JP2014046400A - Surface coating drill having superior thermal conductivity and lubrication property - Google Patents

Surface coating drill having superior thermal conductivity and lubrication property Download PDF

Info

Publication number
JP2014046400A
JP2014046400A JP2012191406A JP2012191406A JP2014046400A JP 2014046400 A JP2014046400 A JP 2014046400A JP 2012191406 A JP2012191406 A JP 2012191406A JP 2012191406 A JP2012191406 A JP 2012191406A JP 2014046400 A JP2014046400 A JP 2014046400A
Authority
JP
Japan
Prior art keywords
layer
oxygen
drill
ratio
total amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012191406A
Other languages
Japanese (ja)
Other versions
JP5892336B2 (en
Inventor
Koichi Tanaka
耕一 田中
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012191406A priority Critical patent/JP5892336B2/en
Publication of JP2014046400A publication Critical patent/JP2014046400A/en
Application granted granted Critical
Publication of JP5892336B2 publication Critical patent/JP5892336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface coating drill that maintains superior cutting performance for a long period of time, even if used for high speed drilling machining of high hardness materials.SOLUTION: A surface coating drill has a hard coating layer comprising a lower layer and a most surface layer formed at least on an outer circumference on an area of an effective cutting edge length and a chip discharge groove, the lower layer comprising a composite nitride of metal comprising either two kinds among Ti, Al, Cr, and the most surface layer comprising a component system of (TiAl)(NO)being a multiphase tissue layer. When observing a cross section tissue of the multiphase tissue layer, there are present a microfine crystal grain in which a content ratio y of oxygen is less than 0.2, a content ratio x of Al is less than 0.5, a content ratio z of non-metallic element is 0.40-0.60, and an average grain diameter is 30-100 nm, and a metallic phase area in which a content ratio y of oxygen is 0.8 or more, a content ratio x of Al is 0.6 or more, and a content ratio z of non-metallic element is 0.01-0.03 around the microfine crystal grain.

Description

本発明は、ドリル本体の先端部外周に切屑排出溝が形成されるとともに、この切屑排出溝のドリル回転方向を向く内周面の先端に切刃が設けられ、主として金属材よりなる加工物に穴あけ加工をするのに用いられる長期間に亘りすぐれた熱伝導性と潤滑特性を維持する表面被覆ドリルに関するものである。   In the present invention, a chip discharge groove is formed on the outer periphery of the tip of the drill body, and a cutting edge is provided at the tip of the inner peripheral surface of the chip discharge groove facing the drill rotation direction. The present invention relates to a surface-coated drill used for drilling, which maintains excellent thermal conductivity and lubrication characteristics over a long period of time.

このようなドリルとしては、軸線を中心として該軸線回りにドリル回転方向に回転される概略円柱状のドリル本体の先端側が切刃部とされ、この切刃部の外周に一対の切屑排出溝が、軸線に関して互いに対称となるように、該切刃部の先端面、すなわちドリル本体の先端逃げ面から後端側に向かうに従い軸線回りにドリル回転方向の後方側に捩れる螺旋状に形成され、これらの切屑排出溝の内周面のうちドリル回転方向を向く部分の先端側の前記先端逃げ面との交差稜線部に切刃が形成された、いわゆる2枚刃のソリッドドリルが知られている。従って、このようなソリッドドリルでは、前記切屑排出溝内周面のドリル回転方向を向く部分の先端側がこの切刃のすくい面となり、切刃によって生成された切屑は、このすくい面から切屑排出溝の内周面を摺接しつつ、該切屑排出溝の捩れによって後端側に送り出されて排出されることとなる。そして、さらにこのようなドリルでは、ドリル本体の耐摩耗性の向上のために種々の方法が採用されている。   As such a drill, the tip side of a substantially cylindrical drill body rotated about the axis in the rotation direction of the drill is a cutting blade portion, and a pair of chip discharge grooves are formed on the outer periphery of the cutting blade portion. In order to be symmetrical with respect to the axis, the tip of the cutting edge, that is, a spiral that twists toward the rear side in the drill rotation direction around the axis as it goes from the tip flank of the drill body toward the rear end, A so-called two-blade solid drill is known in which a cutting edge is formed at an intersecting ridge line portion with the tip flank on the tip side of the inner circumferential surface of these chip discharge grooves facing the rotation direction of the drill. . Therefore, in such a solid drill, the tip side of the inner peripheral surface of the chip discharge groove facing the drill rotation direction is the rake face of the cutting blade, and the chips generated by the cutting blade are transferred from the rake face to the chip discharge groove. While being in sliding contact with the inner peripheral surface of the metal, it is sent to the rear end side by the twist of the chip discharge groove and discharged. Further, in such a drill, various methods are employed for improving the wear resistance of the drill body.

例えば、特許文献1においては、ドリル基体の表面に硬質被覆層を形成してなる表面被覆ドリルにおいて、TiとAlとCrの複合炭化物固溶体層、TiとAlとCrの複合窒化物固溶体層およびTiとAlとCrの複合炭窒化物固溶体層のうち少なくとも一層を含む耐摩耗性にすぐれた表面被覆ドリルが開示されている。   For example, in Patent Document 1, in a surface-coated drill formed by forming a hard coating layer on the surface of a drill base, a composite carbide solid solution layer of Ti, Al, and Cr, a composite nitride solid solution layer of Ti, Al, and Cr, and Ti And a surface-coated drill excellent in wear resistance, including at least one of a composite carbonitride solid solution layer of Al and Cr.

また、特許文献2においては、ドリルのランド幅/溝幅の比が1.2〜2.0の範囲にあり、ドリルの切刃部を含むドリル有効長の一部乃至全部の範囲に0.05〜5.0μmのCrN(原子比で0.3≦x≦1.0を満足する)よりなる硬質被覆がなされており、前記硬質被覆の最表層にC(原子比で0.3≦y≦1.5を満足する)で構成されその膜厚が0.01〜2.0μmの硬質表層被覆がなされている潤滑硬質膜被覆ドリルが開示されている。 Further, in Patent Document 2, the ratio of the land width / groove width of the drill is in the range of 1.2 to 2.0, and is in the range of a part to the entire drill effective length including the cutting edge portion of the drill. A hard coating made of CrN x of 0.5 to 5.0 μm (satisfying 0.3 ≦ x ≦ 1.0 in atomic ratio) is formed, and C r O y (atomic ratio of 0 in the outermost layer) is formed. .3 ≦ y ≦ 1.5), and a lubricating hard film-coated drill having a hard surface coating with a film thickness of 0.01 to 2.0 μm is disclosed.

