 35/30 310 B23K 35/30 310D C21D 1/42 C21D 1/42 Z C22C 14/00 C22C 14/00 Z 19/05 19/05 B F01D 5/04 F01D 5/04 5/28 5/28 F02B 39/00 F02B 39/00 R U F16H 41/28 F16H 41/28 // B23K 103: 24 B23K 103: 24 F term (reference) 3G002 AA01 AA04 BA01 BA06 BA10 3G005 EA16 FA04 FA41 GB75 GB79 KA03 KA07

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】Ti−Al系合金を基材とする第1部材
と、鋼系合金を基材とする第2部材とを接合するTi−
Al系合金部材の接合方法において、 シリコン及びクロムの少なくとも一方を主要成分として
含有するろう材を前記第1部材と前記第2部材との接合
界面に配置すると共に、 0.1MPa以上でかつ前記第1部材及び前記第2部材
の降伏応力未満の面圧を接合界面に負荷し、大気中で前
記接合界面をろう付け温度領域に加熱すると共に、前記
ろう付け温度領域に保持する時間を15〜40秒とし、
前記第1部材と前記第2部材とを大気中でろう付けする
ことを特徴とするTi−Al系合金部材の接合方法。
Claim: What is claimed is: 1. A Ti member for joining a first member having a Ti-Al alloy as a base material and a second member having a steel alloy as a base material.
In a method of joining an Al-based alloy member, a brazing material containing at least one of silicon and chromium as a main component is arranged at a joining interface between the first member and the second member, and a pressure of 0.1 MPa or more and A surface pressure less than the yield stress of the first member and the second member is applied to the bonding interface, the bonding interface is heated to the brazing temperature region in the atmosphere, and the time for maintaining the brazing temperature region is 15 to 40. Seconds and
A method for joining a Ti-Al based alloy member, comprising brazing the first member and the second member in the atmosphere.
【請求項2】請求項1において、前記ろう材は、シート
状または粉末状であることを特徴とするTi−Al系合
金部材の接合方法。
2. The method for joining Ti—Al based alloy members according to claim 1, wherein the brazing material is sheet-shaped or powder-shaped.
【請求項3】請求項1または請求項2において、前記ろ
う材は、前記ろう材を100%としたとき、重量比で、
クロム:2.0〜20.0%を含む組成を有するろう付
け合金で形成されていることを特徴とするTi−Al系
合金部材の接合方法。
3. The brazing filler metal according to claim 1 or 2, wherein the weight ratio of the brazing filler metal to the brazing filler metal is 100%.
A joining method of a Ti-Al based alloy member, which is formed of a brazing alloy having a composition containing chromium: 2.0 to 20.0%.
【請求項4】請求項1〜請求項3のいずれかにおいて、
前記ろう材は、前記ろう材を100%としたとき、重量
比で、シリコン:1.0〜10.5%を含む組成を有す
るろう付け合金で形成されていることを特徴とするTi
−Al系合金部材の接合方法。
4. The method according to any one of claims 1 to 3,
The brazing material is formed of a brazing alloy having a composition containing silicon: 1.0 to 10.5% by weight when the brazing material is 100%.
-A method of joining Al-based alloy members.
【請求項5】請求項1または請求項2において、前記ろ
う材は、前記ろう材を100%としたとき、重量比で、
クロム:6.0〜8.0%、B:2.75〜3.5%、
シリコン:4.0〜5.0%、Fe:2.0〜4.0
%、残部がNiおよび不可避不純物からなる組成を有す
