JPH11320214A - Covered hard tool - Google Patents

Covered hard tool

Info

Publication number
JPH11320214A
JPH11320214A JP6323399A JP6323399A JPH11320214A JP H11320214 A JPH11320214 A JP H11320214A JP 6323399 A JP6323399 A JP 6323399A JP 6323399 A JP6323399 A JP 6323399A JP H11320214 A JPH11320214 A JP H11320214A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard tool
coated hard
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6323399A
Other languages
Japanese (ja)
Inventor
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP6323399A priority Critical patent/JPH11320214A/en
Publication of JPH11320214A publication Critical patent/JPH11320214A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a covered tool which can enhance the tight attachment, toughness, etc., of the oxide covering formed through a physical evaporation method and improve remarkably the tight attachment of a skin film containing oxygen. SOLUTION: A covered hard tool is formed by forming a hard covering layer by the ion plating method and is based upon a super-hard alloy such as high-speed steel, super-hard alloy, thermet, wherein at least part of the covering layer is formed by alternately laminating the first layer expressed by (Tix Al1-x )N, where 0.2<=x<=0.5, and the second layer expressed by (Tix Al1-x ) Oy N1-y , where 0.5<=x<=0.7 and 0.01<=y<=0.5, and the second layer is configured so that the first layer in contact thereto is continued to the crystals.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、皮膜の耐酸化性に優
れ、結果優れた耐摩耗性を有する被覆硬質工具に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated hard tool having excellent oxidation resistance of a film and, as a result, excellent wear resistance.

【0002】[0002]

【従来の技術】従来は被覆工具の皮膜としてはTiN、
TiCN等の皮膜が汎用的かつ一般的であったが、近
年、特公平4−53642号公報や特公平5−6770
5号公報に代表されるように、Alを添加する検討がな
されている。これらの検討では皮膜にAlを添加するこ
とで皮膜の耐酸化性、耐摩耗性の向上を図ろうとするの
がその目的である。しかしながら、最近は切削速度がさ
らに高速化する傾向にあり、また熱処理後の高硬度鋼を
切削する場合も増えてきており、このような場合工具の
刃先温度は著しく高温になり、単にAlを添加しただけ
では使用に耐え得るだけの十分な耐酸化性は得られなく
なっているのが現状である。
2. Description of the Related Art Conventionally, TiN,
Although coatings such as TiCN have been used widely and generally, recently, Japanese Patent Publication No. 4-53642 and Japanese Patent Publication No.
As typified by Japanese Patent Publication No. 5 (1993), studies have been made on adding Al. In these studies, the purpose is to improve the oxidation resistance and wear resistance of the film by adding Al to the film. However, recently the cutting speed has tended to be even higher, and the case of cutting hardened steel after heat treatment has also been increasing. In such a case, the cutting edge temperature of the tool becomes extremely high, and simply adding Al At present, it is no longer possible to obtain sufficient oxidation resistance enough to withstand use.

【0003】一方さらに耐酸化性を向上すべく最外層に
TiAlON等を被覆する提案もなされているが(特開
平7−328811号公報)、TiとAlの酸化物では
十分な耐酸化性を得るには至っていない。また、アルミ
ナを最外層に被覆する提案(特開平9−192906号
公報)もなされてはいるが、イオンプレーティングにお
けるアルミナ皮膜は密着性そのものが弱く、剥離し易い
ため実際の切削においては衝撃力のため剥離してしま
い、いまだ満足のいくものではないといえる。
[0003] On the other hand, it has been proposed to coat the outermost layer with TiAlON or the like in order to further improve the oxidation resistance (Japanese Patent Laid-Open No. 7-328811), but sufficient oxidation resistance can be obtained with an oxide of Ti and Al. Has not been reached. Although a proposal has been made to coat the outermost layer with alumina (Japanese Patent Application Laid-Open No. Hei 9-192906), the alumina coating in ion plating has weak adhesion itself and is easily peeled off, so that in actual cutting, an impact force is applied. Therefore, it can be said that it is not satisfactory yet.