また、特許文献3においては、表面被覆ドリルの硬質被覆層を、化学蒸着で形成された上部層と下部層とで構成し、該上部層は1〜15μmの平均層厚を有する酸化アルミニウム層、該下部層は3〜20μmの合計平均層厚を有する密着性Ti化合物層と改質Ti系炭窒化物層とで構成し、そして、該改質Ti系炭窒化物層は、2.5〜15μmの平均層厚を有し、(Ti1−XCr)CN(但し、X=0.01〜0.10)を満足するTiとCrの複合炭窒化物マトリックス相と、間歇的な蒸着条件変更により形成され、(Ti1−YCr)CN(但し、Y=0.2〜0.8)を満足し、結晶粒界に不連続(島状)に分散析出する平均粒子サイズ0.01〜0.2μmのTiとCrの複合炭窒化物析出相とからなる表面被覆ドリルが開示されている。 Moreover, in patent document 3, the hard coating layer of a surface coating drill is comprised by the upper layer and lower layer formed by chemical vapor deposition, and this upper layer is an aluminum oxide layer which has an average layer thickness of 1-15 micrometers, The lower layer is composed of an adhesive Ti compound layer having a total average layer thickness of 3 to 20 μm and a modified Ti-based carbonitride layer, and the modified Ti-based carbonitride layer has a thickness of 2.5 to Ti and Cr composite carbonitride matrix phase having an average layer thickness of 15 μm and satisfying (Ti 1-X Cr X ) CN (where X = 0.01 to 0.10), and intermittent deposition An average particle size of 0 formed by changing the conditions, satisfying (Ti 1-Y Cr Y ) CN (where Y = 0.2 to 0.8), and dispersively precipitated at the grain boundaries (island-like) A surface-coated drill comprising a composite carbonitride precipitation phase of 0.01-0.2 μm Ti and Cr It is disclosed.

特開平7−237010号公報JP-A-7-237010 特開平8−132310号公報JP-A-8-132310 特開2008−100336号公報JP 2008-1003006 A

近年のドリル加工装置の自動化はめざましく、加えてドリル加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の深穴用ドリル加工が要求される傾向にあるが、前記従来表面被覆ドリルにおいては、各種の鋼や鋳鉄を通常条件下でドリル加工した場合に特段の問題は生じないが、切削時に高温が発生する高硬度材の高速穴あけ加工に用いた場合には、熱伝導性が十分でないため切削時に刃先に発生する熱をシャンク方向に逃がすことが出来ず、刃先が高温になるため異常摩耗が発生しやすく、また、潤滑特性が十分でないため加工硬化を起こしやすく切削抵抗が大きくなる等の理由から、比較的短時間で使用寿命に至るのが現状である。   The automation of drilling machines in recent years is remarkable, and in addition, there is a strong demand for labor saving, energy saving, cost reduction, and efficiency for drilling. Although there is a tendency to require machining, the conventional surface-coated drill does not cause any particular problems when drilling various steels and cast irons under normal conditions, but is a high-hardness material that generates high temperatures during cutting. When it is used for high-speed drilling, heat conduction is not sufficient, so heat generated at the cutting edge during cutting cannot be released in the shank direction, and the cutting edge becomes hot, so abnormal wear tends to occur. The current situation is that the service life is reached in a relatively short time because the lubrication characteristics are not sufficient and work hardening is likely to occur and the cutting resistance increases.

そこで、本発明者らは、前述のような観点から、高硬度材の高速穴あけ加工に用いられた場合にも長期間に亘りすぐれた切削性能を維持する表面被覆ドリルを提供すべく、硬質被覆層の熱伝導性と潤滑特性を向上させることを主眼に研究を重ねた。その結果、所定の下部層の上に、所定の混相組織からなる最表面層を形成してなる硬質被覆層が、すぐれた熱伝導率と潤滑特性を長期に亘って維持するという知見を得た。この知見に基づき、前記硬質被覆層について多観点から研究を重ねた結果、以下、(a)および(b)を兼ね備えた新規な構造を有する硬質被覆層がすぐれた熱伝導効果および潤滑性を奏することを見出した。   In view of the above, the present inventors have proposed a hard coating to provide a surface-coated drill that maintains excellent cutting performance over a long period of time even when used in high-speed drilling of a high-hardness material. The main research was to improve the thermal conductivity and lubrication properties of the layer. As a result, it was found that a hard coating layer formed by forming an outermost surface layer composed of a predetermined mixed phase structure on a predetermined lower layer maintains excellent thermal conductivity and lubrication characteristics over a long period of time. . Based on this knowledge, as a result of extensive research on the hard coating layer, the hard coating layer having a novel structure having both (a) and (b) has excellent heat conduction effect and lubricity. I found out.

(a)ドリル基体のうち、少なくとも有効切れ刃長の領域上の外周部および切り屑排出溝上に、平均層厚1.5〜3.0μmを有し、Ti、Al、Crのうちいずれか2種類からなる金属の複合窒化物からなる下部層と、平均層厚0.3〜1.0μmを有し、混相組織層とされる(Ti1−xAl1−z(N1−yの成分系からなる最表面層とからなる硬質被覆層を形成し、
(b)前記混相組織層の断面組織を観察したときに、
(ア)窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.2未満であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.5未満であり、かつ、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.40〜0.60であり、かつ、30〜100nmの範囲に含まれる平均粒径を有する微細結晶粒と、
(イ)該微細結晶粒の周囲に、窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.8以上であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.6以上であり、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.01〜0.03である金属相領域が存在する。
(A) The drill base has an average layer thickness of 1.5 to 3.0 [mu] m on at least the outer peripheral portion of the effective cutting edge length region and the chip discharge groove, and any one of Ti, Al, and Cr (Ti 1-x Al x ) 1-z (N 1-y ) having a lower layer made of a composite nitride of metal of various types and an average layer thickness of 0.3 to 1.0 μm and being a mixed phase structure layer O y ) forming a hard coating layer composed of an outermost surface layer composed of z component system,
(B) When observing the cross-sectional structure of the mixed phase tissue layer,
(A) The oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is less than 0.2, and the Al content (atomic ratio) x in the total amount of Ti and Al is less than 0.5. And the content ratio (atomic ratio) z of nonmetallic elements in the total amount of Ti, Al, nitrogen, and oxygen is 0.40 to 0.60, and is an average included in the range of 30 to 100 nm. Fine crystal grains having a grain size;
(B) Around the fine crystal grains, the oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is 0.8 or more, and the Al content in the total amount of Ti and Al (atom Ratio) x is 0.6 or more, and there is a metal phase region in which the content ratio (atomic ratio) z of the nonmetallic element in the total amount of Ti, Al, nitrogen, and oxygen is 0.01 to 0.03. .

さらに、前記(a)および(b)の条件に加えて、
(c)前記混相組織層中の金属相領域が占める面積割合が、断面組織における面積割合で5〜10%である、
という条件を併せ持つとき硬質被覆層は一層すぐれた熱伝導性および潤滑性を奏することを見出した。
Further, in addition to the conditions (a) and (b),
(C) The area ratio occupied by the metal phase region in the mixed phase structure layer is 5 to 10% in the area ratio in the cross-sectional structure.
It has been found that the hard coating layer exhibits superior thermal conductivity and lubricity when the above conditions are also met.