ることを特徴とするTi−Al系合金部材の接合方法。
5. The brazing filler metal according to claim 1 or 2, wherein the brazing filler metal is 100% by weight,
Chromium: 6.0-8.0%, B: 2.75-3.5%,
Silicon: 4.0 to 5.0%, Fe: 2.0 to 4.0
%, With the balance being Ni and unavoidable impurities. A method of joining Ti-Al alloy members.
【請求項6】請求項1または請求項2において、前記ろ
う材は、前記ろう材を100%としたとき、重量比で、
クロム:18.0〜20.0%、シリコン:9.75〜
10.5%、残部がNiおよび不可避不純物からなる組
成を有することを特徴とするTi−Al系合金部材の接
合方法。
6. The brazing filler metal according to claim 1, wherein the weight ratio of the brazing filler metal to the brazing filler metal is 100%.
Chromium: 18.0 to 20.0%, Silicon: 9.75 to
A method for joining a Ti-Al alloy member, characterized in that it has a composition of 10.5%, with the balance being Ni and inevitable impurities.
【請求項7】請求項1〜請求項6のいずれかにおいて、
第1部材は金属間化合物であることを特徴とするTi−
Al系合金部材の接合方法。
7. The method according to any one of claims 1 to 6,
The first member is an intermetallic compound, Ti-
A method for joining Al-based alloy members.
【請求項8】請求項1〜請求項7のいずれかにおいて、
前記第1部材は、前記第1部材を100%としたとき、
重量比で、Al:30〜35%、残部がTiおよび不可
避不純物からなる組成を有することを特徴とするTi−
Al系合金部材の接合方法。
8. The method according to any one of claims 1 to 7,
When the first member is 100%, the first member is
Ti-characterized by having a composition of Al: 30 to 35% by weight, with the balance being Ti and inevitable impurities.
A method for joining Al-based alloy members.
【請求項9】請求項1〜請求項8のいずれかにおいて、
前記加熱は、前記第1部材と前記第2部材の接合界面に
隣設して設けられた誘導加熱用導電部材に交番電流を通
電して行われる誘導加熱であることを特徴とするTi−
Al系合金部材の接合方法。
9. The method according to any one of claims 1 to 8,
The heating is induction heating performed by passing an alternating current through a conductive member for induction heating provided adjacent to a joint interface between the first member and the second member.
A method for joining Al-based alloy members.
【請求項10】請求項1〜請求項9のいずれかにおい
て、前記第1部材はタービンロータであり、前記第2部
材は軸状部材であり、前記第1部材及び前記第2部材は
突き合わせ状態に接合されることを特徴とするTi−A
l系合金部材の接合方法。
10. The first member according to claim 1, wherein the first member is a turbine rotor, the second member is a shaft-shaped member, and the first member and the second member are in a butted state. Ti-A characterized by being bonded to
A method for joining l-based alloy members.
JP2001251353A 2001-08-22 2001-08-22 METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER Pending JP2003053520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001251353A JP2003053520A (en) 2001-08-22 2001-08-22 METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001251353A JP2003053520A (en) 2001-08-22 2001-08-22 METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER

Publications (1)

Publication Number Publication Date
JP2003053520A true JP2003053520A (en) 2003-02-26

Family

ID=19080012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001251353A Pending JP2003053520A (en) 2001-08-22 2001-08-22 METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER

Country Status (1)

Country Link
JP (1) JP2003053520A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008039216A2 (en) * 2006-02-28 2008-04-03 Caterpillar Inc. Turbocharger turbine and shaft assembly
CN102112263A (en) * 2008-07-07 2011-06-29 工程产品瑞士有限公司 Fusion welding process to join aluminium and titanium
WO2012100476A1 (en) * 2011-01-26 2012-08-02 宁波江丰电子材料有限公司 Method for soldering target and back plate
US20140044532A1 (en) * 2012-08-09 2014-02-13 MTU Aero Engines AG PROCESS FOR PRODUCING A TiAl GUIDE VANE RING FOR A GAS TURBINE AND A CORRESPONDING GUIDE VANE RING
CN111702280A (en) * 2020-05-13 2020-09-25 中国科学院金属研究所 Ti2Medium-temperature Ti-based brazing filler metal special for brazing same or different AlNb-based alloy materials and preparation method and brazing process thereof
CN115722749A (en) * 2022-11-16 2023-03-03 深圳市森国科科技股份有限公司 Local induction heating diffusion welding method and power module packaging method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008039216A2 (en) * 2006-02-28 2008-04-03 Caterpillar Inc. Turbocharger turbine and shaft assembly
WO2008039216A3 (en) * 2006-02-28 2008-06-05 Caterpillar Inc Turbocharger turbine and shaft assembly
CN102112263A (en) * 2008-07-07 2011-06-29 工程产品瑞士有限公司 Fusion welding process to join aluminium and titanium
CN102112263B (en) * 2008-07-07 2014-07-16 肯联铝业瑞士有限公司 Fusion welding process to join aluminium and titanium
WO2012100476A1 (en) * 2011-01-26 2012-08-02 宁波江丰电子材料有限公司 Method for soldering target and back plate
US20140044532A1 (en) * 2012-08-09 2014-02-13 MTU Aero Engines AG PROCESS FOR PRODUCING A TiAl GUIDE VANE RING FOR A GAS TURBINE AND A CORRESPONDING GUIDE VANE RING
US9765632B2 (en) * 2012-08-09 2017-09-19 MTU Aero Engines AG Process for producing a TiAl guide vane ring for a gas turbine and a corresponding guide vane ring
CN111702280A (en) * 2020-05-13 2020-09-25 中国科学院金属研究所 Ti2Medium-temperature Ti-based brazing filler metal special for brazing same or different AlNb-based alloy materials and preparation method and brazing process thereof
CN111702280B (en) * 2020-05-13 2021-09-24 中国科学院金属研究所 Ti2Medium-temperature Ti-based brazing filler metal special for brazing same or different AlNb-based alloy materials and preparation method and brazing process thereof
CN115722749A (en) * 2022-11-16 2023-03-03 深圳市森国科科技股份有限公司 Local induction heating diffusion welding method and power module packaging method

Similar Documents

Publication Publication Date Title
JP3629920B2 (en) Nozzle for gas turbine, gas turbine for power generation, Co-base alloy and welding material
JP4264490B2 (en) Nickel-based brazing material
CN102471841B (en) The ferrite-group stainless steel of excellent heat resistance
CN111215787B (en) Nickel-based foil brazing filler metal for high-temperature alloy connection and preparation method and application thereof
CN107363356A (en) Make the method and component of component
JP2011502786A (en) Workpiece joining method and material welding method having a work piece region made of titanium aluminum alloy
JPH04297536A (en) Wear resistant copper-base alloy excellent in self-lubricity
US20080003453A1 (en) Brazing process and composition made by the process
JP2006188760A (en) Method of repairing nickel-base superalloy, preform for repairing and component repaired thereby
JP5381677B2 (en) Manufacturing method of welding wire
JP3243184B2 (en) Alloy foil for liquid phase diffusion bonding that can be bonded in oxidizing atmosphere
JPH09225679A (en) Ni base heat resistant brazing filter metal excellent in wettability and corrosion resistance
JP2003342617A (en) REPAIRED HIGH-TEMPERATURE COMPONENT MADE OF HEAT- RESISTANT ALLOY, REPAIRED GAS-TURBINE BLADE MADE OF Ni- BASED HEAT RESISTANT ALLOY, METHOD FOR REPAIRING GAS- TURBINE BLADE OF Ni-BASED HEAT RESISTANT ALLOY, AND METHOD FOR REPAIRING GAS-TURBINE BLADE MADE OF HEAT RESISTANT ALLOY
JP3829388B2 (en) TiAl turbine rotor
JP2003053520A (en) METHOD OF JOINING Ti-Al-BASE ALLOY MEMBER
JP4584002B2 (en) Flux-cored wire for ferritic stainless steel welding
JP2006297474A (en) JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD
JPH05202706A (en) Engine valve and manufacture thereof
WO1997010368A1 (en) Cobalt based alloy, and gas turbine nozzle and welding material made by using same
US5569546A (en) Repaired article and material and method for making
JP3534633B2 (en) Joint member and turbine member
JPH0647187B2 (en) Dispersion strengthened copper base alloy for overlay
Park et al. Effects of insert metal type on interfacial microstructure during dissimilar joining of TiAl alloy to SCM440 by friction welding
JP5843718B2 (en) Ni-base welding material and dissimilar material welding turbine rotor
JP4283380B2 (en) Dissimilar material welded turbine rotor and method of manufacturing the same