JPH11207516A - Tip for throwaway ball end mill - Google Patents

Tip for throwaway ball end mill

Info

Publication number
JPH11207516A
JPH11207516A JP10023908A JP2390898A JPH11207516A JP H11207516 A JPH11207516 A JP H11207516A JP 10023908 A JP10023908 A JP 10023908A JP 2390898 A JP2390898 A JP 2390898A JP H11207516 A JPH11207516 A JP H11207516A
Authority
JP
Japan
Prior art keywords
end mill
ball end
tip
film
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10023908A
Other languages
Japanese (ja)
Inventor
Nobuhiko Shima
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP10023908A priority Critical patent/JPH11207516A/en
Publication of JPH11207516A publication Critical patent/JPH11207516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the service life of a tool by increasing wear resistance in the vicinity of the rotational center of a super hard alloy as a base body for a throwaway tip used for a ball end mill and the plastic deformation resistance of an outer peripheral part. SOLUTION: In a throwaway tip used for a throwaway ball end mill coated with hard film, a Co content in a super hard alloy is >=3 wt. % and <=10 wt.%, a WC average particle size is >=0.3 micron and <=1.2 micron, and a Co grating constant is >=3.565 Å and <=3.575 Å.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、乾式切削、高硬度鋼
切削また切削後の磨き工程を必要としない高速・高精度
切削など、切削温度が極めて高くなる切削において優れ
た耐摩耗性を発揮するスローアウェイ式ボールエンドミ
ル用のチップに関する。
The present invention exhibits excellent wear resistance in cutting at extremely high cutting temperatures, such as dry cutting, high-hardness steel cutting, and high-speed, high-precision cutting that does not require a polishing step after cutting. For a throw-away type ball end mill.

【0002】[0002]

【従来の技術】スローアウェイ式ボールエンドミルにお
いては、工具として用いられるときに回転中心付近は切
削速度が小さく、また外周刃付近では切削速度が大きく
なるため、比較的大きな刃径の工具では異なる材質を用
いているが、刃径が小さい場合には1つのチップ材質で
製作されている。この場合、低速部に適合させた材質で
は外周部の性能が不十分であり、外周部に適合させた材
質では、低速部での耐チッピング性に問題を生じる等の
満足のいくものではなかった。この傾向は、スローアウ
ェイ式ボールエンドミルがより小径まで適用されるにい
たり、より大きな課題となってきている。例えば、特開
平9−262714号にはセラミックと超硬合金の複合
材の例がある。
2. Description of the Related Art In a throw-away type ball end mill, when used as a tool, the cutting speed is low near the center of rotation, and the cutting speed is high near the outer peripheral blade. However, when the blade diameter is small, it is made of one chip material. In this case, the material adapted to the low-speed portion has insufficient performance of the outer peripheral portion, and the material adapted to the outer peripheral portion is not satisfactory, such as causing a problem in chipping resistance at the low-speed portion. . This tendency has become a bigger problem as indexable ball end mills are applied to smaller diameters. For example, Japanese Patent Application Laid-Open No. 9-262714 discloses an example of a composite material of a ceramic and a hard metal.

【0003】[0003]

【発明が解決しようとする課題】上述のようにスローア
ウェイ式ボールエンドミルにおいては、外周部の刃先の
切削温度が低速域に比較して著しく高くなり、刃先に微
少塑性変形が発生しそれが微少摩耗を誘発することの繰
り返しで摩耗が進行し工具寿命に至らしめる。更に回転
中心付近ではこすり摩耗が主で、溶着等から皮膜の剥
離、脱落等を生じ、またはチッピング等から摩耗が進行
し工具寿命に至る。従って、スローアウェイチップを1
つの材質で形成する場合には、その両方の特性を兼ね備
え、かつ、皮膜もその特性に応じて組み合わせる必要が
ある。まず、基体である超硬合金には微粒超硬合金を用
い、その耐塑性変形性を改善することが、刃先が高温に
なるような外周部で満足のいく工具寿命を達成すること
につながり、また、回転中心付近では、微粒超硬合金の
靭性が高く、かつ、耐チッピンク性に優れている特徴を
生かすことができる。
As described above, in the throw-away type ball end mill, the cutting temperature of the cutting edge on the outer peripheral portion is significantly higher than that in the low speed range, and micro plastic deformation occurs on the cutting edge. Wear is repeated by repeatedly inducing wear, leading to the tool life. Further, rubbing wear is mainly in the vicinity of the center of rotation, and peeling or falling off of the film occurs due to welding or the like, or wear progresses due to chipping or the like, leading to a tool life. Therefore, the indexable tip is 1
When it is formed of two materials, it is necessary to have both of these characteristics, and to combine a film according to the characteristics. First, using a fine-grained cemented carbide for the cemented carbide as the base and improving its plastic deformation resistance leads to achieving a satisfactory tool life in the outer peripheral part where the cutting edge becomes hot, In the vicinity of the center of rotation, the features that the fine-grain cemented carbide has high toughness and excellent chipping resistance can be utilized.

【0004】[0004]

【課題を解決するための手段】一般的に、超微粒系超硬
合金には耐チッピング性を保つため比較的多量のCoを
添加する。通常Co含有量は10〜14重量%程度であ
る。Coの添加量の増加につれ当然耐塑性変形性は劣化
する。従って、耐塑性変形性を改善するためには当然C
o含有量を減らすことが必須である。しかしながら、単
純にCo含有量を減らすと耐チッピング性は劣化してし
まうことは避けられない。本発明者らの研究によれば、
耐塑性変形性を向上するためにCo含有量は10重量%
以下が好ましく、この場合、合金の含有炭素量は低い側
に調整することにより耐チッピング性の劣化が防止可能
であった。つまりCoの格子定数は超硬合金製造におけ
る脱炭相が出現しないぎりぎりの低炭素側で3.575
Å、遊離炭素が出現しないぎりぎりの高炭素側で3.5
55Åまで連続的に変化するが、それが 3.565〜
3.575Åにはいる低炭素側に制御することで耐チッ
ピング性の劣化の防止が可能であった。
Generally, a relatively large amount of Co is added to an ultrafine-grained cemented carbide in order to maintain chipping resistance. Usually, the Co content is about 10 to 14% by weight. As the amount of Co increases, the plastic deformation resistance naturally deteriorates. Therefore, in order to improve the plastic deformation resistance, naturally C
It is essential to reduce the o content. However, if the Co content is simply reduced, the chipping resistance is inevitably deteriorated. According to our research,
Co content is 10% by weight to improve plastic deformation resistance
The following is preferable. In this case, by adjusting the carbon content of the alloy to a lower side, deterioration of chipping resistance could be prevented. That is, the lattice constant of Co is 3.575 on the low carbon side just before the decarburized phase appears in the production of cemented carbide.
Å, 3.5 on the high carbon side just before free carbon appears
It changes continuously to 55 °, but it is 3.565
By controlling to the low carbon side where the temperature is within 3.575 °, deterioration of chipping resistance can be prevented.

【0005】[0005]

【作用】その理由は一般に超硬合金は1350℃〜14
50℃の液相焼結工程の後の1250℃から1330℃
の凝固までの冷却工程において、液相中に固溶していた
W、Cが既存WC粒子表面に晶出し板状WC粒子を形成
しながら粒成長する。低炭素側においては凝固温度が1
330℃と高く晶出WC量が少なく粒成長に伴うWC粒
子同士の合体が発生し難く粒子の形状も比較的丸い結果
となる。一方、高炭素側では冷却工程中に比較的多量の
WCが晶出し角状粒子となるとともに粒成長中に粒子が
合体する傾向にある。角状粒子が合体すると切り欠き効
果により合体部に応力集中し、クラックが発生し結果チ
ッピングを誘発し易くなる。
[Action] The reason is that cemented carbide is generally 1350 ° C to 14 ° C.
1250 ° C to 1330 ° C after 50 ° C liquid phase sintering step
In the cooling step until solidification of W, C and W, which were dissolved in the liquid phase, grow on the surface of the existing WC particles while crystallizing to form plate-like WC particles. Solidification temperature of 1 on low carbon side
As high as 330 ° C., the crystallization amount of WC is small and coalescence of WC particles due to grain growth hardly occurs, and the shape of the particles is relatively round. On the other hand, on the high carbon side, a relatively large amount of WC becomes crystallized and becomes angular particles during the cooling step, and the particles tend to unite during the grain growth. When the angular particles are united, stress is concentrated on the united portion due to the notch effect, cracks are generated, and chipping is easily induced as a result.

【0006】また、低炭素側に制御することによりCo
相は格子定数の増大からも明らかなように高炭素側に比
較しWを多量に固溶する結果、固溶強化されCo相自体
が塑性変形し難くなり、刃先が高温になる外周付近での
工具寿命の向上に極めて効果を発揮し好ましい結果とな
る。従って、このような耐チッピング性を劣化させずに
低Co化し同時に耐塑性変形性を改善した超微粒超硬合
金を用いることにより低速域から高速域まで1つのスロ
ーアウェイチップでカバーすることができる。さらに、
これらに皮膜を設けるに際しても、外周部、回転中心付
近では膜質を異なるものとしても良いが、その特性に応
じ、前記硬質膜の外層をAlを含む皮膜としたものであ
る。内層は、回転中心付近における耐こすり摩耗性に備
えた高硬度な膜や、摩擦係数が小さく、鋼と親和性の小
さい膜が適している。前者としてはTiCやTiCN等
HV3000を超える皮膜が最適である。外層は特に外
周部において耐酸化性が必須であるが、回転中心付近で
はむしろ耐摩耗性に優れた膜が必須である。そのため、
外層にTiAl化合物膜や、更に、その皮膜にSi、Y
といった第三成分を添加することにより、皮膜の耐酸化
性が向上しさらに切削特性を向上させることが可能であ
る。これら第三成分はTiAl系皮膜の結晶粒界に偏析
し粒界での酸素の拡散を抑制することにより皮膜の耐酸
化性を向上せしめる。このような効果をもたらす成分と
してSi、Cr、Zr、Hf、Y、Nb、Ndが確認さ
れた。また、内層−外層の膜厚も、変化させても良い。
特に、密着性との関連にもよるが、回転中心付近では厚
く、外周付近では薄くすることによりバランスのとれた
皮膜とすることができる。
[0006] Further, by controlling to a low carbon side, Co
As is apparent from the increase in the lattice constant, the phase dissolves a large amount of W as compared with the high carbon side. As a result, the solid solution is strengthened and the Co phase itself is hardly plastically deformed. It is extremely effective in improving the tool life and gives a favorable result. Therefore, it is possible to cover with a single throw-away chip from a low-speed range to a high-speed range by using an ultrafine-grained cemented carbide that has reduced Co without deteriorating chipping resistance and has improved plastic deformation resistance at the same time. . further,
When providing a film on these, the film quality may be different at the outer peripheral portion and near the center of rotation, but according to the characteristics, the outer layer of the hard film is a film containing Al. As the inner layer, a film having high hardness provided with abrasion resistance near the rotation center or a film having a small coefficient of friction and low affinity for steel is suitable. As the former, a film exceeding HV3000 such as TiC or TiCN is optimal. The outer layer must have oxidation resistance particularly at the outer peripheral portion, but a film having excellent wear resistance is essential near the center of rotation. for that reason,
TiAl compound film as the outer layer, and further, Si, Y
By adding such a third component, it is possible to improve the oxidation resistance of the film and further improve the cutting characteristics. These third components segregate at the crystal grain boundaries of the TiAl-based coating and suppress the diffusion of oxygen at the grain boundaries, thereby improving the oxidation resistance of the coating. Si, Cr, Zr, Hf, Y, Nb, and Nd were confirmed as components having such an effect. Further, the thickness of the inner layer-the outer layer may be changed.
In particular, although it depends on the adhesiveness, it is possible to obtain a well-balanced film by making the film thick near the rotation center and thin near the outer periphery.

【0007】次に数値を限定した理由を説明する。Co
の含有量は3重量%未満であると超硬合金の破壊靱性値
が低くチッピング等を起こしやすくなり、10重量%を
越えて含有させると耐塑性変形性が劣化するため、3重
量%以上10重量%以下とした。WC平均粒子径は0.
3ミクロン未満であると超硬合金の硬さが極めて高くな
り靱性を劣化させ、1.2ミクロンを越えると耐摩耗性
が劣化するため0.5ミクロン以上、1.2ミクロン以
下とした。Coの格子定数は前述のごとく3.565Å
未満の高炭素側では耐チッピング性の劣化とCoそのも
のの固溶強化が十分でないため、また3.575Åを越
えると脆弱な脱炭相が出現するため3.565Å以上、
3.575Å以下とした。以下に実施例に基づき本発明
を詳細に説明する。
Next, the reason for limiting the numerical values will be described. Co
If the content is less than 3% by weight, the fracture toughness value of the cemented carbide is low and chipping is liable to occur. If the content exceeds 10% by weight, the plastic deformation resistance is deteriorated, so that the content is 3% by weight or more. % By weight or less. The WC average particle size is 0.1.
If it is less than 3 microns, the hardness of the cemented carbide becomes extremely high and the toughness deteriorates. If it exceeds 1.2 microns, the wear resistance deteriorates. The lattice constant of Co is 3.565 ° as described above.
On the high carbon side of less than 3.565% or more, the chipping resistance deteriorates and the solid solution strengthening of Co itself is insufficient, and if it exceeds 3.575 °, a fragile decarburized phase appears.
3.575 ° or less. Hereinafter, the present invention will be described in detail based on examples.

【0008】[0008]

【実施例】市販の平均粒径0.2ミクロンから1.5ミ
クロンのWC粉末と同1ミクロンのCo粉末を用いアト
ライターでアルコール中6時間混合し、ボールエンドミ
ル用のチップとして1/4球状の辺を有するチップを製
作した。これらチップをTiのターゲットを用いアーク
イオンプレーティング法によりTiN、TiCNを、T
i(50)Al(50)のターゲットを用いアークイオ
ンプレーティング法により、バイアス電圧70V、圧力
4x10-2mbar、コーティング膜厚0.2−1.0
−1.0ミクロン、計2.5ミクロンの条件下でTiN
−TiCN−TiAlNをコーティングし、表1に示す
本発明チップ、比較チップを製作した。
EXAMPLE A commercially available WC powder having an average particle size of 0.2 to 1.5 microns and a Co powder of the same 1 micron were mixed in an alcohol for 6 hours using an attritor. A chip having a side of was manufactured. These chips were converted from TiN and TiCN to T
Using an i (50) Al (50) target by an arc ion plating method, a bias voltage of 70 V, a pressure of 4 × 10 −2 mbar, and a coating film thickness of 0.2-1.0.
-1.0 micron, TiN under the condition of total 2.5 micron
-TiCN-TiAlN was coated to produce a chip of the present invention and a comparative chip shown in Table 1.

【0009】[0009]

【表1】 [Table 1]

【0010】これらのスローアゥエイチップを径12m
mのボールエンドミルに装着し、次に示す切削条件で直
径100mm、深さ5mmのポケット加工をSKD61
(硬さHRC50)において行った。加工は等高線加工
とし、加工ポケット数に対する摩耗量を測定した。
その結果を表2に示す。 切削条件 回転数 10000rpm(切削速度=314m/min) テーブル送り 2000mm/min(0.1mm/刃) 切り込みxピッチ 5x0.5mm 切削油 なし オーバーハング 30mm
[0010] These throw-a-tips have a diameter of 12 m.
m with a ball end mill having a diameter of 100 mm and a depth of 5 mm under the following cutting conditions.
(Hardness HRC50). The processing was contour processing, and the amount of wear with respect to the number of processing pockets was measured.
Table 2 shows the results. Cutting conditions Rotation speed 10000 rpm (Cutting speed = 314 m / min) Table feed 2000 mm / min (0.1 mm / tooth) Cutting depth x Pitch 5 x 0.5 mm Cutting oil None Overhang 30 mm

【0011】[0011]

【表2】 [Table 2]

【0012】表2中、摩耗量はボールエンドミルの先
端における刃先の後退量を、摩耗量は外周付近の逃げ
面最大摩耗量を測定した。単位はmmである。寿命は刃
先の後退量が0.03以上となるか、チッピングが発生
するまでの穴加工数とした。表2より明らかなように、
チップの超硬合金を低炭素側に炭素量を制御した本発明
例は微少塑性変形に伴う摩耗進行量が少なく安定した切
削、仕上げ面がえられており、また、低速域ではTiC
N層の耐摩耗性、摩擦係数の低い特徴が発揮され、高品
位な切削面が得られている。尚、ボールエンドミルと同
様な加工ができるコーナーR付きのラジアスエンドミル
においても結果は同様な傾向を示した。
In Table 2, the amount of wear was measured by the amount of retreat of the cutting edge at the tip of the ball end mill, and the amount of wear was measured by the maximum amount of flank wear near the outer periphery. The unit is mm. The life was defined as the number of drilled holes until the amount of retreat of the cutting edge was 0.03 or more or chipping occurred. As is clear from Table 2,
In the present invention example in which the carbon amount of the cemented carbide of the tip is controlled to the low carbon side, the amount of wear progression due to micro plastic deformation is small, stable cutting and finished surfaces are obtained, and in the low speed range, TiC is obtained.
The wear resistance and low coefficient of friction of the N layer are exhibited, and a high-quality cut surface is obtained. In addition, the result showed the same tendency also in the radius end mill with the corner R which can process similarly to a ball end mill.

【0013】前記実施例で製作した超硬合金に、表3に
示す各種3元系の皮膜をTiAlN膜のかわりに1ミク
ロンコーティングし実施例と同一切削にて同様な評価を
した。その結果を表3に併記する。表3中に示した合金
ナンバーは表1に示すものである。
The cemented carbide manufactured in the above example was coated with various ternary coatings shown in Table 3 by 1 μm instead of the TiAlN film, and the same evaluation was performed by the same cutting as in the example. The results are also shown in Table 3. The alloy numbers shown in Table 3 are those shown in Table 1.

【0014】[0014]

【表3】 [Table 3]

【0015】表3より明らかなように3元系にした本発
明チップを用いたボールエンドミルは、より優れた性能
を発揮することが明らかである。これは前述のような耐
酸化性の向上に伴う皮膜自体の耐摩耗性の向上に起因す
るものと考えられる。また置換量が1%未満では添加効
果が認められず本発明例1とほとんど同じ結果であるこ
とも確認される。また、添加量が30%を越えると皮膜
が脆くなり初期にチッピングが発生したり、皮膜硬さが
劣化し、著しく耐摩耗性を損なう結果も確認される。
As is apparent from Table 3, it is clear that the ball end mill using the ternary chip of the present invention exhibits more excellent performance. This is considered to be due to the improvement in wear resistance of the film itself accompanying the improvement in oxidation resistance as described above. When the substitution amount is less than 1%, the effect of addition is not recognized, and it is also confirmed that the result is almost the same as that of Example 1 of the invention. Further, when the addition amount exceeds 30%, the film becomes brittle and chipping occurs at the initial stage, the film hardness is deteriorated, and the result that the wear resistance is significantly impaired is also confirmed.

【0016】[0016]

【発明の効果】本発明による被覆エンドミルは上述のよ
うに刃先が特に高温となる乾式切削等において著しく工
具特性を向上させるものである。またボールエンドミル
に限らず、一般のエンドミルにおいてもその効果は同様
であることは言うまでもない。
As described above, the coated end mill according to the present invention significantly improves tool characteristics in dry cutting or the like in which the cutting edge is particularly high in temperature. Needless to say, the effect is the same not only in the ball end mill but also in a general end mill.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 硬質膜を被覆したスローアウエイ式ボー
ルエンドミルのチップにおいて、超硬合金のCo含有量
が3以上、10重量%以下の範囲、WCの平均粒径が
0.3ミクロン以上1.2ミクロン以下の範囲であり、
該Coの格子定数が3.565Å以上3.575Å以下
の超硬合金からなること特徴とするスローアウェイ式ボ
ールエンドミル用のチップ。
1. In a tip of a throw-away type ball end mill coated with a hard film, the Co content of a cemented carbide is in the range of 3 to 10% by weight, and the average particle size of WC is 0.3 μm or more. In the range of 2 microns or less,
A tip for a throw-away type ball end mill, comprising a cemented carbide having a lattice constant of Co of 3.565 to 3.575 °.
【請求項2】 請求項1記載のスローアウェイ式ボール
エンドミル用のチップにおいて、前記硬質膜の外層をA
lを含む皮膜からなることを特徴とするスローアウェイ
式ボールエンドミル用のチップ。
2. The tip for a throw-away type ball end mill according to claim 1, wherein the outer layer of the hard film is made of A.
1. A tip for a throw-away type ball end mill, comprising a coating containing l.
JP10023908A 1998-01-20 1998-01-20 Tip for throwaway ball end mill Pending JPH11207516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10023908A JPH11207516A (en) 1998-01-20 1998-01-20 Tip for throwaway ball end mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10023908A JPH11207516A (en) 1998-01-20 1998-01-20 Tip for throwaway ball end mill

Publications (1)

Publication Number Publication Date
JPH11207516A true JPH11207516A (en) 1999-08-03

Family

ID=12123590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10023908A Pending JPH11207516A (en) 1998-01-20 1998-01-20 Tip for throwaway ball end mill

Country Status (1)

Country Link
JP (1) JPH11207516A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692480A3 (en) * 2012-07-31 2017-04-19 In-Sun Cha Method of manufacturing an endmill tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2692480A3 (en) * 2012-07-31 2017-04-19 In-Sun Cha Method of manufacturing an endmill tool

Similar Documents

Publication Publication Date Title
JP3452726B2 (en) Multi-layer coated hard tool
JP3598074B2 (en) Hard coating tool
JP4680932B2 (en) Surface coated cutting tool
JP3382781B2 (en) Multi-layer coated hard tool
JP2003508632A (en) Coated milling inserts
JPH06220571A (en) Sintered hard alloy and coated sintered hard alloy for cutting tool
JP3001849B2 (en) Coated hard tool
JP2008162010A (en) Coated cutting tool insert, manufacturing method thereof and usage thereof
JP3016703B2 (en) Coated hard member
JP5835306B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP4069749B2 (en) Cutting tool for roughing
IL148979A (en) Cemented carbide cutting tool insert for turning titanium alloys
JPH11207516A (en) Tip for throwaway ball end mill
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JPS5939242B2 (en) surface coated tool parts
JP3586216B2 (en) Hard coating tool
JPH11320214A (en) Covered hard tool
JP3190009B2 (en) Coated hard alloy
JP3333080B2 (en) High-strength coated members with consistent interfaces
JPH11207515A (en) Covered super hard alloy end mill
JPH08199338A (en) Coated hard alloy
JP3679076B2 (en) Hard coating tool
JPH1076408A (en) Hard tool covered with multiple layers
JPS6321751B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080611