前述したような硬質被覆層は、図1の概略説明図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置にドリル基体を装着し、
ドリル基体温度:400〜430℃、
プラズマガン放電電力:3kW、
放電ガス流量:アルゴンガス(Ar)ガス 40sccm、
ドリル基体に印加する直流バイアス電圧:−400V、
という特定の条件でボンバード処理を行った後、
ドリル基体温度:400〜430℃、
蒸発源1:金属Tiまたは金属Cr、
蒸発源1に対するプラズマガン放電電力:8〜11kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:7〜8kW、
反応ガス流量割合:窒素(N)ガス 100sccm、
放電ガス流量割合:アルゴン(Ar)ガス 35sccm、
ドリル基体に印加する直流バイアス電圧:−5V、
蒸着時間:30〜150min.
という特定の条件下で下部層を形成し、さらに、
ドリル基体温度:400〜430℃、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:7〜8kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:10〜11kW、
反応ガス流量割合:窒素(N)ガス 50sccm、
反応ガス流量割合:酸素(O)ガス 3〜4sccm、
放電ガス流量割合:アルゴン(Ar)ガス 40sccm、
ドリル基体に印加するパルスバイアス電圧:+3V/−10V、周期5〜8kHz、負電圧のデューティーサイクル15〜30%
蒸着時間:10〜30min、
という特定の条件で最表面層を形成することにより、再現よく形成することができるという知見を発明者らの研究により見出した。
なお、前記sccmとは、真空装置に導入する反応ガスや放電ガスの流量を表す一般的な単位であり、sccmは、standard cc/min、すなわち、規格化されたccm(1分間あたりに何cc)を意味している。通常は、1atm(大気圧1,013hPa)、0℃あるいは、1atm(大気圧1,013hPa)、25℃など一定温度で規格化されたccmが使われるが、本発明においては、0℃で規格化したccmを用いている。
The hard coating layer as described above has a drill base attached to an ion plating apparatus using a pressure gradient type Ar plasma gun, which is a kind of physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG.
Drill base temperature: 400-430 ° C.
Plasma gun discharge power: 3kW
Discharge gas flow rate: Argon gas (Ar) gas 40 sccm,
DC bias voltage applied to the drill base: -400V,
After performing bombardment under specific conditions
Drill base temperature: 400-430 ° C.
Evaporation source 1: metal Ti or metal Cr,
Plasma gun discharge power for the evaporation source 1: 8 to 11 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 7 to 8 kW,
Reaction gas flow rate ratio: nitrogen (N 2 ) gas 100 sccm,
Discharge gas flow rate ratio: Argon (Ar) gas 35 sccm,
DC bias voltage applied to the drill base: -5V,
Deposition time: 30 to 150 min.
The lower layer is formed under certain conditions, and
Drill base temperature: 400-430 ° C.
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 7 to 8 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power to the evaporation source 2: 10 to 11 kW,
Reaction gas flow rate ratio: Nitrogen (N 2 ) gas 50 sccm,
Reaction gas flow rate ratio: Oxygen (O 2 ) gas 3-4 sccm,
Discharge gas flow rate ratio: Argon (Ar) gas 40 sccm,
Pulse bias voltage applied to drill base: + 3V / -10V, period 5-8 kHz, negative voltage duty cycle 15-30%
Deposition time: 10-30 min.
The inventors have found that the outermost surface layer can be formed with good reproducibility by forming the outermost surface layer under specific conditions.
The sccm is a general unit representing the flow rate of the reaction gas and discharge gas introduced into the vacuum apparatus. The sccm is a standard cc / min, that is, a normalized ccm (how many cc per minute). ). Normally, ccm standardized at a constant temperature such as 1 atm (atmospheric pressure 1,013 hPa), 0 ° C., 1 atm (atmospheric pressure 1,013 hPa), 25 ° C. or the like is used. Ccm is used.

本発明は、前記知見に基づいてなされたものであって、
「(1)ドリル基体のうち、少なくとも有効切れ刃長の領域上の外周部および切り屑排出溝上に、平均層厚1.5〜3.0μmを有し、Ti、Al、Crのうちいずれか2種類からなる金属の複合窒化物からなる下部層と、平均層厚0.3〜1.0μmを有し、混相組織層とされる(Ti1−xAl1−z(N1−yの成分系からなる最表面層とからなる硬質被覆層を形成し、
前記混相組織層の断面組織を観察したときに、
(ア)窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.2未満であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.5未満であり、かつ、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.40〜0.60であり、かつ、30〜100nmの範囲に含まれる平均粒径を有する微細結晶粒と、
(イ)該微細結晶粒の周囲に、窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.8以上であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.6以上であり、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.01〜0.03である金属相領域が存在することを特徴とする表面被覆ドリル。
(2) 前記混相組織層中の金属相領域が占める面積割合が、ドリル基体表面に対して垂直な断面組織における面積割合で5〜10%であることを特徴とする(1)に記載の表面被覆ドリル。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Of the drill base, at least on the outer peripheral portion on the region of the effective cutting edge length and on the chip discharge groove, it has an average layer thickness of 1.5 to 3.0 μm, and any one of Ti, Al, and Cr (Ti 1-x Al x ) 1-z (N 1 -x ) has a lower layer made of a composite nitride of two kinds of metals and an average layer thickness of 0.3 to 1.0 μm and is a mixed phase structure layer. y O y ) forming a hard coating layer composed of an outermost surface layer consisting of z component system,
When observing the cross-sectional structure of the mixed phase tissue layer,
(A) The oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is less than 0.2, and the Al content (atomic ratio) x in the total amount of Ti and Al is less than 0.5. And the content ratio (atomic ratio) z of nonmetallic elements in the total amount of Ti, Al, nitrogen, and oxygen is 0.40 to 0.60, and is an average included in the range of 30 to 100 nm. Fine crystal grains having a grain size;
(B) Around the fine crystal grains, the oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is 0.8 or more, and the Al content in the total amount of Ti and Al (atom Ratio) x is 0.6 or more, and there is a metal phase region in which the content ratio (atomic ratio) z of the nonmetallic element in the total amount of Ti, Al, nitrogen, and oxygen is 0.01 to 0.03. A surface-coated drill characterized by that.
(2) The surface ratio according to (1), wherein an area ratio occupied by a metal phase region in the mixed phase structure layer is 5 to 10% in an area ratio in a cross-sectional structure perpendicular to the drill base surface. Covered drill. "
It has the characteristics.

本発明について、以下に説明する。   The present invention will be described below.

下部層および最表面層の平均層厚:
本発明の表面被覆ドリルの超硬合金焼結体あるいは高速度鋼からなるドリル基体のうち、少なくとも有効切れ刃長の領域上の外周部および切り屑排出溝上に、平均層厚1.5〜3.0μmを有し、Ti、Al、Crのうちいずれか2種類からなる金属の複合窒化物からなる下部層と、平均層厚0.3〜1.0μmを有し、混相組織層とされる(Ti1−xAl1−z(N1−yの成分系からなる最表面層とからなる硬質被覆層を形成する。ここで、硬質被膜層の下部層を構成するTi、Al、Crのうちいずれか2種類からなる金属の複合窒化物は、すぐれた熱伝導性と耐摩耗性を有するとともにドリル基体および最表面層の両方に対してすぐれた密着性を有するが、下部層の層厚が1.5μm未満では、所望の耐摩耗性が維持できず、一方、3.0μmを超えると皮膜のチッピングなどが生じる。したがって、下部層の平均層厚は1.5〜3.0μmと定めた。また、最表面層の層厚が0.3μm未満では、切り屑排出溝のうち広範囲の混相組織層が早期に摩耗してしまい、最表層が有する熱伝導性と潤滑性を発揮することが出来ず、一方、1.0μmを超えると、例えば、高硬度材の高速穴あけ加工という厳しい切削条件では、チッピングが発生しやすくなることから、最表面層の平均層厚は0.3〜1.0μmと定めた。
Average layer thickness of lower layer and outermost layer:
Of the drill base made of cemented carbide sintered body or high-speed steel of the surface-coated drill of the present invention, an average layer thickness of 1.5 to 3 is provided at least on the outer peripheral portion and the chip discharge groove on the region of the effective cutting edge length. 0.0 μm, a lower layer made of a composite nitride of a metal composed of any two of Ti, Al, and Cr, an average layer thickness of 0.3 to 1.0 μm, and a mixed phase structure layer (Ti 1-x Al x) to form a 1-z (N 1-y O y) z hard layer comprising the outermost surface layer composed of a component system. Here, the composite nitride of a metal composed of any two of Ti, Al, and Cr constituting the lower layer of the hard coating layer has excellent thermal conductivity and wear resistance, and has a drill base and an outermost surface layer. However, if the thickness of the lower layer is less than 1.5 μm, the desired wear resistance cannot be maintained, while if it exceeds 3.0 μm, chipping of the film occurs. Therefore, the average thickness of the lower layer is set to 1.5 to 3.0 μm. In addition, when the thickness of the outermost surface layer is less than 0.3 μm, a wide range of mixed-phase structure layers in the chip discharge groove are worn out early, and the outermost layer has thermal conductivity and lubricity. On the other hand, if the thickness exceeds 1.0 μm, for example, chipping is likely to occur under severe cutting conditions such as high-speed drilling of a high hardness material, so the average layer thickness of the outermost surface layer is 0.3 to 1.0 μm. It was determined.

