JP2000015513A - Cemented carbide twist drill - Google Patents

Cemented carbide twist drill

Info

Publication number
JP2000015513A
JP2000015513A JP10183567A JP18356798A JP2000015513A JP 2000015513 A JP2000015513 A JP 2000015513A JP 10183567 A JP10183567 A JP 10183567A JP 18356798 A JP18356798 A JP 18356798A JP 2000015513 A JP2000015513 A JP 2000015513A
Authority
JP
Japan
Prior art keywords
cemented carbide
twist drill
cutting
weight
drill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10183567A
Other languages
Japanese (ja)
Inventor
Atsushi Yukimura
淳 幸村
Yoshihiro Kondo
芳弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP10183567A priority Critical patent/JP2000015513A/en
Publication of JP2000015513A publication Critical patent/JP2000015513A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve an anti-plastic deformation property easy to generate on the corner of an outer periphery, while keeping an anti-chipping property by specifying the Co content of a cemented carbide to a specific weight %, the average grain diameter of WC and the lattice constant of Co. SOLUTION: When a Co content is less than 5 weight %, the strength of a cemented carbide is low and a twist drill is easy to break and when it is contained beyond 12 weight %, as an anti-plastic deformation property is deteriorated, it is made to 5-12 weight %. As the WC average grain diameter is less than 0.3 μ, the hardness of the cemented carbide becomes extremely high and its toughness is deteriorated and when it exceeds 1.2 μ, as the anti-water property is deteriorated, it is made to 0.5-1.2 μ. The lattice constant of Co is made to 3.565 Å-3.575 Å, as the deterioration of the anti-chipping property and the solid solution reinforcement of Co itself are not enough at the high carbon side of less than 3.565 Å and when it exceeds 3.575 Å, as a weak decarburizing phase is appeared.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、穴あけ加工等に用い
る超硬合金製のツイストドリルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide twist drill used for drilling and the like.

【0002】[0002]

【従来の技術】超硬合金製ツイストドリルは、高速度鋼
製のツイストドリルに比較し、長寿命、高速切削等に優
れる特徴をもつため、MC等の普及に伴い広範に用いら
れている。また、ドリル自体の形状は、MC等の高速・
高送りに対応するため、切り屑処理性、特に切り屑の排
出を優先させた形状が用いられ、その例として、特許第
2674124号がある。この例には、切り屑排出溝を
拡幅し、切り屑排出性に優れたツイストドリルを提供
し、超硬合金の特徴である高速・高送りに対応したツイ
ストドリルとなっている。
2. Description of the Related Art Cemented carbide twist drills are widely used with the spread of MC and the like, because they have characteristics such as long life and high speed cutting as compared with high speed steel twist drills. In addition, the shape of the drill itself is high-speed
In order to cope with the high feed, a shape giving priority to the chip processing property, particularly, the discharge of the chip is used. As an example, there is Japanese Patent No. 2,674,124. In this example, a chip discharge groove is widened to provide a twist drill excellent in chip discharge property, and a twist drill adapted to high speed and high feed, which is a feature of cemented carbide.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、超硬合
金自体は高速度鋼に比較して、そのプラス面は剛性と圧
縮強度、マイナス面は曲げ強度の不足にある。このプラ
ス面は、ツイストドリルが穴あけ、すなわち軸方向切削
に用いられるため極めて有利に作用させることができ
る。すなわち、圧縮強度はほぼ結合金属の量に反比例し
て高めることができるため、低結合金属量ほど有利とな
る。更に、ツイストドリルの先端刃は、連続切削であ
り、刃先の切削温度が著しく高くなり、先端刃、特に外
周付近の先端刃の刃先には微少な塑性変形が発生し、そ
れが原因で微少摩耗を誘発することの繰り返しで摩耗が
進行し工具寿命に至らしめる。更に、ドリル回転中心付
近は、外周に比して切削速度が低速な領域を有し、低速
切削に伴うチッピング、欠損等への対策も不可欠であ
る。従って、上記3点に着目し、基体である超硬合金の
圧縮強度、耐塑性変形性、耐チッピング性を改善するこ
とが、特に先端刃の刃先が高温になるような外周付近の
耐塑性変形性、耐摩耗性を改善することにより満足のい
く工具寿命を達成することが可能となる。
However, compared to high-speed steel, the cemented carbide itself has rigidity and compressive strength on the plus side and lacks bending strength on the minus side. This positive surface can be very advantageous because the twist drill is used for drilling, i.e. axial cutting. That is, since the compressive strength can be increased almost in inverse proportion to the amount of the bonding metal, the lower the amount of the bonding metal, the more advantageous. Furthermore, the cutting edge of the twist drill is a continuous cutting, the cutting temperature of the cutting edge becomes extremely high, and the tip cutting edge, especially the cutting edge of the cutting edge near the outer periphery, generates a small amount of plastic deformation, which causes micro wear. The wear is advanced by repeating the inducing, leading to the tool life. Furthermore, the vicinity of the drill rotation center has a region where the cutting speed is lower than that of the outer periphery, and it is indispensable to take measures against chipping, chipping, and the like accompanying low-speed cutting. Therefore, focusing on the above three points, it is necessary to improve the compressive strength, plastic deformation resistance, and chipping resistance of the cemented carbide as the base, especially in the vicinity of the outer periphery where the cutting edge of the tip blade becomes hot. By improving the properties and wear resistance, a satisfactory tool life can be achieved.