【0004】[0004]

【発明が解決しようとする課題】本発明者らの研究によ
ればTiにAlを添加したTiAlN皮膜においては大
気中での酸化開始温度はTiNの450℃に対し向上
し、Alの添加量にの増加に伴って750℃〜900℃
に上昇する。しかしながら最近の高速切削、高硬度材切
削においては刃先温度は900℃を越える場合がしばし
ばあり単にAlを添加しただけでは十分な切削寿命を得
ることができない。従って、この様な高速切削において
も、長寿命でかつ安定した切削を実現するためには、皮
膜の耐酸化性をさらに高める必要がある。
According to the study of the present inventors, in a TiAlN film in which Al is added to Ti, the oxidation start temperature in the atmosphere is improved with respect to 450 ° C. of TiN, and the amount of Al added is reduced. 750 ° C to 900 ° C as the temperature increases
To rise. However, in recent high-speed cutting and high-hardness material cutting, the cutting edge temperature often exceeds 900 ° C., and a sufficient cutting life cannot be obtained by simply adding Al. Therefore, even in such high-speed cutting, it is necessary to further increase the oxidation resistance of the film in order to realize long-life and stable cutting.

【0005】[0005]

【課題を解決するための手段】本発明者らは膜の剥離、
自壊、マイクロチッピングなどの突発的、致命的な損傷
の発現を防止させながら、かつ皮膜の耐酸化性を向上さ
せるにはどうすれば良いかについて鋭意研究を重ねた結
果、第一の層であるTiAlN層と第一の層の窒素の一
部を酸素で置き換えるとともにTiに対するAlの比を
第一の層よりも高くした第二の層TiAlONを交互に
積層し被覆することにより、耐酸化性が著しく向上する
ということを確認するに至った。さらに、最外層にAl
O層を被覆することにより一層耐酸化性は向上し、さら
には最外層、第一の層、第二の層にSiや3a族の成分
を添加することにより各層の耐酸化性が向上し、いっそ
う皮膜全体の耐酸化性が向上するという知見を得るに至
った。
Means for Solving the Problems The present inventors have found that peeling of a film,
As a result of intensive research on how to prevent the occurrence of sudden and catastrophic damage such as self-destruction and micro-chipping and improve the oxidation resistance of the film, the TiAlN layer as the first layer was obtained. Oxygen resistance is remarkably improved by alternately stacking and coating a second layer TiAlON in which a part of nitrogen of the first layer is replaced with oxygen and the ratio of Al to Ti is higher than that of the first layer. I came to confirm that it would. Further, the outermost layer has Al
Oxidation resistance is further improved by coating the O layer, and furthermore, oxidation resistance of each layer is improved by adding Si or a 3a group component to the outermost layer, the first layer, and the second layer, It has been found that the oxidation resistance of the entire film is further improved.

【0006】[0006]

【作用】耐酸化性が優れると言われるTiAlN層を例
に酸化のメカニズムを研究したところ、皮膜表面近傍の
Alが最表面に拡散しそこでアルミナを形成することか
ら酸化が始まることが分かった。このアルミナの形成は
酸素の皮膜内部への拡散を抑制し耐酸化性を向上せしめ
るが、この場合形成されたアルミナ直下の皮膜はAlが
最表面に拡散した結果Alの存在しないルチル構造のT
i酸化物となる。このTiの酸化物はポーラスで容易に
剥離し、折角酸素の内部拡散のバリヤーとして機能する
アルミナが最表面に形成されても、結局は著しい耐酸化
性の向上は望めない。
When the mechanism of oxidation is studied using a TiAlN layer, which is said to be excellent in oxidation resistance, as an example, it was found that Al near the surface of the film diffused to the outermost surface and formed alumina, whereupon oxidation started. The formation of this alumina suppresses the diffusion of oxygen into the inside of the film and improves the oxidation resistance. In this case, the film immediately below the formed alumina has a rutile structure in which Al does not exist as a result of Al diffusing to the outermost surface.
It becomes i-oxide. This oxide of Ti is easily peeled off porous, and even if alumina is formed on the outermost surface, which functions as a barrier for the internal diffusion of oxygen, it is not expected that a remarkable improvement in oxidation resistance will be obtained.