最表面層の混相組織:
最表面層は、組成(Ti1−xAl1−z(N1−yを有するとともに、窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.2未満であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.5未満であり、かつ、30〜100nmの範囲に含まれる粒径を有する微細結晶粒と該微細結晶粒の周囲に、窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.8以上であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.6以上であり、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.01〜0.03である金属相領域が存在する混相組織として構成する。
Multiphase structure of the outermost layer:
The outermost surface layer has a composition (Ti 1-x Al x ) 1-z (N 1-y O y ) z and an oxygen content ratio (atomic ratio) y in the total amount of nitrogen and oxygen is 0. The fine crystal grains having a grain size within a range of 30 to 100 nm and an Al content ratio (atomic ratio) x in the total amount of Ti and Al of less than 0.5 and the fine Around the crystal grains, the oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is 0.8 or more, and the Al content (atomic ratio) x in the total amount of Ti and Al is 0. .6 or more, and a mixed phase structure in which a metal phase region having a non-metallic element content ratio (atomic ratio) z of 0.01 to 0.03 in the total amount of Ti, Al, nitrogen, and oxygen is present. .

混相組織中の微細結晶粒の組成:
微細結晶粒における窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.2を超えると、所望の熱伝導性が得られなくなるため好ましくない。また、TiとAlの合量に占めるAlの含有割合(原子比)xが0.5以上であると、Alが有する凝着または溶着しやすいという特性から最表面層の潤滑性が低下する。したがって、微細結晶粒における窒素と酸素の合量に占める酸素の含有割合(原子比)yは0.2未満、TiとAlの合量に占めるAlの含有割合(原子比)xは0.5未満と定めた。
Composition of fine grains in a mixed phase structure:
If the oxygen content ratio (atomic ratio) y in the total amount of nitrogen and oxygen in the fine crystal grains exceeds 0.2, the desired thermal conductivity cannot be obtained, which is not preferable. Further, when the Al content ratio (atomic ratio) x in the total amount of Ti and Al is 0.5 or more, the lubricity of the outermost surface layer is lowered due to the characteristic that Al has a tendency to adhere or weld. Therefore, the oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen in the fine crystal grains is less than 0.2, and the Al content (atomic ratio) x in the total content of Ti and Al is 0.5. Less than.

混相組織中の微細結晶粒の粒径:
微細結晶粒の粒径が30nmを下回ると、窒化物としての耐摩耗性を発揮できず強度が低下し、100nmを超えると結晶粒が粗大になりすぎ、欠落が生じやすく潤滑特性が低下する。したがって、微細結晶粒の粒径は、30〜100nmと定めた。
Fine grain size in mixed phase structure:
When the grain size of the fine crystal grains is less than 30 nm, the wear resistance as a nitride cannot be exhibited and the strength is lowered, and when it exceeds 100 nm, the crystal grains become excessively coarse and are easily lost and the lubrication characteristics are lowered. Therefore, the grain size of the fine crystal grains is determined to be 30 to 100 nm.

混相組織中の金属相領域の組成:
金属相領域における窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.8未満であると、所望の潤滑特性が得られなくなるため好ましくない。また、TiとAlの合量に占めるAlの含有割合(原子比)xを0.6未満であると、相対的にTiの含有割合が多くなり、金属相領域の硬度が増すためチッピングが生じやすくなる。また、たとえ酸素、Alの含有割合が前記の条件を満たしていても、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.01未満であると、切削中に酸化物の形成を促すことができず早期に層が摩滅してしまい、0.03を超えると、金属相領域がもつ潤滑特性を発揮することが出来ない。したがって、金属相領域における窒素と酸素の合量に占める酸素の含有割合(原子比)yは0.8以上とし、TiとAlの合量に占めるAlの含有割合(原子比)xを0.6以上、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zを0.01〜0.03と定めた。
Composition of the metal phase region in the multiphase structure:
If the oxygen content (atomic ratio) y in the metal phase region is less than 0.8, the desired lubricating properties cannot be obtained. Further, if the Al content ratio (atomic ratio) x in the total amount of Ti and Al is less than 0.6, the Ti content ratio is relatively increased and the hardness of the metal phase region is increased, thereby causing chipping. It becomes easy. Moreover, even if the content ratio of oxygen and Al satisfies the above conditions, the content ratio (atomic ratio) z of nonmetallic elements in the total amount of Ti, Al, nitrogen and oxygen is less than 0.01. The formation of oxides during cutting cannot be promoted, and the layer wears out at an early stage. When the amount exceeds 0.03, the lubricating properties of the metal phase region cannot be exhibited. Accordingly, the oxygen content ratio (atomic ratio) y in the total amount of nitrogen and oxygen in the metal phase region is 0.8 or more, and the Al content ratio (atomic ratio) x in the total amount of Ti and Al is 0.00. The content ratio (atomic ratio) z of non-metallic elements in the total amount of 6 or more, Ti, Al, nitrogen and oxygen was determined to be 0.01 to 0.03.

混相組織層に含まれる窒素と酸素の合量に占める酸素の含有割合:
さらに、微細結晶粒、金属相領域を区別せず測定した、混相組織層に含まれる窒素と酸素の合量に占める酸素の含有割合(原子比)yが、0.02〜0.05の範囲であれば、金属相がもつ熱伝導効果を犠牲にすることなく、切削中の酸化物形成が生じやすくなるため、工具としての特性を一層向上させることができる。すなわち、前述のように微粒結晶粒および金属相領域それぞれにおける酸素含有量を制御するのみならず、混相組織層全体で見たときの酸素量を所定の量に制御することが好ましい。混相組織層に含まれる窒素と酸素の合量に占める酸素の含有割合(原子比)yは、好ましくは0.02〜0.05の範囲とするのが良い。
Oxygen content in the total amount of nitrogen and oxygen contained in the multiphase tissue layer:
Furthermore, the oxygen content ratio (atomic ratio) y in the total amount of nitrogen and oxygen contained in the mixed phase structure layer measured without distinguishing between fine crystal grains and metal phase regions is in the range of 0.02 to 0.05. If it is, since it becomes easy to produce oxide formation in cutting, without sacrificing the heat conductive effect which a metal phase has, the characteristic as a tool can be improved further. That is, it is preferable not only to control the oxygen content in each of the fine crystal grains and the metal phase region as described above, but also to control the oxygen amount when viewed in the entire mixed phase structure layer to a predetermined amount. The content ratio (atomic ratio) y of oxygen in the total amount of nitrogen and oxygen contained in the mixed phase tissue layer is preferably in the range of 0.02 to 0.05.