【0004】[0004]

【課題を解決するための手段】一般的に1μm以下のW
C粒子を用いる超微粒系の超硬合金は、耐チッピング性
を保つため比較的多量のCoを添加する。通常Co含有
量は10〜14重量%程度である。Coの添加量の増加
につれ当然耐塑性変形性は劣化する。従って、耐塑性変
形性を改善するためには当然Co含有量を減らすことが
必須である。しかしながら、単純にCo含有量を減らす
と強度そのものも低下し、特にツイストドリルに用いた
場合には、先端刃の回転中心付近の耐チッピング性が劣
化してしまうことが避けられない。そのため、本願発明
では、超硬合金製からなるツイストドリルにおいて、超
硬合金のCo含有量が5〜12重量%、WCの平均粒径
が0.3ミクロン〜1.2ミクロンであり、前記Coの
格子定数が3.565Å〜3.575Åであることを特
徴とするツイストドリルである。
SUMMARY OF THE INVENTION Generally, W of 1 μm or less is used.
An ultrafine-grain cemented carbide using C particles adds a relatively large amount of Co in order to maintain chipping resistance. Usually, the Co content is about 10 to 14% by weight. As the amount of Co increases, the plastic deformation resistance naturally deteriorates. Therefore, it is inevitable to reduce the Co content in order to improve the plastic deformation resistance. However, if the Co content is simply reduced, the strength itself also decreases, and in particular, when used in a twist drill, it is inevitable that the chipping resistance near the rotation center of the tip blade deteriorates. Therefore, according to the present invention, in a twist drill made of cemented carbide, the cemented carbide has a Co content of 5 to 12% by weight, an average particle diameter of WC of 0.3 to 1.2 microns, and Has a lattice constant of 3.565 ° to 3.575 °.

【0005】[0005]

【作用】本発明者らの研究によれば、耐塑性変形性を向
上するためにCo含有量は12重量%以下が好ましく、
この場合、合金の含有炭素量は低い側に調整することに
より耐チッピング性の劣化が防止可能であった。つまり
Coの格子定数は超硬合金製造における脱炭相が出現し
ないぎりぎりの低炭素側で3.575Å、遊離炭素が出
現しないぎりぎりの高炭素側で3.555Åまで連続的
に変化するが、それが 3.565〜3.575Åには
いる低炭素側に制御することで耐チッピング性の劣化の
防止が可能であった。
According to the study of the present inventors, the Co content is preferably 12% by weight or less in order to improve the plastic deformation resistance.
In this case, by adjusting the carbon content of the alloy to a lower side, deterioration of chipping resistance could be prevented. In other words, the lattice constant of Co continuously changes to 3.575 ° on the low carbon side just before the decarburized phase does not appear in the production of cemented carbide, and to 3.555 ° on the high carbon side just before free carbon appears. However, by controlling to a low carbon side where it is within 3.565 to 3.575 °, deterioration of chipping resistance can be prevented.