【0007】そこでTiAlNの第一の層の間にTiA
lONの第二の層を介在させ積層構造にすると、第一の
層の一つの層が上述のごとく酸化し、ポーラスなTiの
酸化物層から剥離してもそこで最表層を形成するTiA
lONの第二の層が酸素拡散の障壁として機能するた
め、特に皮膜の酸化が動的な切削において大幅に抑制さ
れる結果となり、切削において安定した長寿命が達成さ
れる。勿論TiAlON膜も切削中に摩滅するが、さら
に下層にあるTIALON膜が同様に機能するため、皮
膜全体の耐酸化性を大幅に向上せしめる結果となる。従
って、第二のAlO層はできるだけ多く、好ましくは5
層以上介在させることにより十分に満足される切削寿命
を達成することが可能である。
[0007] Therefore, TiA is provided between the first layer of TiAlN.
When a laminated structure is formed with a second layer of ION interposed, one layer of the first layer is oxidized as described above, and even if the first layer is separated from the porous Ti oxide layer, TiA which forms the outermost layer there is formed.
Since the second layer of ION functions as a barrier for oxygen diffusion, oxidation of the film is greatly suppressed particularly in dynamic cutting, and stable long life is achieved in cutting. Of course, the TiAlON film also wears out during cutting, but since the underlying TIALON film functions similarly, the oxidation resistance of the entire film is greatly improved. Therefore, the second AlO layer is as much as possible, preferably 5
It is possible to achieve a sufficiently satisfactory cutting life by interposing more than one layer.

【0008】また、第二の層は第一の層と結晶構造の連
続性を形成せしめることにより、密着性は格段に向上
し、切削中の剥離は発生しなくなる。つまり、たとえば
第一の層がfcc構造である場合には第二の層は同様の
fcc構造を有するTiAlON層とすることが本発明
の主旨に叶う。よく知られているようにTiAlN層は
Al/Ti原子比が7/3以下にすると通常のPVD被
覆条件ではfcc結晶構造をとり、この構造をとると明
確な理由は現在のところ不明だが比較的良好な工具特性
を示す。さらに該原子比が略7/3を超えるとfcc構
造を形成しなくなること、該原子比が小さくなるほど硬
さが低下して靭性は向上すること、逆に原子比が高くな
るほど、硬さは高くなり、かつ耐酸化性は向上すること
はよく知られているところである。さらに、発明者らの
鋭意検討した結果によると、TiAlNに酸素を添加し
た場合もほぼ同様の傾向を示すことを確認している。す
なわち該原子比が7/3以下ではfcc構造となり該原
子比が7/3以下の範囲内で高いほど、耐酸化性は良好
となる。
In addition, the second layer forms continuity of the crystal structure with the first layer, so that the adhesion is remarkably improved, and peeling during cutting does not occur. That is, for example, when the first layer has an fcc structure, the second layer is a TiAlON layer having a similar fcc structure, which fulfills the gist of the present invention. As is well known, the TiAlN layer has an fcc crystal structure under normal PVD coating conditions when the Al / Ti atomic ratio is 7/3 or less. Shows good tool properties. Further, when the atomic ratio exceeds about 7/3, no fcc structure is formed, and as the atomic ratio decreases, the hardness decreases and the toughness improves. On the contrary, as the atomic ratio increases, the hardness increases. It is well known that the oxidation resistance is improved. Furthermore, according to the results of intensive studies by the inventors, it has been confirmed that almost the same tendency is exhibited when oxygen is added to TiAlN. That is, when the atomic ratio is 7/3 or less, an fcc structure is formed, and the higher the atomic ratio is within the range of 7/3 or less, the better the oxidation resistance becomes.

【0009】以上の知見より、第一の層は耐摩耗性を失
しない範囲で出来るだけ靭性を高め、第二の層は出来る
だけ耐酸化性を高め、且つ第一の層と第二の層を交互に
積層して、しかも膜間の剥離を防ぐために同じfcc構
造にして結晶の連続性を持たせるという発明に至った。
ここで、第一の層TiAlNのAl/Ti比は2/8〜
5/5の範囲に設定することが本発明の主旨に叶い、2
/8未満では耐摩耗性が低下し、5/5を超えると靭性
が不十分となる。また、第二の層TiAlONのAl/
Ti比は5/5〜7/3の範囲に設定することが本発明
の主旨に叶い、5/5未満では耐酸化性が不足となり、
7/3を超えると極薄膜にして超格子構造を形成しない
限りfcc構造とならず、結晶の連続性が期待できな
い。また酸素の窒素置換量を0.1〜0.5としたのは
それ未満では十分な耐酸化性が発現できず、0.5を超
えると靭性が低下して実用に供することが出来ないから
である。第二の層の1つの厚み厚みを2nm〜100n
mに制限するのはそれ未満では耐酸化のバリアとしての
効果が不十分で、それを超えると剥離が生じ易いことが
実験の結果分かったからである。
From the above findings, the first layer has as high a toughness as possible without losing the abrasion resistance, the second layer has as high an oxidation resistance as possible, and the first layer and the second layer Were alternately laminated, and the same fcc structure was used to prevent peeling between the films so that continuity of the crystal was obtained.
Here, the Al / Ti ratio of the first layer TiAlN is 2/8 to
Setting to the range of 5/5 is in accordance with the gist of the present invention, and 2
If it is less than / 8, the abrasion resistance decreases, and if it exceeds 5/5, the toughness becomes insufficient. In addition, Al /
Setting the Ti ratio in the range of 5/5 to 7/3 satisfies the gist of the present invention. If the Ti ratio is less than 5/5, the oxidation resistance becomes insufficient.
If it exceeds 7/3, the fcc structure will not be obtained unless a superlattice structure is formed by forming an ultrathin film, and continuity of crystals cannot be expected. Further, the reason why the nitrogen substitution amount of oxygen is set to 0.1 to 0.5 is that if it is less than that, sufficient oxidation resistance cannot be exhibited, and if it exceeds 0.5, the toughness is reduced and it cannot be used practically. It is. The thickness of one of the second layers is 2 nm to 100 n
The reason for limiting to m is that, as a result of experiments, it has been found that if it is less than this, the effect as an oxidation-resistant barrier is insufficient, and if it exceeds this, peeling is likely to occur.

【0010】さらに、最外層にAlO層を付与すること
により、切削初期での耐酸化性を向上させるとともに、
被加工物に対する耐溶着性も向上し、切削におけるさら
なる長寿命化が可能である。この場合、最外層のAlO
層がアモルファス状の結晶構造の場合、より一層の耐酸
化性の向上が認められる。つまり、酸素は粒界で優先的
に拡散するため、粒界のないアモルファス層であると一
層酸素の拡散が抑制され耐酸化の向上に効果的であると
考えられる。また、最外層のAlO層がγ、κ、θ、α
といった結晶質にした場合には多少耐酸化性は劣化する
が、AlO層そのものが硬質となり、耐摩耗性を向上さ
せるため、切削用途によりアモルファス層か、結晶選択
することが好ましい。AlO層の結晶形態は蒸着温度に
主に依存し、低温側からアモルファス、γ、θ、κ、α
構造となる。AlO層は絶縁層であるため、イオンプレ
ーティング法において100nm以上被覆したい場合に
は、パルスバイアスを用いるほうが好ましい。
Furthermore, by providing an AlO layer as the outermost layer, the oxidation resistance in the initial stage of cutting can be improved,
The welding resistance to the workpiece is also improved, and a longer life in cutting can be achieved. In this case, the outermost layer of AlO
When the layer has an amorphous crystal structure, a further improvement in oxidation resistance is observed. That is, since oxygen diffuses preferentially at the grain boundaries, it is considered that an amorphous layer having no grain boundaries further suppresses the diffusion of oxygen and is effective in improving oxidation resistance. Further, the outermost AlO layer has γ, κ, θ, α
In the case of using such a crystalline material, although the oxidation resistance is slightly deteriorated, it is preferable to select an amorphous layer or a crystal depending on the cutting application in order to harden the AlO layer itself and improve the wear resistance. The crystal form of the AlO layer mainly depends on the deposition temperature, and is amorphous, γ, θ, κ, α
Structure. Since the AlO layer is an insulating layer, it is preferable to use a pulse bias when covering by 100 nm or more by the ion plating method.

【0011】さらに、第一の皮膜の耐酸化性を向上すべ
く、種々の第三成分の添加を試みた。その結果、Si及
び3a族金属のY、Nd、Sm、Scの添加において、
皮膜の耐酸化性が著しく向上する結果となった。これら
の成分は第一の皮膜の結晶粒界に偏析し粒界での酸素の
拡散を抑制し皮膜の耐酸化性を向上せしめることが本発
明者らの研究で明らかとなった。第3成分の置換量は1
原子%未満だと耐酸化性の向上に効果がなく、30原子
%を越えて含有させると皮膜の耐摩耗性を劣化させるた
め1〜30原子%とした。以下、実施例に基づいて本発
明を説明する。
[0011] Further, in order to improve the oxidation resistance of the first film, addition of various third components was attempted. As a result, in the addition of Y, Nd, Sm, and Sc of Si and Group 3a metals,
As a result, the oxidation resistance of the coating was significantly improved. The present inventors have found that these components segregate at the crystal grain boundaries of the first film, suppress the diffusion of oxygen at the grain boundaries, and improve the oxidation resistance of the film. The replacement amount of the third component is 1
If the content is less than atomic%, there is no effect in improving the oxidation resistance, and if the content exceeds 30 atomic%, the abrasion resistance of the film is deteriorated. Hereinafter, the present invention will be described based on examples.

【0012】[0012]

【実施例】実施例1 小型アークイオンプレーティング装置を用いて3種のタ
ーゲットを用いて本発明例、比較例のコーティングを行
いコーティッド超硬エンドミルを試作した。コーティン
グ条件はバイアス電圧−300V、反応ガス圧力4×1
−2mbarとした。総膜厚さは2.5μとしたの
で、皮膜全体における総層数は各本発明例においては異
なるものである。第二の層及び最外層は酸素ガスを間欠
に導入することにより成膜した。表1中、特に結晶構造
の記載していないAlOはアモルファス構造のものであ
る。
EXAMPLES Example 1 Coatings of the present invention and comparative examples were coated using three types of targets using a small-sized arc ion plating apparatus, and a coated carbide end mill was prototyped. Coating conditions were bias voltage -300V, reaction gas pressure 4 × 1.
It was set to 0 -2 mbar. Since the total film thickness was 2.5 μm, the total number of layers in the entire film was different in each of the examples of the present invention. The second layer and the outermost layer were formed by intermittently introducing oxygen gas. In Table 1, AlO having no particular crystal structure has an amorphous structure.

【0013】[0013]

【表1】 [Table 1]

【0014】次いで、大気中1000℃で30分間酸化
テストを行い、酸化層の厚さを測定した。その結果も表
2に示す。得られたエンドミルで次の切削条件にて切削
テストを行い、折損するまで切削を行った。折損が発生
した時点の切削長を表2に併記する。エンドミルは、φ
8mmの6枚刃を用いて、被削材SKD11(HRC6
0)、切削速度40m/min、送り量0.06mm/
刃、切り込み量12mm×0.8mm、切削油なし(d
ry)にて行った。
Next, an oxidation test was performed in the atmosphere at 1000 ° C. for 30 minutes to measure the thickness of the oxide layer. Table 2 also shows the results. A cutting test was performed with the obtained end mill under the following cutting conditions, and cutting was performed until breakage occurred. Table 2 also shows the cutting length at the time when the breakage occurred. End mill is φ
The work material SKD11 (HRC6
0), cutting speed 40m / min, feed amount 0.06mm /
Blade, cutting depth 12mm x 0.8mm, no cutting oil (d
ry).

【0015】[0015]

【表2】 [Table 2]

【0016】表2より、まず、耐酸化性に対しては、酸
素含有又は酸化物を被覆した試料では第一の層の窒化物
層は熱の影響を受けるもののほとんど酸化せず、膜の内
側への酸化はほとんど進展しないことが分かった。ま
た、エンドミルによる焼入れした高硬度材の切削におい
て切削熱、こすり摩耗を作用させると、膜の緻密性が保
たれるため、耐摩耗性が3〜5倍と飛躍的に向上した。
As shown in Table 2, with respect to the oxidation resistance, in the case of a sample coated with oxygen or containing an oxide, the nitride layer of the first layer is hardly oxidized although it is affected by heat. It was found that the oxidation to seldom progressed. In addition, when cutting heat and rubbing wear are applied in cutting of a hardened material hardened by an end mill, the denseness of the film is maintained, so that the wear resistance is dramatically improved to 3 to 5 times.

【0017】実施例2 実施例1に示した同一の本発明例、比較例の皮膜を超硬
合金ドリル、超硬合金インサートに被覆し、次に示す条
件で切削テストを行った。ドリル径は、φ6mm(JI
S P30相当)、被削材SCM440(焼鈍材)、切
削速度100m/min、送り量0.1mm/rev、
穴深さ15mmを穴あけ加工し、3000穴切削後の摩
耗量を表2に示す。スローアウェイインサートの場合、
10m切削後の逃げ面摩耗量を測定した。インサートの
切削諸元は、チップ形状SEE42TN(JIS P4
0相当)、被削材SKD61(HRC42)で、巾10
0mm×長さ250mmの面取り、切削速度150m/
min、送り量0.15m/刃、切込み量1.5mmで
ある。その結果も表3に示す。
Example 2 The same coatings of the present invention and the comparative example shown in Example 1 were coated on a cemented carbide drill and a cemented carbide insert, and a cutting test was performed under the following conditions. The drill diameter is φ6mm (JI
SP30), work material SCM440 (annealed material), cutting speed 100 m / min, feed amount 0.1 mm / rev,
Table 2 shows the amount of wear after drilling a hole having a depth of 15 mm and cutting 3000 holes. For indexable inserts,
The flank wear after 10 m cutting was measured. The cutting specifications of the insert are chip shape SEE42TN (JIS P4
0), work material SKD61 (HRC42), width 10
0mm x 250mm length chamfer, cutting speed 150m /
min, the feed amount is 0.15 m / blade, and the cut amount is 1.5 mm. Table 3 also shows the results.

【0018】[0018]

【表3】 [Table 3]

【0019】表3より明らかなように。本発明例はドリ
ル、インサートでも同様に、優れた工具寿命を示すこと
が確認された。傾向は、エンドミル、ドリル、インサー
トともに同様である。
As apparent from Table 3. It has been confirmed that the present invention examples also show excellent tool life for drills and inserts. The tendency is the same for end mills, drills and inserts.

【0020】実施例3 小型アークイオンプレーティング装置を用い、本発明例
を被覆した超硬合金エンドミルおよび超硬合金インサー
トを制作した。最外層の結晶化はαの場合790℃γの
場合680℃の被覆条件にて成膜を行った。本発明例と
比較例を、実施例1および実施例2で示した切削条件に
て切削評価を行い、その結果を表3に併記した。また、
大気中1000℃、2時間保持の条件で酸化テストを行
い、形成した酸化層の厚さについても表4に示す。尚、
本実施例においても、総膜厚を2.5μmとした.
Example 3 Using a small arc ion plating apparatus, a cemented carbide end mill and a cemented carbide insert coated with the present invention were produced. For the crystallization of the outermost layer, the film was formed under the coating conditions of 790 ° C. for α and 680 ° C. for γ. The cutting examples of the present invention and the comparative examples were evaluated for cutting under the cutting conditions shown in Examples 1 and 2, and the results are shown in Table 3. Also,
An oxidation test was performed at 1,000 ° C. in air for 2 hours, and the thickness of the formed oxide layer is also shown in Table 4. still,
Also in this example, the total film thickness was set to 2.5 μm.

【0021】[0021]

【表4】 [Table 4]

【0022】表4に示す通り、本発明例の多層膜は、よ
り優れた耐酸化性、切削寿命を示すことが明らかであ
る。内部に酸化物皮膜を介在させることにより、耐酸化
性、工具寿命はより一層向上することは明らかである。
As shown in Table 4, it is apparent that the multilayer film of the present invention exhibits better oxidation resistance and cutting life. It is clear that the oxidation resistance and tool life are further improved by interposing an oxide film inside.

【0023】実施例4 所定量の第3成分Xを含むTiAlX合金ターゲットを
用い、表5に示す本発明例を被覆した超硬合金エンドミ
ルを作成し、実施例1と同一の切削評価ならびに実施例
3と同一の酸化テストを行った。それらの結果を表4に
併記する。この場合第二の層はfccのAlO(2n
m)に統一し最外層はアモルファスAlO層に統一し
た。
Example 4 Using a TiAlX alloy target containing a predetermined amount of the third component X, a cemented carbide end mill coated with an example of the present invention shown in Table 5 was prepared, and the same cutting evaluation and example as in Example 1 were made. The same oxidation test as in Example 3 was performed. The results are shown in Table 4. In this case, the second layer is fcc AlO (2n
m) and the outermost layer was unified to an amorphous AlO layer.

【0024】[0024]

【表5】 [Table 5]

【0025】表4より、第3成分が耐酸化性、切削寿命
を更に向上させることが明らかである。
From Table 4, it is clear that the third component further improves the oxidation resistance and the cutting life.

【0026】[0026]

【発明の効果】本発明は、Al含有量の異なるターゲッ
トと、ガス系より酸素含有量を異なる層とを積層するこ
とにより、優れた耐酸化性を備え、かつ、切削工具とし
て用いたときに長寿命な工具として用いられ、特に、A
l量を変化させることにより酸素含有量を多くできるた
め、耐摩耗性と耐熱性が要求される各種工具、すなわち
旋削用チップ、エンドミル、ドリル、ブローチなどの切
削工具及び耐摩耗性、耐焼付き性の要求される精密塑性
加工用工具に適用できる。
The present invention has excellent oxidation resistance by laminating a target having a different Al content and a layer having a different oxygen content than a gas system, and has a superior effect when used as a cutting tool. Used as a long-lasting tool, especially A
Since the oxygen content can be increased by changing the amount of l, various tools that require wear resistance and heat resistance, such as cutting tools such as turning tips, end mills, drills, and broaches, as well as wear resistance and seizure resistance It can be applied to the tools for precision plastic working required.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 イオンプレーティング法において硬質被
覆層を被覆してなる、ハイス、超硬合金、サーメット等
の超硬質合金を基体とする被覆硬質工具において、前記
硬質被覆層の少なくとも一部は、(TiAl1−x
N(0.2≦x≦0.5)の第一の層と、(TiAl
1−x)O1−y(0.5≦x≦0.7、0.01
≦y≦0.5)の第二の層とを交互に積層させ、かつ該
第二の層はその接する第一の層と結晶の連続性を有する
ことを特徴とする被覆硬質工具。
1. A coated hard tool formed by coating a hard coating layer by an ion plating method and using a super-hard alloy such as high-speed steel, cemented carbide, or cermet as a base material, at least a part of the hard coating layer, (Ti x Al 1-x)
A first layer of N (0.2 ≦ x ≦ 0.5) and (Ti x Al)
1-x) O y N 1 -y (0.5 ≦ x ≦ 0.7,0.01
≤ y ≤ 0.5), wherein the second layer has a crystal continuity with the first layer in contact with the second layer.
【請求項2】 請求項1記載の被覆硬質工具において、
最外層としてAlの酸化物層、酸窒化物層もしくは酸炭
窒化物層を被覆したことを特徴とする被覆硬質工具。
2. The coated hard tool according to claim 1, wherein
A coated hard tool coated with an Al oxide layer, oxynitride layer or oxycarbonitride layer as an outermost layer.
【請求項3】 請求項2記載の被覆硬質工具において、
最外層のAlの酸化物層、酸窒化物層もしくは酸炭窒化
物層がアモルファス状結晶構造を有することを特徴とす
る被覆硬質工具。
3. The coated hard tool according to claim 2, wherein
A coated hard tool, wherein the outermost Al oxide layer, oxynitride layer or oxycarbonitride layer has an amorphous crystal structure.
【請求項4】 請求項2記載の被覆硬質工具において、
最外層のAlの酸化物層、酸窒化物層もしくは酸炭窒化
物層が結晶質であることを特徴とする被覆硬質工具。
4. The coated hard tool according to claim 2, wherein
A coated hard tool, wherein the outermost Al oxide layer, oxynitride layer or oxycarbonitride layer is crystalline.
【請求項5】 請求項1乃至4項記載の被覆硬質工具に
おいて、積層する第二の層の厚さが2nm以上100n
m以下であることを特徴とする被覆硬質工具。
5. The coated hard tool according to claim 1, wherein the thickness of the second layer to be laminated is 2 nm or more and 100 n.
m or less.
【請求項6】 請求項1乃至5記載の被覆硬質工具にお
いて、第一の層及び/又は第二の層の金属成分の一部を
1〜30原子%の範囲でSi、Y、Nd、Sm、Scの
1種もしくは2種以上で置き換えたことを特徴とする被
覆硬質工具。
6. The coated hard tool according to claim 1, wherein a part of the metal component of the first layer and / or the second layer is contained in the range of 1 to 30 atomic% in the range of Si, Y, Nd and Sm. A coated hard tool, wherein one or more of Sc is replaced.
【請求項7】 請求項2乃至6記載の被覆硬質工具にお
いて、最外層の金属成分を1〜30原子%の範囲でT
i、Si、Y、Nd、Sm、Scの1種もしくは2種以
上で置き換えたことを特徴とする被覆硬質工具。
7. The coated hard tool according to claim 2, wherein the metal component of the outermost layer has a T content of 1 to 30 atomic%.
A coated hard tool characterized by being replaced by one or more of i, Si, Y, Nd, Sm, Sc.
JP6323399A 1998-03-16 1999-03-10 Covered hard tool Pending JPH11320214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6323399A JPH11320214A (en) 1998-03-16 1999-03-10 Covered hard tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-84956 1998-03-16
JP8495698 1998-03-16
JP6323399A JPH11320214A (en) 1998-03-16 1999-03-10 Covered hard tool

Publications (1)

Publication Number Publication Date
JPH11320214A true JPH11320214A (en) 1999-11-24

Family

ID=26404316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6323399A Pending JPH11320214A (en) 1998-03-16 1999-03-10 Covered hard tool

Country Status (1)

Country Link
JP (1) JPH11320214A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287116A (en) * 2000-04-10 2001-10-16 Nachi Fujikoshi Corp Broaching method
JP2002075398A (en) * 2000-08-30 2002-03-15 Toyota Motor Corp Separator for fuel cell
JP2003340602A (en) * 2002-05-29 2003-12-02 Kyocera Corp Cutting tool with circuit and its manufacturing method
US7294416B2 (en) 2003-03-25 2007-11-13 Kobe Steel, Ltd. Hard film
JP2009120912A (en) * 2007-11-15 2009-06-04 Kobe Steel Ltd Wear resistant member with hard film
JP2010236092A (en) * 2010-04-22 2010-10-21 Kobe Steel Ltd Wear resistant member having hard film and method of manufacturing the same
JP2014046400A (en) * 2012-08-31 2014-03-17 Mitsubishi Materials Corp Surface coating drill having superior thermal conductivity and lubrication property

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287116A (en) * 2000-04-10 2001-10-16 Nachi Fujikoshi Corp Broaching method
JP4582735B2 (en) * 2000-04-10 2010-11-17 株式会社不二越 Broaching method
JP4568977B2 (en) * 2000-08-30 2010-10-27 トヨタ自動車株式会社 Fuel cell separator
JP2002075398A (en) * 2000-08-30 2002-03-15 Toyota Motor Corp Separator for fuel cell
JP2003340602A (en) * 2002-05-29 2003-12-02 Kyocera Corp Cutting tool with circuit and its manufacturing method
US7294416B2 (en) 2003-03-25 2007-11-13 Kobe Steel, Ltd. Hard film
US7758974B2 (en) 2003-03-25 2010-07-20 Kobe Steel, Ltd. Hard film
KR101050014B1 (en) * 2007-11-15 2011-07-19 가부시키가이샤 고베 세이코쇼 Wear-resistant member with hard coating
JP2009120912A (en) * 2007-11-15 2009-06-04 Kobe Steel Ltd Wear resistant member with hard film
US8003231B2 (en) 2007-11-15 2011-08-23 Kobe Steel, Ltd. Wear-resistant member with hard coating
DE102008047382B4 (en) 2007-11-15 2019-03-14 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Wear-resistant component with a coating formed thereon
JP2010236092A (en) * 2010-04-22 2010-10-21 Kobe Steel Ltd Wear resistant member having hard film and method of manufacturing the same
JP2014046400A (en) * 2012-08-31 2014-03-17 Mitsubishi Materials Corp Surface coating drill having superior thermal conductivity and lubrication property

Similar Documents

Publication Publication Date Title
JP3031907B2 (en) Multilayer coating member
JP3452726B2 (en) Multi-layer coated hard tool
JP4739321B2 (en) Replaceable cutting edge
JP3382781B2 (en) Multi-layer coated hard tool
JP2000005904A (en) Surface treated steel based cutting tool
KR20120000087A (en) Pvd-coated tool
KR101906658B1 (en) Surface-coated cutting tool and process for producing same
JPH11320214A (en) Covered hard tool
JP2006192531A (en) Surface-coated cutting tool and its manufacturing method
JP2000061708A (en) Coated hard tool
JP3454428B2 (en) Wear-resistant film-coated tools
WO2016181813A1 (en) Hard coating and hard coating-covered member
JP3712242B2 (en) Coated cutting tool / Coated wear resistant tool
JP4252154B2 (en) Multi-layer coating member
JP3638332B2 (en) Coated hard alloy
JP2556088B2 (en) Surface coated tungsten carbide based cemented carbide cutting tip
JP3445899B2 (en) Surface coated end mill
JPH08199338A (en) Coated hard alloy
JP4865513B2 (en) Surface coated cutting tool
JP3443314B2 (en) Coated hard tool
JP4878808B2 (en) Replaceable cutting edge
JP2001121314A (en) Hard film-coated tool
JP2001105205A (en) Hard film coating tool
JPH1076408A (en) Hard tool covered with multiple layers
JP3679076B2 (en) Hard coating tool