混相組織層中の金属相の領域が占める面積割合:
混相組織層中の金属相の領域が占める面積割合については、必ずしも限定されるわけではないが、5%未満であると、金属相が持つ熱伝導性を十分に発揮することが出来ず、好ましくない。一方、10%を超えると金属相の有する凝着性などの影響から潤滑特性が低下するため好ましくない。そこで、混相組織層中の金属相の領域が占める面積割合は、5〜10%とすることが好ましい。
Area ratio occupied by metal phase region in mixed phase structure layer:
The area ratio occupied by the region of the metal phase in the mixed phase structure layer is not necessarily limited, but if it is less than 5%, the thermal conductivity of the metal phase cannot be sufficiently exhibited, preferably Absent. On the other hand, if it exceeds 10%, the lubricating properties deteriorate due to the influence of the adhesion property of the metal phase, etc., which is not preferable. Therefore, the area ratio of the metal phase region in the mixed phase structure layer is preferably 5 to 10%.

本発明の表面被覆ドリルは、超硬合金焼結体あるいは高速度鋼からなるドリル基体のうち、少なくとも有効切れ刃長の領域上の外周部および切り屑排出溝上に、平均層厚1.5〜3.0μmを有し、Ti、Al、Crのうちいずれか2種類からなる金属の複合窒化物からなる下部層と、平均層厚0.3〜1.0μmを有し、混相組織層とされる(Ti1−xAl1−z(N1−yの成分系からなる最表面層とからなる硬質被覆層を形成し、前記混相組織層の断面組織を観察したときに、(ア)窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.2未満であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.5未満であり、かつ、30〜100nmの範囲に含まれる粒径を有する微細結晶粒と該微細結晶粒の周囲に、窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.8以上であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.6以上であり、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.01〜0.03である金属相領域が存在し、(イ)前記混相組織層に含まれる窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.02〜0.05であることによって、長期に亘ってすぐれた熱伝導性と潤滑特性を維持するというすぐれた効果を奏するものである。
さらに、前記構成に加えて、混相組織層中の金属相領域が占める面積割合が、ドリル基体表面に対して垂直な断面組織における面積割合で5〜10%であることによって、より一層、長期に亘ってすぐれた熱伝導性と潤滑特性を維持するというすぐれた効果を奏するものである。
The surface-coated drill of the present invention has an average layer thickness of 1.5 to at least an outer peripheral portion and a chip discharge groove on a region of an effective cutting edge length of a cemented carbide sintered body or a high-speed steel drill base. The lower layer is made of a composite nitride of a metal composed of any two of Ti, Al, and Cr, and has an average layer thickness of 0.3 to 1.0 μm. that (Ti 1-x Al x) 1-z (N 1-y O y) to form a hard coating layer comprising an outermost layer made of a component system of z, when observing the cross-sectional structure of the mixed-phase tissue layer (A) The oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is less than 0.2, and the Al content (atomic ratio) x in the total amount of Ti and Al is 0. A fine crystal grain having a grain size of less than 5 and in the range of 30 to 100 nm and the fine grain Around the crystal grains, the oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is 0.8 or more, and the Al content (atomic ratio) x in the total amount of Ti and Al is 0. Is a metal phase region in which the content ratio (atomic ratio) z of nonmetallic elements in the total amount of Ti, Al, nitrogen, and oxygen is 0.01 to 0.03, and Maintaining excellent thermal conductivity and lubrication characteristics over a long period of time because the oxygen content (atomic ratio) y in the combined amount of nitrogen and oxygen contained in the mixed phase structure layer is 0.02 to 0.05. It has an excellent effect of doing.
Furthermore, in addition to the above-described configuration, the area ratio occupied by the metal phase region in the mixed phase structure layer is 5 to 10% in terms of the area ratio in the cross-sectional structure perpendicular to the drill base surface. It has an excellent effect of maintaining excellent thermal conductivity and lubrication characteristics.

本発明の表面被覆ドリルの硬質被覆層を蒸着形成するための圧力勾配型Arプラズマガンを利用したイオンプレーティング装置の概略図を示す。The schematic diagram of the ion plating apparatus using the pressure gradient type Ar plasma gun for carrying out vapor deposition formation of the hard coating layer of the surface covering drill of the present invention is shown. 本発明の表面被覆ドリルの硬質被覆層の断面模式図を示す。The cross-sectional schematic diagram of the hard coating layer of the surface coating drill of this invention is shown.

つぎに、本発明の表面被覆ドリルを実施例により具体的に説明する。   Next, the surface-coated drill of the present invention will be specifically described with reference to examples.

原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、ドリル基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、溝形成部の直径×長さが10mm×80mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製のドリル基体D−1〜D−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 1 is added to the compounding composition shown in FIG. 1, and a wax is further added, followed by ball mill mixing in acetone for 24 hours, drying under reduced pressure, and then press-molding into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round base sintered body for forming a drill base is formed, and from the round bar sintered body, the groove forming portion has a diameter x length of 10 mm x 80 mm and a twist angle of 30 degrees by grinding. Made of WC-based cemented carbide with 2 flute shape Le substrate D-1 to D-4 were prepared, respectively.

ついで、これらのドリル基体D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、図1の概略図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、
ドリル基体温度:400〜430℃、
プラズマガン放電電力:3kW、
放電ガス流量:アルゴンガス(Ar)ガス 40sccm、
ドリル基体に印加する直流バイアス電圧:−400V、
という表2に示す特定の条件でボンバード処理を行った後、
ドリル基体温度:400〜430℃、
蒸発源1:金属Tiまたは金属Cr
蒸発源1に対するプラズマガン放電電力:8〜11kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:7〜8kW、
反応ガス流量割合:窒素(N)ガス 100sccm、
放電ガス流量割合:アルゴン(Ar)ガス 35sccm、
ドリル基体に印加する直流バイアス電圧:−5V、
蒸着時間:30〜150min.
という表2に示す特定の条件下で下部層を形成し、さらに、
ドリル基体温度:400〜430℃、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:7〜8kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:10〜11kW、
反応ガス流量割合:窒素(N)ガス 50sccm、
反応ガス流量割合:酸素(O)ガス 3〜4sccm、
放電ガス流量割合:アルゴン(Ar)ガス 40sccm、
ドリル基体に印加するパルスバイアス電圧:+3V/−10V、周期5〜8kHz、負電圧のデューティーサイクル15〜30%
蒸着時間:10〜30min、
という表2に示す特定の条件で最表面層を形成することにより、表4に示される組成および表4に示される目標層厚を有する下部層と最表面層を有し該最表面層が、表4に示される組成と粒径範囲を有する微細結晶粒とその周りに表4に示される組成の金属相領域を有する本発明表面被覆ドリル1〜15をそれぞれ製造した。
Next, the cutting blades of these drill bases D-1 to D-4 are honed, ultrasonically cleaned in acetone, and dried, with one type of physical vapor deposition apparatus shown in the schematic diagram of FIG. Attached to an ion plating device using a certain pressure gradient type Ar plasma gun,
Drill base temperature: 400-430 ° C.
Plasma gun discharge power: 3kW
Discharge gas flow rate: Argon gas (Ar) gas 40 sccm,
DC bias voltage applied to the drill base: -400V,
After performing bombardment treatment under the specific conditions shown in Table 2,
Drill base temperature: 400-430 ° C.
Evaporation source 1: Metal Ti or Metal Cr
Plasma gun discharge power for the evaporation source 1: 8 to 11 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power for the evaporation source 2: 7 to 8 kW,
Reaction gas flow rate ratio: nitrogen (N 2 ) gas 100 sccm,
Discharge gas flow rate ratio: Argon (Ar) gas 35 sccm,
DC bias voltage applied to the drill base: -5V,
Deposition time: 30 to 150 min.
The lower layer is formed under the specific conditions shown in Table 2, and
Drill base temperature: 400-430 ° C.
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 7 to 8 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power to the evaporation source 2: 10 to 11 kW,
Reaction gas flow rate ratio: Nitrogen (N 2 ) gas 50 sccm,
Reaction gas flow rate ratio: Oxygen (O 2 ) gas 3-4 sccm,
Discharge gas flow rate ratio: Argon (Ar) gas 40 sccm,
Pulse bias voltage applied to drill base: + 3V / -10V, period 5-8 kHz, negative voltage duty cycle 15-30%
Deposition time: 10-30 min.
By forming the outermost surface layer under the specific conditions shown in Table 2, the outermost surface layer having the lower layer and the outermost surface layer having the composition shown in Table 4 and the target layer thickness shown in Table 4, The surface-coated drills 1 to 15 of the present invention having fine crystal grains having the composition and particle size range shown in Table 4 and the metal phase region having the composition shown in Table 4 around them were produced.