【0006】その理由は、超微粒子超硬では液相焼結工
程後半の1250℃から1330℃の凝固までの冷却工
程において、液相中に固溶していたWCが既存WC粒子
表面に晶出し板状WC粒子を形成しながら粒成長する。
低炭素側においては凝固温度が1330℃と高く晶出W
C量が少なく粒成長に伴うWC粒子同士の合体が発生し
難く粒子の形状も比較的丸い結果となる。一方、高炭素
側では冷却工程中に比較的多量のWCが晶出し角状粒子
となるとともに粒成長中に粒子が合体する傾向にある。
角状粒子が合体すると応力集中し、クラックが発生した
場合、伝播しやすく、その結果チッピングを誘発し易く
なる。この作用は、特に回転中心付近に見られる耐チッ
ピング性と相関する。ツイストドリルの中心付近は低速
故に生じる切削抵抗に抗ずるため、高い圧縮強度と耐ク
ラック性が要求される。
[0006] The reason is that, in the ultra-fine particle carbide, in the cooling step from 1250 ° C. to 1330 ° C. in the latter half of the liquid phase sintering step, WC which was dissolved in the liquid phase crystallizes on the surface of the existing WC particles. The grains grow while forming plate-like WC particles.
Solidification temperature as high as 1330 ° C on low carbon side
Since the amount of carbon is small, coalescence of WC particles due to grain growth is unlikely to occur, and the shape of the particles is relatively round. On the other hand, on the high carbon side, a relatively large amount of WC becomes crystallized and becomes angular particles during the cooling step, and the particles tend to unite during the grain growth.
When the horn-like particles coalesce, the stress concentrates, and when a crack occurs, it tends to propagate, and as a result, it tends to induce chipping. This effect correlates with the chipping resistance particularly seen near the center of rotation. High compressive strength and crack resistance are required in the vicinity of the center of the twist drill in order to resist cutting resistance generated due to low speed.

【0007】そのため、本発明者らはビッカース硬さの
測定時の圧痕の4隅に生じるクラックに着目しクラック
の伝播経路を詳細に観察した。前記高炭素合金の場合に
は、角状粒子が多く、ビッカース圧痕の4隅に生じるク
ラックは長く、また、その状態をミクロ組織で観察する
と、角状粒子を破壊して伝播してゆくの特徴がある。ま
た、前記低炭素合金では比較的丸い粒子となるので、粒
子周辺を通って伝播する特徴がある。上記のように、超
微粒子超硬合金では、やや成長したWC粒子はクラック
に対してマイナスな作用がある。その特徴を、ビッカ−
ス圧痕の4隅に生じるクラックの長さを測定し、その4
本の合計長さとビッカース荷重との関係で現す。(以
下、クラック抵抗と称する。)すなわち、 クラック抵抗(kg/mm)=(ビッカース荷重)÷(4本
のクラック長さの和) であり、低炭素合金の如く粒子が形状化されている超硬
では、クラックが伝播しにくいため、クラック長さは短
く、したがってクラック抵抗は大きな数値となる。それ
とは反対に、高炭素合金では、角状粒子に応力集中を生
じ、クラックが伝播しやすいためクラック長さは長くな
り、したがって、クラック抵抗は小さな数値となる。
For this reason, the present inventors have paid attention to cracks generated at the four corners of the indentation when measuring the Vickers hardness, and have observed the crack propagation path in detail. In the case of the high carbon alloy, there are many angular particles, the cracks generated at the four corners of the Vickers indentation are long, and when the state is observed with a microstructure, the angular particles are broken and propagated. There is. In addition, since the low-carbon alloy has relatively round particles, the low-carbon alloy has a characteristic of propagating around the particles. As described above, in the ultrafine-grain cemented carbide, the slightly grown WC particles have a negative effect on cracks. The feature, Vicca-
The length of the cracks formed at the four corners of the
Expressed by the relationship between the total length of the book and the Vickers load. (Hereinafter referred to as crack resistance.) That is, crack resistance (kg / mm) = (Vickers load) ÷ (sum of the lengths of four cracks), and the particle is shaped like a low carbon alloy. In the case of hard, the crack length is short because the crack is difficult to propagate, so that the crack resistance is a large value. Conversely, in the high carbon alloy, stress concentration occurs in the angular particles, and the cracks are easily propagated, so that the crack length becomes longer, and thus the crack resistance becomes a small value.

【0008】また、低炭素側に制御することによりCo
相は格子定数の増大からも明らかなように高炭素側のく
らべWを多量に固溶する結果、固溶強化されCo相自体
が塑性変形し難くなり、刃先が極めて高温になる特殊切
削条件下で工具寿命の向上に極めて効果を発揮し好まし
い結果となる。従って、このような耐チッピング性を劣
化させずに低Co化し同時に耐塑性変形性、圧縮強度を
改善した超微粒超硬合金を用いることにより、ドリル先
端刃の回転中心近傍および外周付近共に用いても特徴の
ある超硬合金とすることができた。
[0008] Further, by controlling to a low carbon side, Co
As is clear from the increase in the lattice constant, the phase dissolves a larger amount of W than on the high carbon side. As a result, the solid solution is strengthened and the Co phase itself is hardly plastically deformed. This is extremely effective in improving the tool life and gives a favorable result. Therefore, by using an ultrafine-grained cemented carbide with low Co without deteriorating chipping resistance and simultaneously improving plastic deformation resistance and compressive strength, it can be used both near the center of rotation and near the outer periphery of the drill bit. Was also able to be a cemented carbide.

【0009】次に数値を限定した理由を説明する。Co
の含有量は5重量%未満であると超硬合金の強度が低く
ツイストドリルが折損し易くなり、12重量%を越えて
含有させると耐塑性変形性が劣化するため、5〜12重
量%とした。WC平均粒子径は0.3ミクロン未満であ
ると超硬合金の硬さが極めて高くなり靭性を劣化させ、
1.2ミクロンを越えると耐摩耗性が劣化するため0.
5ミクロン〜1.2ミクロンとした。Coの格子定数
は、前述のごとく3.565Å未満の高炭素側では耐チ
ッピング性の劣化とCoそのものの固溶強化が十分でな
いため、また3.575Åを越えると脆弱な脱炭相が出
現するため3.565Å〜3.575Åとした。クラッ
ク抵抗は、70kg/未満であると偶発的に生じる切削
力の作用に対して十分な強度を保つことができ、特にツ
イストドリルとして用いたとき、欠損・折損に対し安定
した性能を示す。好ましくは、90kg/mm以上であ
る。更に、硬質膜及び/又は潤滑性膜を被覆としたの
は、ドリルにおいてもTiN、TiN等を被覆し耐摩耗
性を向上させ、また、深穴加工等では刃溝部にMoS等
の潤滑性膜を被覆し切り屑排出時の抵抗を低減させる等
の効果がある。以下、実施例に基づき本願発明を詳細に
説明する。
Next, the reason for limiting the numerical values will be described. Co
If the content is less than 5% by weight, the strength of the cemented carbide is low, and the twist drill is easily broken. If the content exceeds 12% by weight, the plastic deformation resistance is deteriorated. did. If the WC average particle size is less than 0.3 micron, the hardness of the cemented carbide becomes extremely high, deteriorating the toughness,
If the thickness exceeds 1.2 microns, the wear resistance deteriorates.
5 microns to 1.2 microns. If the lattice constant of Co is less than 3.565 °, the chipping resistance is deteriorated and the solid solution strengthening of Co itself is not sufficient on the high carbon side as described above, and if it exceeds 3.575 °, a fragile decarburized phase appears. Therefore, it was 3.56533.5753. When the crack resistance is less than 70 kg /, it is possible to maintain sufficient strength against the action of a cutting force that is accidentally generated, and particularly when used as a twist drill, exhibits stable performance against chipping and breakage. Preferably, it is 90 kg / mm or more. Further, the hard film and / or the lubricating film are coated because the drill is also coated with TiN, TiN or the like to improve wear resistance, and when drilling a deep hole or the like, the lubricating film such as MoS or the like is formed on the blade groove. To reduce the resistance at the time of chip discharge. Hereinafter, the present invention will be described in detail based on examples.

【0010】[0010]

【実施例】市販の平均粒径0.5ミクロンのWC粉末と
同1ミクロンのCo粉末を用い通常の粉末冶金法で、組
成がCo10%、残WC粉からなるφ8mmの本発明超
硬合金製ツイストドリルを製作した。焼結後の超硬合金
の物性は、硬さHRA92、Coの格子定数が3.57
0Å、クラック抵抗が90kg/mmのものが得られ
た。この合金を用いて、2枚刃、外径8mm、先端角1
40度の標準的な形状のツイストドリルを製作し、被覆
(TiN)後、切削試験を行った。切削諸元は、被削財
SCM440(焼鈍材)を用いて、切削速度60m/m
in、送り速度500mm/minで、穴深さ24mm
(ドリル径の3倍)の穴加工を水溶性切削油を用いて行
った。寿命は、切り屑等の形状を観察しつつ、一定加工
穴数毎に刃先の損傷状態を確認しつつ行った。
EXAMPLE Using a commercially available WC powder having an average particle diameter of 0.5 micron and a Co powder having the same micron diameter of 1 micron by a general powder metallurgy method, the cemented carbide of the present invention having a composition of 10% Co and the remaining WC powder and having a diameter of 8 mm. A twist drill was made. The physical properties of the cemented carbide after sintering are as follows: hardness HRA92, lattice constant of Co is 3.57.
0 ° and a crack resistance of 90 kg / mm were obtained. Using this alloy, 2 blades, outer diameter 8mm, tip angle 1
A twist drill having a standard shape of 40 degrees was manufactured, and after coating (TiN), a cutting test was performed. The cutting specifications are as follows: The cutting speed is 60m / m using the SCM440 (annealed material).
in, feed rate 500mm / min, hole depth 24mm
Drilling (three times the diameter of the drill) was performed using a water-soluble cutting oil. The life was determined while observing the shape of chips and the like, and checking the damage state of the cutting edge for each fixed number of processing holes.

【0011】その結果、本発明例のツイストドリルで
は、切削初期には分断された切り屑が生成され、切り屑
排出性もよく、スムーズな穴加工が行えたが、穴加工数
を経過するに従い切り屑が遷移折断型に変わり、定常的
な摩耗状態となった。この切り屑形態が3000穴加工
まで続き、摩耗量も増加していったが、ドリル先端部及
び外周との交叉部は正常な摩耗を示していた。更に加工
を継続すると、3500穴加工数で更に切り屑が連なる
ようになり、ドリル先端部と外周との交叉部の摩耗が大
きくなり、正常な切り屑が得られない状態となった。こ
の状態で4000穴まで加工し、ツイストドリルの先端
部を観察すると、ドリルりシンニング刃、直線刃付近は
まだ正常な摩耗であるが、ドリル先端部と外周の交叉部
は塑性変形はしておらず、摩耗により寿命となった。
As a result, in the twist drill according to the present invention, divided chips are generated in the initial stage of cutting, the chip discharge property is good, and smooth drilling can be performed. The chip turned into a transition break type and became a steady wear state. This chip form continued until the 3000-hole machining, and the amount of wear increased, but the intersection between the drill tip and the outer periphery showed normal wear. When the machining was further continued, chips continued to be formed after the number of drilling of 3,500 holes, the wear at the intersection of the drill tip and the outer periphery increased, and a normal chip could not be obtained. When drilling up to 4000 holes in this state and observing the tip of the twist drill, the wear near the drilling thinning blade and straight blade is still normal wear, but the intersection between the drill tip and the outer periphery has undergone plastic deformation. The life was shortened due to wear.

【0012】次に、通常の粉末冶金法で、市販の平均粒
径0.2〜2.0ミクロンのWC粉末、同1ミクロンの
Co粉末を用い通常の粉末冶金法で、組成がCo2%〜
15%の合金を製作した。尚、粒度が0.5ミクロン未
満のWCには、粒成長抑制剤としてCr、V、Zr等の
炭化物、窒化物等を添加して製作した。その組成、焼結
後の物性を表1に示す。
Next, using a conventional powder metallurgy method, a commercially available WC powder having an average particle diameter of 0.2 to 2.0 μm and a Co powder having the same 1 μm are used.
A 15% alloy was made. The WC having a particle size of less than 0.5 micron was manufactured by adding a carbide such as Cr, V, or Zr, a nitride, or the like as a grain growth inhibitor. Table 1 shows the composition and physical properties after sintering.

【0013】これらの合金を用いて、φ8mmの超硬合
金製ツイストドリルを製作し、被覆(TiN)後、切削
試験を行った。まず、前記実施例に用いた同じ被削材を
用いて、切削諸元は、切削速度60m/min、送り速
度500mm/minで、穴深さ24mm(ドリル径の
3倍)の穴加工を水溶性切削油を用いて行った。一定加
工数毎に刃先の損傷状態を確認しつつ行った。その結果
を表1に示す。
Using these alloys, a cemented carbide twist drill having a diameter of 8 mm was manufactured, coated (TiN), and then subjected to a cutting test. First, using the same work material used in the above-described embodiment, the cutting specifications were as follows: a cutting speed of 60 m / min, a feed speed of 500 mm / min, and a hole processing of a hole depth of 24 mm (three times the diameter of the drill) were water-soluble. The test was carried out using a neutral cutting oil. The inspection was performed while confirming the damage state of the cutting edge for each constant number of machining. Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】表1より、本発明例1〜14では、硬さの
高い合金ほど長寿命な傾向があるも、いずれもクラック
抵抗が高いため、使用初期〜定常期にかけて偶発的な折
損等を生じることなく、3000穴〜4500穴の加工
数となった。また、比較例では、Co量の多い15、1
6では、外周コーナー部の塑性変形により皮膜が損傷・
剥離したため250穴、500穴で切り屑が連なるよう
になったため試験を中止した。更に、Co量の少ない1
7、18では使用初期に折損した。
According to Table 1, in Examples 1 to 14 of the present invention, alloys having higher hardness tend to have a longer life, but all have higher crack resistance, so that accidental breakage or the like occurs from the initial use to the stationary period. Without this, the number of processed holes was 3000 to 4500. Further, in the comparative example, the amount of Co was large,
In No. 6, the coating was damaged due to plastic deformation of the outer corner.
The test was stopped because chips were continuously formed at 250 and 500 holes due to peeling. Furthermore, 1 with less Co content
In Nos. 7 and 18, it was broken at the beginning of use.

【0016】次に、表1で示した本発明例4、5、6
(WC粒子0.5μm)の組成の合金を用いてカーボン
量を変化させた合金を製作した。カーボン量は飽和磁束
密度の測定の結果より、Coの格子定数に換算した。そ
の結果を表2に示す。
Next, Examples 4, 5, and 6 of the present invention shown in Table 1
An alloy having a composition of (WC particles 0.5 μm) with a different amount of carbon was manufactured. The amount of carbon was converted into a lattice constant of Co from the result of the measurement of the saturation magnetic flux density. Table 2 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】表2より、カーボン量を変化させた試料の
中で、本発明例の19〜27の例では、WC粒子が丸味
を帯び、角状に成長し、かつ、合体した粒子がほとんど
無いため硬さが高く、クラック抵抗はおおきな値となっ
たにのに対し、比較例28、30、32ではカーボン量
が高いため、正常な組織ではあるが部分的に、WC粒子
が角状に成長し、WC粒子が接触し、また、合体した粒
子も観察され、硬さのわりにはクラック抵抗が小さな値
となった。更に、比較例29、31、33ではカーボン
量が低すぎるため、イータ相と称されるM6C相が部分
的に観察されるため、硬さは高いが脆く、クラック抵抗
は小さな値となった。次に、これらの試料を前実施例同
様なツイストドリルを製作し、切削諸元も同じで行っ
た。その結果も表2に併記する。
From Table 2, it can be seen that among the samples in which the amount of carbon was changed, in Examples 19 to 27 of the present invention, the WC particles were rounded, grew in a square shape, and there were almost no coalesced particles. Therefore, while the hardness was high and the crack resistance was a large value, in Comparative Examples 28, 30, and 32, the amount of carbon was high. However, the WC particles came into contact with each other, and the coalesced particles were also observed, and the crack resistance was a small value in terms of hardness. Furthermore, in Comparative Examples 29, 31, and 33, since the amount of carbon was too low, an M6C phase called an eta phase was partially observed, so that the hardness was high but brittle, and the crack resistance was a small value. Next, a twist drill similar to the previous example was manufactured from these samples, and the cutting specifications were the same. The results are also shown in Table 2.

【0019】表2より、カーボン量の高い比較例28等
では、外周コーナー部の損傷により寿命となった。ま
た、脱炭層が観察された比較例29等では、負荷を繰り
返すうちにシャンク側から折損した。本試験では、適正
なカーボン量とすることにより、WC粒子の形状を特定
することにより、不安定さを包含するツイストドリルの
様な切削工具においても、安定、良好な結果が得られ
た。
As shown in Table 2, in Comparative Example 28 and the like having a high carbon content, the life was shortened due to damage to the outer peripheral corners. In Comparative Example 29 and the like in which a decarburized layer was observed, it was broken from the shank side while the load was repeated. In this test, by specifying an appropriate amount of carbon and specifying the shape of the WC particles, stable and good results were obtained even with a cutting tool such as a twist drill which involves instability.

【0020】続いて、表2で示した本発明例24(Co
量8%)、本発明例27(Co量6%)と比較例32の
ドリル、更に表1の本発明例9、12、14のドリルを
用いて、切削諸元を高速高送りに変更して行った。切削
速度100m/min、送り速度1000mm/min
で、穴深さ24mm(ドリル径の3倍)の穴加工を水溶
性切削油を用いて行った。切削諸元を高めることによ
り、ドリルのコーナー部にかかる負荷はより高くなるた
め、コーナー部の損傷で寿命となった。まず、WC平均
粒径0.5μの本発明例24では1525穴の加工数で
コーナー部に塑性変形を生じ、本発明例27(Co量6
%)では1825穴で切り屑が連なるようになった。比
較例32では100穴での加工数でコーナー部に塑性変
形を生じた。次に、WC平均粒径0.8μの本発明例
9、WC平均粒径1.0μの本発明例12、WC平均粒
径1.2μの本発明例14では、それぞれ2000穴、
2200穴、2500穴となった。本例では、高速、高
送りの諸元とすることにより、低Co量の合金がより優
れ、また、WCの粒子はやや粗いほうが良好な結果が得
られた。
Subsequently, Example 24 of the present invention (Co
Using the drill of Example 27 of the present invention (Co amount 6%), the drill of Comparative Example 32, and the drills of Examples 9, 12, and 14 of Table 1 of the present invention, the cutting specifications were changed to high speed and high feed. I went. Cutting speed 100m / min, feed speed 1000mm / min
Then, a hole having a hole depth of 24 mm (three times the drill diameter) was formed using a water-soluble cutting oil. By increasing the cutting data, the load on the corner of the drill was higher, and the life of the corner was damaged. First, in Example 24 of the present invention having a WC average particle size of 0.5 μm, plastic deformation occurred at the corners with the number of processed holes of 1525, and Example 27 of the present invention (Co content 6
%), Chips began to be connected at 1825 holes. In Comparative Example 32, plastic deformation occurred at the corners with the number of processing at 100 holes. Next, in Example 9 of the present invention having a WC average particle diameter of 0.8 μm, Example 12 of the present invention having a WC average particle diameter of 1.0 μm, and Example 14 of the present invention having a WC average particle diameter of 1.2 μm, each had 2,000 holes.
There were 2200 holes and 2500 holes. In this example, by using high-speed, high-feeding specifications, an alloy having a low Co content was more excellent, and better results were obtained when WC particles were slightly coarse.

【0021】[0021]

【発明の効果】超硬合金製のツイストドリルを、低コバ
ルト量で、かつCo格子定数を所定の数値範囲とするこ
とにより、耐チッピング性を保ちつつ、外周のコーナー
部に生じやすい耐塑性変形性を向上させることができ
た。特に、ツイストドリルのように切り屑を巻き込みチ
ッピング、欠損等を生じ易い切削工具ではクラックに対
する抵抗を高めることにより、安定した長寿命なドリル
が得られる。
The twist drill made of cemented carbide has a low cobalt content and a Co lattice constant within a predetermined numerical range, so that chipping resistance is maintained while plastic deformation is likely to occur at the outer corners. Properties could be improved. In particular, in a cutting tool such as a twist drill, in which cutting chips are liable to be involved and cause chipping, chipping, and the like, a stable and long-life drill can be obtained by increasing resistance to cracks.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金製からなるツイストドリルにお
いて、超硬合金のCo含有量が5〜12重量%、WCの
平均粒径が0.3ミクロン〜1.2ミクロンであり、か
つ、前記Coの格子定数が3.565Å〜3.575Å
であることを特徴とする超硬合金製ツイストドリル。
1. A twist drill made of cemented carbide, wherein the cemented carbide has a Co content of 5 to 12% by weight, an average WC particle size of 0.3 to 1.2 microns, and The lattice constant of Co is 3.565Å3.575Å.
A twist drill made of cemented carbide, characterized in that:
【請求項2】 請求項1記載の超硬合金製ツイストドリ
ルにおいて、クラックの伝播に対する抵抗が70kg/
mm以上であることをことを特徴とする超硬合金製ツイ
ストドリル。
2. The cemented carbide twist drill according to claim 1, wherein the resistance to crack propagation is 70 kg / kg.
mm or more, a twist drill made of cemented carbide.
【請求項3】 請求項1乃至2記載の超硬合金製ツイス
トドリルにおいて、硬質膜及び/又は潤滑性膜を被覆し
たことを特徴とする超硬合金製ツイストドリル。
3. The cemented carbide twist drill according to claim 1, which is coated with a hard film and / or a lubricating film.
JP10183567A 1998-06-30 1998-06-30 Cemented carbide twist drill Pending JP2000015513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10183567A JP2000015513A (en) 1998-06-30 1998-06-30 Cemented carbide twist drill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10183567A JP2000015513A (en) 1998-06-30 1998-06-30 Cemented carbide twist drill

Publications (1)

Publication Number Publication Date
JP2000015513A true JP2000015513A (en) 2000-01-18

Family

ID=16138074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10183567A Pending JP2000015513A (en) 1998-06-30 1998-06-30 Cemented carbide twist drill

Country Status (1)

Country Link
JP (1) JP2000015513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023216A (en) * 2008-07-24 2010-02-04 Oputeikon:Kk Machining monitoring device for machining apparatus
JP2015205329A (en) * 2014-04-22 2015-11-19 オーエスジー株式会社 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023216A (en) * 2008-07-24 2010-02-04 Oputeikon:Kk Machining monitoring device for machining apparatus
JP2015205329A (en) * 2014-04-22 2015-11-19 オーエスジー株式会社 Cutting tool that bonds superhard alloy and steel material, and method of manufacturing the cutting tool

Similar Documents

Publication Publication Date Title
Zhou et al. An investigation of surface damage in the high speed turning of Inconel 718 with use of whisker reinforced ceramic tools
JP2926836B2 (en) Nitrogen-containing cermet alloy
JPWO2005068117A1 (en) Throwaway tip
JP2006316309A (en) High wear resistant tough steel having excellent fatigue strength
JP2004181604A (en) Surface coated cemented carbide cutting tool
JP2000015513A (en) Cemented carbide twist drill
JP2017013146A (en) Diamond-coated hard metal cutting tool for improving edge strength
JPH05228729A (en) Shaving die
JP2004263254A (en) Cemented carbide, coated cemented carbide member, and their production methods
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JP2000015514A (en) Twisted drill made of cemented carbide
JP2003049240A (en) Free-cutting steel
Ezugwu et al. The effect of coolant concentration on the machinability of nickel-base, nimonic C-263, alloy
JP3206972B2 (en) Fine-grain cemented carbide
CN103114233B (en) Coating gradient cemented carbide tool material
JP3698656B2 (en) Cutting tools
JP2009255270A (en) Cutting tool
JP3620329B2 (en) Punching method for high silicon steel sheet
JP2002172506A (en) Covered twist drill
JP4094746B2 (en) Coated hard tool
JPH0398709A (en) Coated solid drill
JP2584553B2 (en) Cutting method of titanium material
JP2001020029A (en) Cemented carbide material for hob
JP2006255848A (en) Cutting tool and cutting method for low carbon free-cutting steel
JPH11207516A (en) Tip for throwaway ball end mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304