また、比較の目的で、前記ドリル基体D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、本発明表面被覆ドリルの製造に使用したのと同じ図1の概略図に示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置に装着し、
ドリル基体温度:400〜430℃、
プラズマガン放電電力:3kW、
放電ガス流量:アルゴンガス(Ar)ガス 40sccm、
ドリル基体に印加する直流バイアス電圧:−400V、
という表3に示す特定の条件でボンバード処理を行った後、
ドリル基体温度:400〜430℃、
蒸発源1:金属Tiまたは金属Cr、
蒸発源1に対するプラズマガン放電電力:8〜11kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:10〜11kW、
反応ガス流量割合:窒素(N)ガス 100sccm、
放電ガス流量割合:アルゴン(Ar)ガス 35sccm、
ドリル基体に印加する直流バイアス電圧:−5V、
蒸着時間:30〜150min.
という表3に示す特定の条件下で下部層を形成し、さらに、
ドリル基体温度:400〜430℃、
蒸発源1:金属Ti、
蒸発源1に対するプラズマガン放電電力:7〜8kW、
蒸発源2:金属Al、
蒸発源2に対するプラズマガン放電電力:10〜11kW、
反応ガス流量割合:窒素(N)ガス 50sccm、
反応ガス流量割合:酸素(O)ガス なし、
放電ガス流量割合:アルゴン(Ar)ガス 40sccm、
ドリル基体に印加する直流バイアス電圧: −10V
蒸着時間:10〜30min.、
という表3に示す特定の条件で最表面層を形成することにより、表5に示される組成および表5に示される目標層厚を有する下部層と最表面層を有し該最表面層が、表5に示される組成と粒径範囲を有する微細結晶粒とその周りに表5に示される組成の金属相領域を有する比較表面被覆ドリル1〜15をそれぞれ製造した。
For comparison purposes, the cutting edges of the drill bases D-1 to D-4 were honed, ultrasonically cleaned in acetone, and used in the production of the surface-coated drill of the present invention. Attached to an ion plating apparatus using a pressure gradient type Ar plasma gun which is a kind of physical vapor deposition apparatus shown in the schematic diagram of FIG.
Drill base temperature: 400-430 ° C.
Plasma gun discharge power: 3kW
Discharge gas flow rate: Argon gas (Ar) gas 40 sccm,
DC bias voltage applied to the drill base: -400V,
After performing bombardment treatment under the specific conditions shown in Table 3,
Drill base temperature: 400-430 ° C.
Evaporation source 1: metal Ti or metal Cr,
Plasma gun discharge power for the evaporation source 1: 8 to 11 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power to the evaporation source 2: 10 to 11 kW,
Reaction gas flow rate ratio: nitrogen (N 2 ) gas 100 sccm,
Discharge gas flow rate ratio: Argon (Ar) gas 35 sccm,
DC bias voltage applied to the drill base: -5V,
Deposition time: 30 to 150 min.
The lower layer is formed under the specific conditions shown in Table 3, and
Drill base temperature: 400-430 ° C.
Evaporation source 1: metal Ti,
Plasma gun discharge power for the evaporation source 1: 7 to 8 kW,
Evaporation source 2: Metal Al,
Plasma gun discharge power to the evaporation source 2: 10 to 11 kW,
Reaction gas flow rate ratio: Nitrogen (N 2 ) gas 50 sccm,
Reaction gas flow rate ratio: Oxygen (O 2 ) gas None,
Discharge gas flow rate ratio: Argon (Ar) gas 40 sccm,
DC bias voltage applied to drill base: -10V
Deposition time: 10-30 min. ,
By forming the outermost surface layer under the specific conditions shown in Table 3, the outermost surface layer having the lower layer and the outermost surface layer having the composition shown in Table 5 and the target layer thickness shown in Table 5, Comparative surface-coated drills 1 to 15 each having a fine crystal grain having the composition and particle size range shown in Table 5 and a metal phase region having the composition shown in Table 5 therearound were produced.

つぎに、本発明表面被覆ドリル1〜15および比較表面被覆ドリル1〜15について、
被削材−平面寸法:100mm×250mm、厚さ:80mmのJIS・SUS304(HB230)の板材、
主軸回転速度:2100回転/min.
送り:0.20mm/rev.、
穴深さ:50mm、
の条件でのステンレス鋼の乾式高速深穴あけ切削加工試験(通常の、直径が10mmであるドリルの回転速度および送りは、それぞれ、1700回転/min.および0.20mm/rev.)、
を行い、5穴ごとに、工具刃先の逃げ面摩耗幅を測定し、先端切刃面の逃げ面摩耗幅が0.3mmに至るまで、若しくは切り屑つまりや欠損等が原因で、工具としての使用が困難な状態に至るまでの穴あけ加工数を測定した。この測定結果を表4、5にそれぞれ示した。
Next, for the surface-coated drills 1 to 15 and the comparative surface-coated drills 1 to 15 of the present invention,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 80 mm JIS / SUS304 (HB230) plate material,
Spindle speed: 2100 rpm / min.
Feed: 0.20 mm / rev. ,
Hole depth: 50mm,
Stainless steel dry high-speed deep drilling cutting test under the following conditions (a normal rotation speed and feed of a drill having a diameter of 10 mm are 1700 rotations / min. And 0.20 mm / rev., Respectively),
Measure the flank wear width of the tool edge every 5 holes, until the flank wear width of the tip cutting edge surface reaches 0.3 mm, or due to chips, chipping, etc. The number of drilling processes until it was difficult to use was measured. The measurement results are shown in Tables 4 and 5, respectively.

この結果得られた本発明表面被覆ドリル1〜15の硬質被覆層を構成する下部層および最表面層、さらに、比較表面被覆ドリル1〜15の硬質被覆層を構成する下部層および最表面層の平均層厚を、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   The lower layer and the outermost surface layer constituting the hard coating layer of the surface coating drills 1 to 15 of the present invention obtained as a result, and further the lower layer and the outermost surface layer constituting the hard coating layer of the comparative surface coating drill 1 to 15 When the average layer thickness was measured by cross-section using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

さらに、本発明表面被覆ドリル1〜15、比較表面被覆ドリル1〜15を集束イオンビーム加工装置により、層厚方向に
高さ:層厚の2倍相当 × 幅:50μm × 厚さ:100nm
の薄片に加工した後、透過型電子顕微鏡を用いて、観察加速電圧200kVの条件のもと、本発明表面被覆ドリル1〜15および比較表面被覆ドリル1〜15の硬質被覆層の下部層および最表面層を構成する混相組織層(微細結晶粒および金属相領域)を観測し、さらに、直径が混相組織層の層厚相当の電子線を混相組織層に照射してエネルギー分散型分光分析装置を用いて、各層の組成をもとめたところ、各層での組成が表4、5に示す目標組成と実質的に同じ組成を有していることを確認した。さらに、電子線を直径5nmの面積まで絞って、視野中に含まれる微細結晶粒のうち10個に照射し、エネルギー分散型分光分析装置を用いて組成を測定し、その平均組成を、微細結晶粒の組成とし、それぞれの元素割合から、x、yおよびzの値を算出した。同様に、視野中に含まれる金属相領域のうち、10点に対して電子線を照射し、エネルギー分散型分光分析装置を用いて組成を測定し、その平均組成を、金属相領域の組成とし、それぞれの元素割合から、x、yおよびzの値を算出した。
さらに、混相組織層に含まれる微細結晶粒の粒径を測定し、平均粒径を求めた、すなわち、混相組織層に含まれる微細結晶粒の面積と同じ面積をもつ真円の直径を、その微細結晶粒の粒径とした。混相組織層のうち、高さ:層厚相当 × 幅:10μmの視野に含まれる結晶粒について同様の測定を行い、その平均値を平均粒径とした。その結果、本発明表面被覆ドリル1〜15のいずれも混相組織層に含まれる微細結晶粒の平均粒径は、表4に示すように30〜100nmの範囲内であることが確認できた。一方、比較表面被覆ドリル1〜15の測定結果については、表5に示した。また、最表面層のドリル基体に垂直な断面研磨面を1μm×1μmの範囲で走査型電子顕微鏡(SEM)で観察し、その観察像から微細結晶粒と金属相領域の面積割合(%)を測定した。その結果を、同じく、表4、5に示した。
Further, the surface-coated drills 1 to 15 and the comparative surface-coated drills 1 to 15 of the present invention are height-wise equivalent to twice the layer thickness in the layer thickness direction by the focused ion beam processing apparatus. × width: 50 μm × thickness: 100 nm
Then, using a transmission electron microscope, under the condition of an observation acceleration voltage of 200 kV, the lower layer and the outermost layer of the hard coating layer of the surface coating drills 1 to 15 of the present invention and the comparative surface coating drills 1 to 15 are used. Observe the mixed phase structure layer (fine crystal grains and metal phase region) constituting the surface layer, and irradiate the mixed phase structure layer with an electron beam whose diameter is equivalent to the thickness of the mixed phase structure layer. As a result, the composition of each layer was determined, and it was confirmed that the composition in each layer had substantially the same composition as the target composition shown in Tables 4 and 5. Further, the electron beam is narrowed down to an area of 5 nm in diameter, irradiated to 10 of the fine crystal grains contained in the field of view, the composition is measured using an energy dispersive spectrometer, and the average composition is determined as the fine crystal. The values of x, y, and z were calculated from the composition of the grains and the ratio of each element. Similarly, 10 points of the metal phase region included in the visual field are irradiated with an electron beam, the composition is measured using an energy dispersive spectrometer, and the average composition is defined as the composition of the metal phase region. The values of x, y and z were calculated from the respective element ratios.
Furthermore, the particle diameter of the fine crystal grains contained in the mixed phase structure layer was measured, and the average particle diameter was obtained, that is, the diameter of a perfect circle having the same area as the area of the fine crystal grains contained in the mixed phase structure layer was determined. The grain size of fine crystal grains was used. Among the mixed phase structure layers, the same measurement was performed on crystal grains included in the visual field of height: equivalent to layer thickness × width: 10 μm, and the average value was defined as the average particle size. As a result, it was confirmed that the average particle size of the fine crystal grains contained in the mixed phase structure layer of any of the surface-coated drills 1 to 15 of the present invention was within the range of 30 to 100 nm as shown in Table 4. On the other hand, the measurement results of the comparative surface-coated drills 1 to 15 are shown in Table 5. In addition, the cross-section polished surface perpendicular to the drill base of the outermost layer is observed with a scanning electron microscope (SEM) in the range of 1 μm × 1 μm, and the area ratio (%) between the fine crystal grains and the metal phase region is determined from the observed image. It was measured. The results are also shown in Tables 4 and 5.

表4に示される結果から、本発明表面被覆ドリル1〜15は、所定の下部層の上に粒径が30〜100nmで(Ti1−xAl1-z(N1−y(x<0.5、y<0.2)の成分系からなる微細結晶粒と(Ti1−xAl1-z(N1−y(0.6≦x、0.8≦y)の成分系からなる金属相領域とからなる混相組織で構成された最表面層が形成されていることによって、熱伝導率および潤滑特性が向上することによって、高硬度材の高速穴あけ加工において、長期間に亘りすぐれた切削性能を維持することが明らかである。
これに対して、表5に示される結果から、硬質被覆層の最表面層の成分組成、微細結晶粒の粒径などが本発明表面被覆ドリルと異なるもの、あるいは、下部層あるいは最表面層の平均層厚が所定の範囲内に制御されていない硬質被覆層を有する比較表面被覆ドリルにおいては、熱伝導特性および潤滑特性が十分でないために、チッピング、欠損、剥離の発生等により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Table 4, the surface-coated drills 1 to 15 of the present invention have a particle size of 30 to 100 nm on the predetermined lower layer (Ti 1-x Al x ) 1-z (N 1-y O y ) z (x <0.5, y <0.2) consisting of component fine crystal grains and of (Ti 1-x Al x) 1-z (N 1-y O y) z (0.6 ≦ x , 0.8 ≦ y), the formation of the outermost surface layer composed of a mixed phase structure composed of a metal phase region, and thereby improving the thermal conductivity and lubrication characteristics, thereby increasing the hardness of the material. It is clear that excellent cutting performance is maintained over a long period of time in high-speed drilling.
On the other hand, from the results shown in Table 5, the component composition of the outermost surface layer of the hard coating layer, the grain size of the fine crystal grains, etc. are different from those of the surface coating drill of the present invention, or the lower layer or the outermost surface layer. In comparative surface-coated drills that have a hard coating layer whose average layer thickness is not controlled within a predetermined range, the heat conduction characteristics and lubrication characteristics are not sufficient, so that they are relatively short due to the occurrence of chipping, chipping, peeling, etc. It is clear that the service life is reached in time.

前述のように、本発明表面被覆ドリルは、超硬合金焼結体あるいは高速度鋼からなるドリル基体の上に、所定の下部層を介し、最表面層として平均層厚0.3〜1.0μmで(Ti1−xAl1-z(N1−y(x<0.5、y<0.2)の成分系からなる粒径が30〜100nmの微細結晶粒と(Ti1−xAl1-z(N1−y(0.6≦x、0.8≦y)の成分系からなる金属相領域とからなる混相組織層を形成したことによって、すぐれた熱伝導特性と潤滑特性が発揮され、高硬度材の高速穴あけ加工においても、長期間に亘りすぐれた切削性能を維持するものであり、その産業上の利用可能性はきわめて大きい。 As described above, the surface-coated drill according to the present invention has an average layer thickness of 0.3 to 1. as the outermost surface layer on a drill base made of cemented carbide sintered body or high-speed steel with a predetermined lower layer interposed therebetween. Fine crystal grains having a particle size of 30 to 100 nm at 0 μm and comprising a component system of (Ti 1-x Al x ) 1-z (N 1-y O y ) z (x <0.5, y <0.2) And (Ti 1-x Al x ) 1-z (N 1-y O y ) z (0.6 ≦ x, 0.8 ≦ y) are formed. As a result, excellent heat conduction characteristics and lubrication characteristics are exhibited, and excellent cutting performance is maintained for a long time even in high-speed drilling of high hardness materials, and its industrial applicability is extremely high. large.

Claims (2)

ドリル基体のうち、少なくとも有効切れ刃長の領域上の外周部および切り屑排出溝上に、平均層厚1.5〜3.0μmを有し、Ti、Al、Crのうちいずれか2種類からなる金属の複合窒化物からなる下部層と、平均層厚0.3〜1.0μmを有し、混相組織層とされる(Ti1−xAl1−z(N1−yの成分系からなる最表面層とからなる硬質被覆層を形成し、
前記混相組織層の断面組織を観察したときに、
(ア)窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.2未満であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.5未満であり、かつ、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.40〜0.60であり、かつ、30〜100nmの範囲に含まれる平均粒径を有する微細結晶粒と、
(イ)該微細結晶粒の周囲に、窒素と酸素の合量に占める酸素の含有割合(原子比)yが0.8以上であり、TiとAlの合量に占めるAlの含有割合(原子比)xが0.6以上であり、Ti、Al、窒素、酸素の合量に占める非金属元素の含有割合(原子比)zが0.01〜0.03である金属相領域が存在することを特徴とする表面被覆ドリル。
The drill base has an average layer thickness of 1.5 to 3.0 μm on at least the outer peripheral portion on the region of the effective cutting edge length and the chip discharge groove, and consists of any two of Ti, Al, and Cr. a lower layer formed of a composite nitride of a metal, has an average layer thickness 0.3 to 1.0 [mu] m, are mixed-phase tissue layer (Ti 1-x Al x) 1-z (N 1-y O y) forming a hard coating layer composed of an outermost surface layer composed of the component system of z ,
When observing the cross-sectional structure of the mixed phase tissue layer,
(A) The oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is less than 0.2, and the Al content (atomic ratio) x in the total amount of Ti and Al is less than 0.5. And the content ratio (atomic ratio) z of nonmetallic elements in the total amount of Ti, Al, nitrogen, and oxygen is 0.40 to 0.60, and is an average included in the range of 30 to 100 nm. Fine crystal grains having a grain size;
(B) Around the fine crystal grains, the oxygen content (atomic ratio) y in the total amount of nitrogen and oxygen is 0.8 or more, and the Al content in the total amount of Ti and Al (atom Ratio) x is 0.6 or more, and there is a metal phase region in which the content ratio (atomic ratio) z of the nonmetallic element in the total amount of Ti, Al, nitrogen, and oxygen is 0.01 to 0.03. A surface-coated drill characterized by that.
前記混相組織層中の金属相領域が占める面積割合が、ドリル基体表面に対して垂直な断面組織における面積割合で5〜10%であることを特徴とする請求項1に記載の表面被覆ドリル。 2. The surface-coated drill according to claim 1, wherein an area ratio of the metal phase region in the mixed phase structure layer is 5 to 10% in an area ratio in a cross-sectional structure perpendicular to the drill base surface.
JP2012191406A 2012-08-31 2012-08-31 Surface coated drill with excellent thermal conductivity and lubrication characteristics Expired - Fee Related JP5892336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191406A JP5892336B2 (en) 2012-08-31 2012-08-31 Surface coated drill with excellent thermal conductivity and lubrication characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191406A JP5892336B2 (en) 2012-08-31 2012-08-31 Surface coated drill with excellent thermal conductivity and lubrication characteristics

Publications (2)

Publication Number Publication Date
JP2014046400A true JP2014046400A (en) 2014-03-17
JP5892336B2 JP5892336B2 (en) 2016-03-23

Family

ID=50606604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191406A Expired - Fee Related JP5892336B2 (en) 2012-08-31 2012-08-31 Surface coated drill with excellent thermal conductivity and lubrication characteristics

Country Status (1)

Country Link
JP (1) JP5892336B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320214A (en) * 1998-03-16 1999-11-24 Hitachi Tool Eng Ltd Covered hard tool
JP2009249664A (en) * 2008-04-03 2009-10-29 Kobe Steel Ltd Hard film, method for forming the same, and member coated with hard film
WO2013045454A2 (en) * 2011-09-30 2013-04-04 Cemecon Ag Coating of substrates using hipims

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11320214A (en) * 1998-03-16 1999-11-24 Hitachi Tool Eng Ltd Covered hard tool
JP2009249664A (en) * 2008-04-03 2009-10-29 Kobe Steel Ltd Hard film, method for forming the same, and member coated with hard film
WO2013045454A2 (en) * 2011-09-30 2013-04-04 Cemecon Ag Coating of substrates using hipims

Also Published As

Publication number Publication date
JP5892336B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP2013116509A (en) Surface-coated cutting tool
JP2008188734A (en) Surface coated cutting tool with hard coating layer exercising superior chipping resistance
JP2015110258A (en) Surface coating cutting tool having excellent anti-chipping property
JP5590331B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP2010017785A (en) Surface coated cutting tool having hard coating layer exerting superior chipping resistance
JP5892336B2 (en) Surface coated drill with excellent thermal conductivity and lubrication characteristics
WO2020184352A1 (en) Surface-coated cutting tool
JP6959577B2 (en) Surface coating cutting tool
JP2007030130A (en) Gear cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent wear resistance in high-speed cutting gear cutting of alloy steel
JP5682217B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP2013116551A (en) Surface-coated tool excellent in oxidation resistance and wear resistance
JP5892331B2 (en) Surface coated drill with excellent lubrication and wear resistance
JP5672444B2 (en) Surface coated drill with excellent wear resistance and chip evacuation
JP2019118997A (en) Surface-coated cutting tool
JP7025693B2 (en) Surface covering cutting tool
JP2008137130A (en) Surface coated cutting tool
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2014087850A (en) Surface-coated cutting tool and surface-coated drill excellent in oxidation resistance and chip dischargeability
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5861983B2 (en) Surface coated tool with excellent oxidation resistance and wear resistance
JP2015047644A (en) Surface-coated cutting tool excellent in wear resistance
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
CN117062684A (en) Surface-coated cutting tool
JP2012210673A (en) End mill which exhibits excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160209

R150 Certificate of patent or registration of utility model

Ref document number: 5892336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees