JP2008188734A - Surface coated cutting tool with hard coating layer exercising superior chipping resistance - Google Patents

Surface coated cutting tool with hard coating layer exercising superior chipping resistance Download PDF

Info

Publication number
JP2008188734A
JP2008188734A JP2007027395A JP2007027395A JP2008188734A JP 2008188734 A JP2008188734 A JP 2008188734A JP 2007027395 A JP2007027395 A JP 2007027395A JP 2007027395 A JP2007027395 A JP 2007027395A JP 2008188734 A JP2008188734 A JP 2008188734A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
crystal
layer
surface
orientation
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007027395A
Other languages
Japanese (ja)
Other versions
JP5036338B2 (en )
Inventor
Hidemitsu Takaoka
秀充 高岡
Original Assignee
Mitsubishi Materials Corp
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool with a hard coating layer exercising superior chipping resistance in heavy cutting.
SOLUTION: The hard coating layer is composed of a reformed (Al, Cr) N layer indicating a biaxial crystal orientation, comprised of a composite nitride layer of Al and Cr satisfying a composition formula (Al1-xCrx)N (X is 0.30-0.60 by atomic ratio), on a cutting tool substrate surface comprised of cemented carbide, cermet, and a cubic boron nitride-based ultra high pressure sintered body. When a crystal orientation analysis by EBSD is carried out in regard to the composite nitride layer, an area potion of crystal grains having a crystal orientation of 100 within a range of 0-15 degrees from a normal direction of a surface polishing face is 50% or more, and an area portion of crystal grains having a crystal orientation of 100 within a range of 15 degrees around a maximum peak existing within a range of 0-54 degrees with respect to an optional direction orthogonal to a normal line of the surface polishing face is 50% or more.
COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、硬質被覆層が2軸配向性を有することによってすぐれた耐欠損性を示し、したがって、鋼や鋳鉄などの重切削加工という厳しい切削条件下で用いられた場合にも、切削工具の長寿命化が可能となる表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention, the hard coating layer exhibits excellent chipping resistance by having a biaxial orientation, therefore, when used under severe cutting conditions of heavy cutting such as steel or cast iron is also the cutting tool surface-coated cutting tool longer life becomes possible (hereinafter, referred to as coated tool) relates.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。 Generally, the coated tool, the various and insert used in removably attached to the distal end portion of the byte to turning of the workpiece, such as steel or cast iron, attached to said insert removably, scalping processing and groove processing, yet such insert type end mill known to perform well as cutting and solid type end mill used for like shoulder machining.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットまたは各種の立方晶窒化ほう素(以下、cBNで示す)基超高圧焼結材料で構成された工具本体の表面に、(Al 1−X Cr )N(ただし、原子比で、Xは0.30〜0.60)を満足するAlとCrの複合窒化物[以下、(Al,Cr)Nで示す]層からなる硬質被覆層を物理蒸着してなる被覆工具が提案され、各種の鋼や鋳鉄などの連続切削や断続切削加工に用いられている。 Further, as the coating tool, tungsten carbide (hereinafter, indicated by WC) based cemented carbide, titanium carbonitride (hereinafter, shown by TiCN) based cermet or various cubic boron nitride (hereinafter indicated by cBN) based ultra-high pressure on the surface of the tool body made of a sintered material, (Al 1-X Cr X ) N ( provided that an atomic ratio, X is 0.30 to 0.60) composite nitride of Al and Cr satisfying the hereinafter, it has been used (Al, Cr) coated tool the hard coating layer consisting] layer indicated by N formed by physical vapor deposition have been proposed, in the continuous cutting or intermittent cutting of various steels and cast iron.
特開2004−50381号公報 JP 2004-50381 JP 特許第3669700号明細書 Pat. No. 3669700 特開2006−524748号公報 JP 2006-524748 JP

近年の切削加工装置のFA化はめざましく、加えて切削加工に対する省力化、省エネ化、低コスト化さらに効率化の要求も強く、これに伴い、高送り、高切り込みなどより高効率の重切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、切刃に対して大きな負荷がかかる重切削加工に用いた場合には、切刃部に欠損を生じやすく、これが原因で、比較的短時間で使用寿命に至るのが現状である。 FA of recent cutting device is remarkable, in addition cutting labor saving with respect to the processing, energy saving, strong demand for cost reduction more efficient, due to this, the high-feed, heavy cutting with high efficiency from such high cut heavy but tends to be required, in the conventional coated tools above, various steel or cast iron without particular problem occurs when cutting under normal conditions, a large load on the cutting edge according when used in cutting it is likely to occur defects in the cutting edge portion, which is caused, at present, leading to a relatively short time service life.

そこで、本発明者等は、上述のような観点から、上記の従来被覆工具のさらに一段の使用寿命の延命化を図るべく、これの硬質被覆層である(Al,Cr)N層に着目し、研究を行った結果、 The present inventors have, from the viewpoint as described above, to achieve a prolongation of the further stage of the service life of the conventional coated tools, which of a hard layer (Al, Cr) focused on N layer , as a result of the research,
(a)上記の従来被覆工具は、例えば図3に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング(AIP)装置に上記の工具基体を装着し、 (A) above prior coating tool, the tool base is attached, for example, in arc ion plating (AIP) apparatus which is a kind of physical vapor deposition apparatus shown in schematic illustration in FIG. 3,
装置内加熱温度:300〜500℃、 Device heating temperature: 300 to 500 ° C.,
超硬基体に印加する直流バイアス電圧:−60〜−100V、 DC bias voltage applied to the carbide substrate: -60 to-100 V,
カソード電極:Al−Cr合金、 Cathode electrode: Al-Cr alloy,
上記カソード電極とアノード電極間のアーク放電電流:60〜100A、 Arc discharge current between the cathode electrode and the anode electrode: 60~100A,
装置内窒素ガス圧力:1〜6Pa、 Apparatus in a nitrogen gas pressure: 1~6Pa,
の条件(以下、通常条件という)で、硬質被覆層として上記の組成式:(Al 1−X Cr )N(ただし、原子比で、Xは0.30〜0.60)を満足(Al,Cr)N層[以下、従来(Al,Cr)N層という]を形成することにより製造される。 In condition (hereinafter, referred to as normal conditions), the above composition formula as a hard coating layer: (Al 1-X Cr X ) N ( provided that an atomic ratio, X is 0.30 to 0.60) satisfies (Al , Cr) N layer [hereinafter, conventional (Al, Cr) of N layer] is produced by forming.
しかし、前記(Al,Cr)N層の形成を、例えば図2に概略説明図で示される物理蒸着装置の1種である圧力勾配型Arプラズマガンを利用したイオンプレーティング装置(以下、RPD装置という)に上記の工具基体を装着し、 However, the (Al, Cr) in the formation of N layers, for example, an ion plating apparatus using a pressure gradient type Ar plasma gun which is one of physical vapor deposition apparatus shown in schematic illustration in FIG. 2 (hereinafter, RPD device the above tool substrate is mounted on) that,
工具基体温度: 350〜500 ℃、 Tool substrate temperature: 350~500 ℃,
蒸発源:Al−Cr合金、 Evaporation source: Al-Cr alloy,
プラズマガン放電電力: 10〜15 kW、 Plasma gun discharge power: 10~15 kW,
窒素ガス流量: 20〜40 sccm、 Nitrogen gas flow rate: 20~40 sccm,
工具基体に印加する直流バイアス電圧: −50〜−80 V DC bias voltage applied to the tool substrate: -50 to-80 V
の条件で蒸着を行うと、この結果形成された(Al,Cr)N層[以下、改質(Al,Cr)N層という]は、前記従来(Al,Cr)N層に比して、高切り込み、高送りの重切削加工条件において、すぐれた耐欠損性を示すこと。 If in condition performing vapor deposition, the result was formed (Al, Cr) N layer [hereinafter referred to as modified (Al, Cr) N layer] is the conventional (Al, Cr) compared to the N layer, high cut, in the heavy cutting conditions high feed, to exhibit excellent chipping resistance.

(b)上記(a)の改質(Al,Cr)N層と上記従来(Al,Cr)N層について、電子線後方散乱回折装置(以下、EBSDという)を用いて個々の結晶粒の結晶方位を解析したところ、図1に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向となす角度が0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し、また、同様に、表面研磨面の法線と直交する任意の方向に対する前記(a)の改質(Al,Cr)N層の結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾 Modification of (b) above (a) (Al, Cr) N layer and the conventional (Al, Cr) for the N layer, electron backscatter diffraction apparatus (hereinafter, referred EBSD) crystals of individual crystal grains with When analyzing the orientation, as shown in the schematic illustration in FIG. 1, by irradiating an electron beam to the crystal grains each having a cubic crystal lattice existing in a measurement range of the surface polishing plane, the law of the surface polishing plane respect to the line, to measure the tilt angle of the crystal grains of the crystal orientation <100> is formed, among the measurement inclination angle, the measured angle of inclination angle formed with the normal line direction is within the range of 0-54 degrees 0.25 degrees divided for each pitch of aggregating the frequencies present in each segment, Similarly, the relative arbitrary direction perpendicular to the normal of the surface polishing surface modification of (a) (Al, cr) were measured N layer crystal grains the crystal orientation angle of inclination is <100> of said measuring inclination 角のうち、前記法線方向となす角度が0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、前記従来(Al,Cr)N層は、表面研磨面の法線に対する結晶粒の結晶方位<100>がなす傾斜角の分布は、法線方向に対して0〜15度の範囲内の傾斜角区分にピークを有することがあったとしても、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は0〜54度の範囲内で不偏的であり特段のピークを示さない(図5)のに対して、前記(a)の改質(Al,Cr)N層の結晶方位<100>の測定傾斜角の分布は、図4に例示される通り、法線方向に対して0〜15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面 Of corner, when aggregating the frequencies present the the angle formed between the normal direction by dividing the measured tilt angle within a range of 0-54 degrees for each pitch of 0.25 degrees in each division, the prior art (Al, Cr) N layer, the distribution of crystal grains the crystal orientation angle of inclination is <100> relative to the normal of the surface polishing plane, the inclination angle segment within the range of 0 to 15 degrees with respect to the normal direction even has a peak, any distribution of measured tilt angles of the crystal orientation <100> with respect to the direction of an unbiased manner within the 0-54 degree special peak perpendicular to the normal of the surface polishing plane show no relative (Fig. 5) of, modification (Al, Cr) of measuring the inclination angle of the crystal orientation of the N layer <100> distribution of the (a), as illustrated in FIG. 4, the normal 0-15 ° surface of crystal grains the crystal orientation in tilt angle indicator <100> exists in the range with respect to the direction 割合が結晶粒全面積の50%以上である結晶配向を示し、さらに、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は、ある特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内(最高ピーク傾斜角±7.5度の範囲内)の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示す(図4)こと。 Ratio indicates 50% or more the crystal orientation of the crystal grains the total area, further, the distribution of measured tilt angles of any crystal orientation <100> with respect to a direction perpendicular to the normal of the surface polishing plane, certain inclination angle segment area of ​​crystal grains highest peak is present, there is the crystal orientation in the tilt angle sections of the highest peak in the range of 15 degrees around the (range of maximum peak tilt angle ± 7.5 degrees) <100> a ratio indicates the crystal orientation is 50% or more of crystal grains the total area (Fig. 4).
さらに、前記表面研磨面の法線方向に対して0〜15度の範囲内に、結晶方位<100>が存在する結晶粒の面積割合、また、法線と直交する方向については最高ピークを中心とした15度の範囲内(最高ピーク傾斜角±7.5度の範囲内)に、結晶方位<100>が存在する結晶粒の面積割合、さらに、法線と直交する方向について最高ピークの現れる傾斜角区分は、基体の温度とバイアス電圧と窒素ガス流量によって変化すること。 Further, the center in the range of 0 to 15 degrees with respect to the normal direction of the surface polishing plane, the area ratio of crystal grains existing crystal orientation <100>, also the highest peak on the direction perpendicular to the normal line in the range of 15 degrees was (within the highest peak tilt angle ± 7.5 °), the area ratio of crystal grains existing crystal orientation <100>, further appearing of the highest peak on the direction orthogonal to the normal line tilt angle segment, can vary with temperature and bias voltage of the substrate and the nitrogen gas flow rate.

(c)多くの試験結果によれば、上記の通り工具基体に改質(Al,Cr)N層をRPD装置によって物理蒸着する条件を、例えば、 According to (c) number of tests results, as described above tool substrate to the reformer (Al, Cr) conditions for physical vapor deposition by RPD device N layer, for example,
気体の温度: 350〜500 ℃ Gas temperature: 350~500 ℃
バイアス電圧: −50〜−80 V Bias voltage: -50~-80 V
窒素ガス流量: 20〜40 sccm Nitrogen gas flow rate: 20~40 sccm
のように調整すると、表面研磨面の法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占め、また、法線と直交する方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占めるという2軸配向性を示すようになり、このような2軸配向性を示す改質(Al,Cr)N層を硬質被覆層として形成してなる被覆工具は、重切削加工において長期に亘ってすぐれた耐欠損性、耐摩耗性を発揮するようになること。 When adjusted to the area ratio of crystal grains account for 50% or more of crystal grains the total area is present the crystal orientation <100> in the range of 0 to 15 degrees with respect to the normal of the surface polishing plane, also, area ratio of crystal grains account for 50% or more of crystal grains the total area existing crystal orientation within a range of 15 degrees around the highest peak <100> present in the direction of the specific inclination angle sections perpendicular to the normal line now showing a biaxial orientation of such biaxially oriented shown modification (Al, Cr) formed by the N layer was formed as the hard layer-coated tool, for a long time in the heavy cutting excellent chipping resistance, it becomes to exhibit wear resistance.
以上(a)〜(c)に示される研究結果を得たのである。 Or (a) it is to give the research results shown in ~ (c).

この発明は、上記の研究結果に基づいてなされたものであって、 The present invention was made based on the above findings,
「超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、 "Cemented carbide, the surface of the cutting tool substrate made of cermet or cubic boron nitride containing group ultrahigh pressure sintered body,
組成式:(Al 1−X Cr )N(ただし、原子比で、Xは0.30〜0.60) Composition formula: (Al 1-X Cr X ) N ( provided that an atomic ratio, X is 0.30 to 0.60)
を満足し、平均層厚1〜10μmのAlとCrの複合窒化物層を蒸着形成した表面被覆切削工具において、 In the surface-coated cutting tool satisfied, it was deposited forming a composite nitride layer having an average layer thickness 1~10μm of Al and Cr, and
上記AlとCrの複合窒化物層について、電子線後方散乱回折(EBSD)装置を用いて個々の結晶粒の結晶方位を解析した場合、 The composite nitride layer of the Al and Cr, when analyzed the crystal orientation of individual crystal grains by using an electron backscatter diffraction (EBSD) device,
(a)表面研磨面の法線方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、 (A) measuring the inclination angle of the crystal orientation <100> forms of the crystal grain relative to the normal direction of the surface polishing plane, of the measuring tilt angle, is in the range of 0-54 degrees with respect to the normal direction measurements when aggregated frequencies existing in the tilt angle of the division to the respective divided for each pitch of 0.25 degrees, the crystal grains of the presence of the crystal orientation <100> with the inclination angle segment within the range of 0 to 15 degrees area ratio indicates 50% or more the crystal orientation of the crystal grains the total area,
(b)前記表面研磨面の法線と直交する任意の方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、 (B) the inclination angle which the crystal grains of the crystal orientation <100> forms for any direction perpendicular to the normal of the surface polishing plane is measured, among the measurement inclination angle, 0-54 with respect to the normal direction when aggregating the frequencies present the measurement inclination angle is within the range of time in each by dividing divided for each pitch of 0.25 degrees, there is the highest peak in a specific tilt angle segment, and around the highest peak area ratio of crystal grains the crystal orientation in tilt angle indicator <100> exists in a range of 15 degrees that represents 50% or more the crystal orientation of the crystal grains the total area,
上記(a)、(b)の2軸結晶配向性を示すAlとCrの複合窒化物層からなる硬質被覆層を蒸着形成したことを特徴とする重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する被覆工具(表面被覆切削工具)」 Above (a), chipping of the hard coating layer has excellent heavy cutting, characterized in that depositing form a hard coating layer made of a composite nitride layer of Al and Cr showing the biaxial crystal orientation of (b) coated tool to exert sex (surface-coated cutting tool) "
に特徴を有するものである。 Those having features to.

この発明の被覆工具の硬質被覆層を構成する改質(Al,Cr)N層において、Cr成分は高温強度を向上させ、一方Al成分は高温硬さおよび耐熱性(高温特性)を向上させる目的で含有するものであり、したがってCr成分の含有割合を示すX値がAl成分との合量に占める割合(原子比)で0.30未満になると、相対的にAlの割合が多くなり過ぎて、層自体の高温強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方Crの割合を示すX値が同0.60を越えると、相対的にAlの割合が少なくなり過ぎて、所望のすぐれた高温特性を確保することができず、摩耗促進の原因となることから、X値を0.30〜0.60と定めたものであり、また、硬質被覆層の平均層厚が1μm未満では、所望の耐摩耗性を Object modification (Al, Cr) composing the hard coating layer of the coated tool of the present invention in the N layer, Cr component improves the high-temperature strength, whereas Al component to improve high-temperature hardness and heat resistance (high-temperature properties) in are those containing, hence the X value that indicates the content of the Cr component is less than 0.30 in proportion to the total amount of the Al component (atomic ratio), the relative ratio of Al is too much inevitably decrease the high-temperature strength of the layer itself, the like result chipping is likely to occur, whereas if the X value indicating the proportion of Cr exceeds the 0.60, the proportion of relatively Al is too small Te, can not be ensured the desired excellent high-temperature characteristics, since the cause of promoting wear are those defining the X value and 0.30 to 0.60, the average layer of the hard coating layer the thickness is less than 1μm is, the desired wear resistance 保するのに不十分であり、一方その平均層厚が10μmを越えると、皮膜の剥離やチッピングが発生し易くなることから、その平均層厚を1〜10μmと定めた。 It is insufficient to guarantee, whereas when the average layer thickness exceeds 10 [mu] m, since the peeling or chipping of the film is likely to occur, determined the average layer thickness and 1 to 10 [mu] m.

また、上記の通り、改質(Al,Cr)N層の表面研磨面の法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合、法線と直交する任意の方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合は、また、最高ピークの現れる傾斜角区分は、例えば、基体の温度、バイアス電圧および窒素ガス流量によって変化するが、多くの試験結果によれば、圧力勾配型Arプラズマガンを利用したイオンプレーティングによる蒸着条件を 気体の温度: 350〜500 ℃ Further, as described above, modification (Al, Cr) area ratio of crystal grains the crystal orientation in the range of 0 to 15 degrees with respect to the normal of the surface polishing surface of the N layer <100> is present, the normal any area ratio of crystal grains the crystal orientation within the range of 15 degrees around the highest peak <100> is present present in a particular tilt angle sections of a direction perpendicular to, also, the tilt angle segment of appearance of the maximum peak , for example, the temperature of the substrate will vary by a bias voltage and nitrogen gas flow rate, according to the number of test results, the deposition conditions by ion plating using a pressure gradient type Ar plasma gun of the gas temperature: 350 to 500 ° C.
バイアス電圧: −50〜−80 V Bias voltage: -50~-80 V
窒素ガス流量: 20〜40 sccm Nitrogen gas flow rate: 20~40 sccm
とすることによって、改質(Al,Cr)N層の表面研磨面の法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占め、また、法線と直交する任意の方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上を占めるという2軸配向性を示す改質(Al,Cr)N層を得られる、という結論に達したものであり、したがって、法線に対して0〜15度の範囲内に結晶方位<100>が存在する結晶粒の面積割合が50%未満、あるいは、法線と直交する任意の方向の特定傾斜角区分に存在する最高ピークを中心とした15度の範囲内に結晶方位<100>が存在する結晶粒の面積割 By the reforming (Al, Cr) N layer area ratio of crystal grains the crystal grains total area crystal orientation <100> is within the range of 0 to 15 degrees with respect to the normal of the surface polishing plane of the accounting for 50% or more, and the area ratio of crystal grains existing any direction of crystal orientation in the range of 15 degrees around the highest peak present in a particular tilt angle segment <100> perpendicular to the normal line 0-15 but modification showing a biaxial orientation of accounts for 50% or more of crystal grains the total area (Al, Cr) obtained the N layer, which has reached the conclusion that, therefore, with respect to the normal crystal grains of the area ratio is less than 50% of crystal orientation <100> is within the range of degrees, or 15 degrees around the highest peak present in a particular tilt angle sections of an arbitrary direction orthogonal to the normal line crystal grains of the area dividing the crystal orientation <100> is present in the range が結晶粒全面積の50%未満となった場合には、(Al,Cr)N層に前記2軸配向性を付与することはできず、その結果、被覆工具にすぐれた耐欠損性を期待することはできないものとなる。 If but was less than 50% of the grain total area, (Al, Cr) can not be granted the two-axis orientation in the N layer, as a result, expected fracture resistance having excellent coated tool the ones that can not be.

この発明の被覆工具は、これの硬質被覆層を構成する改質(Al,Cr)N層が2軸配向性を示し、鋼や鋳鉄などの重切削加工に際して、すぐれた耐欠損性を発揮し、使用寿命の延命化に寄与するものである。 Coated tool of the present invention, reforming (Al, Cr) to configure this in the hard layer N layer exhibits a biaxial orientation, during heavy cutting such as steel or cast iron, exhibits excellent chipping resistance , which contributes to life extension of the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, specifically described by the coated tool embodiment of the present invention.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr 32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A1〜A10を形成した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder was prepared, these raw powders, Table 1 formulated into formulation compositions shown in, 72 hours wet mixed in a ball mill, dried, and pressed into a green compact under a pressure of 100 MPa, in a vacuum of 6Pa the green compact, temperature: 1 hour 1400 ° C. sintered under the conditions of retention, after sintering, the cutting edge R: 0.03 WC-based cemented carbide steel which is subjected to honing with the insert shape of ISO standard · CNMG120408 of the tool substrate A1~A10 the formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo 2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B1〜B6を形成した。 Further, as the raw material powder, both (in mass ratio, TiC / TiN = 50/50 ) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, prepared Co powder and Ni powder, and these raw material powders were blended in the formulation composition shown in Table 2, 24 hours wet mixed in a ball mill, dried, pressed into a green compact at a pressure of 100MPa and, in a nitrogen atmosphere at 2kPa the green compact, temperature: 1500 to sintering under the conditions of 1 hour hold time at ° C., after sintering, R the cutting edge portion: ISO standards and subjected to honing 0.03 TiCN-based cermet made of tool substrate B1~B6 having a tip shape of CNMG120408 was formed.

ついで、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置に装着し、蒸発源として、種々の成分組成をもったAl−Cr合金を装着し、まず、装置内を排気して1×10 −2 Pa以下の真空に保持しながら、工具基体を400℃に加熱した後、Arガスを導入して2.0Paとしたのち、工具基体に−1000Vのバイアス電圧を印加することによって、前記工具基体を20分間Arボンバード処理し、ついで、装置内を一旦1×10 −3 Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kW、工具基体に−60Vのバイアス電圧を印加し、窒素ガスを30sccm流しながら、炉内の圧力を0.08Paに保ち、蒸発源にプラズ Then, the each of the above tool substrate A1~A10 and B1-B6, ultrasonic cleaning in acetone, in a dry state, attached to the vapor deposition apparatus shown in FIG. 2, as an evaporation source, the various component compositions the Al-Cr alloy having attached, firstly, while maintaining the vacuum below 1 × 10 -2 Pa by evacuating the system, after heating the tool substrate to 400 ° C., while introducing Ar gas 2. after the 0 Pa, by applying a bias voltage of -1000V the tool substrate, said tool substrate for 20 minutes Ar bombardment, then, after once 1 × 10 -3 Pa vacuum of about in the apparatus, the pressure 12kW discharge power gradient type Ar plasma gun, a bias voltage of -60V to the tool base body, while flowing 30sccm nitrogen gas, maintaining the pressure in the furnace to 0.08 Pa, plasma evaporation source ビームを入射しAl−Cr合金の蒸気を発生させるとともにプラズマビームでイオン化して、工具基体表面に、表3に示される目標組成および目標層厚の2軸配向性を有する改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートと云う)1〜16をそれぞれ製造した。 Ionized by the plasma beam with generating a vapor of Al-Cr alloy incident beam, the tool substrate surface, modification with a target composition and target layer thickness biaxially orientation of shown in Table 3 (Al, Cr ) by the N layer formed by evaporation as a hard coating layer, the present invention surface-coated inserts of the present invention coated tool (hereinafter, the present invention referred to as coated inserts) 1-16 were prepared, respectively.

比較の目的で、上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示されるアークイオンプレーティング装置に装着し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Cr合金および工具基体表面ボンバード洗浄用金属Tiを装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−800Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させて、前記工具基体表面を5分間Tiボンバード処理し、ついで装置内に反応ガスとして窒素ガスを導入して、1〜6Paの範囲内の所定の窒素ガス雰囲気 For purposes of comparison, each of the tool base A1~A10 and B1-B6, ultrasonic cleaning in acetone, in a dry state, attached to the arc ion plating apparatus shown in FIG. 3, a cathode electrode ( as evaporation sources), equipped with Al-Cr alloy and tool substrate surface bombardment cleaning metal Ti having various component compositions, first, while maintaining the following vacuum 0.5Pa by evacuating the apparatus, a heater after heating the inside of the apparatus to 500 ° C., the tool substrates by applying a DC bias voltage of -800 V, and by flowing a 100A current to generate arc discharge between said metallic Ti and the anode electrode of the cathode electrode , said tool substrate surface for 5 min Ti bombardment, followed by introduction of nitrogen gas as a reaction gas into the apparatus, a predetermined nitrogen gas atmosphere in the range of 1~6Pa すると共に、前記工具基体に印加する直流バイアス電圧を−60〜−100Vの範囲内の所定の電圧とし、前記カソード電極であるAl−Cr合金とアノード電極との間に80Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の従来(Al,Cr)N層を硬質被覆層として蒸着形成することにより、従来被覆工具としての従来被覆インサート1〜16をそれぞれ製造した。 Together, and the DC bias voltage applied to the tool substrate by a predetermined voltage in the range of -60 to-100 V, flowing 80A of current between the Al-Cr alloy and the anode electrode is the cathode electrode arc to discharge is generated on the surface of the tool substrate with a target composition and target layer thickness of the conventional shown in Table 4 (Al, Cr) by the N layer formed by evaporation as a hard coating layer, conventional as conventional coated tool the coated inserts 1 to 16 were prepared, respectively.

まず、上記本発明被覆インサート1〜10および従来被覆インサート1〜10について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、 First, the present invention coated inserts 1 to 10 and conventional coated inserts 10, in a state in which it was set screw in the tool steel byte tip fixture,
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、 Workpiece: JIS · SCM440 length direction at equal intervals of four longitudinal grooves containing round bar,
切削速度: 180 m/min. Cutting speed: 180 m / min. ,
切り込み: 3.5 mm、 Cut: 3.5 mm,
送り: 0.26 mm/rev. Feed: 0.26 mm / rev. ,
切削時間: 4 分、 Cutting time: 4 minutes,
の条件(切削条件A1という)での合金鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.55mm、0.22mm/rev.)、 Dry intermittent heavy cutting test under conditions (called cutting conditions A1) alloy steel (normal cut and feed, respectively, 1.55mm, 0.22mm / rev.),
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、 Workpiece: JIS · S55C length direction at equal intervals of four longitudinal grooves containing round bar,
切削速度: 275 m/min. Cutting speed: 275 m / min. ,
切り込み: 3.2 mm、 Cut: 3.2 mm,
送り: 0.28 mm/rev. Feed: 0.28 mm / rev. ,
切削時間: 3 分、 Cutting time: 3 minutes,
の条件(切削条件A2という)での炭素鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.5mm、0.2mm/rev.)、 Dry intermittent heavy cutting test of carbon steel in the condition (that cutting conditions A2) (normal cut and feed, respectively, 1.5mm, 0.2mm / rev.),
被削材:JIS・SCr420の丸棒、 Workpiece: JIS · SCr420 of the round bar,
切削速度: 200 m/min. Cutting speed: 200 m / min. ,
切り込み: 3.0 mm、 Cut: 3.0 mm,
送り: 0.35 mm/rev. Feed: 0.35 mm / rev. ,
切削時間: 15 分、 Cutting Time: 15 minutes,
の条件(切削条件A3という)でのクロム鋼の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、2.0mm、0.2mm/rev.)、 Dry continuous heavy cutting test under conditions (called cutting conditions A3) of chromium steel (normal cut and feed, respectively, 2.0mm, 0.2mm / rev.),
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。 It was carried out to measure the flank wear width of the cutting edge in any of the cutting test. この測定結果を表5に示した。 The measurement results are shown in Table 5.

次に、上記本発明被覆インサート11〜16および従来被覆インサート11〜16について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、 Next, the present invention coated inserts 11-16 and the conventional coated inserts 11-16, in a state in which it was set screw in the tool steel byte tip fixture,
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、 Workpiece: JIS · SCM440 length direction at equal intervals of four longitudinal grooves containing round bar,
切削速度: 180 m/min. Cutting speed: 180 m / min. ,
切り込み: 2.0 mm、 Cut: 2.0 mm,
送り: 0.2 mm/rev. Feed: 0.2 mm / rev. ,
切削時間: 2 分、 Cutting time: 2 minutes,
の条件(切削条件a1という)での合金鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.5mm、0.15mm/rev.)、 Dry intermittent heavy cutting test under conditions (called cutting conditions a1) of alloy steel (normal cut and feed, respectively, 1.5mm, 0.15mm / rev.),
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒、 Workpiece: JIS · S55C length direction at equal intervals of four longitudinal grooves containing round bar,
切削速度: 220 m/min. Cutting speed: 220 m / min. ,
切り込み: 2.0 mm、 Cut: 2.0 mm,
送り: 0.2 mm/rev. Feed: 0.2 mm / rev. ,
切削時間: 2 分、 Cutting time: 2 minutes,
の条件(切削条件a2という)での炭素鋼の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、1.5mm、0.15mm/rev.)、 Dry intermittent heavy cutting test of carbon steel in the condition (that cutting conditions a2) (normal cut and feed, respectively, 1.5mm, 0.15mm / rev.),
被削材:JIS・SUS304の丸棒、 Workpiece: round bar of JIS · SUS304,
切削速度: 180 m/min. Cutting speed: 180 m / min. ,
切り込み: 2.5 mm、 Cut: 2.5 mm,
送り: 0.25 mm/rev. Feed: 0.25 mm / rev. ,
切削時間: 15 分、 Cutting Time: 15 minutes,
の条件(切削条件a3という)でのクロム鋼の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、2.0mm、0.15mm/rev.)、 Dry continuous heavy cutting test under conditions (called cutting conditions a3) chrome steel (normal cut and feed, respectively, 2.0mm, 0.15mm / rev.),
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。 It was carried out to measure the flank wear width of the cutting edge in any of the cutting test. この測定結果を同じく表5に示した。 The measurement results are also shown in Table 5.

また、原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有する立方晶窒化硼素(cBN)粉末、窒化チタン(TiN)粉末、Al粉末、酸化アルミニウム(Al )粉末を用意し、これら原料粉末を表6に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高 Further, as the raw material powder, both cubic boron nitride (cBN) powder having an average particle size in the range of 0.5 to 4 .mu.m, titanium nitride (TiN) powder, Al powder, aluminum oxide (Al 2 O 3) powder were prepared, these raw material powders were blended in the formulation composition shown in Table 6, 80 h wet mixed in a ball mill, dried and the diameter at a pressure of 120 MPa: 50 mm × thickness: with dimensions of 1.5mm press-molded into a green compact, and then the green compact at a pressure in a vacuum atmosphere of 1 Pa, pre-sintered for cutting pieces were sintered at a predetermined temperature holding for 60 minute in the range of 900 to 1300 ° C. and sintered body, the pre-sintered body was prepared separately, Co: 8 wt%, WC: balance of the composition, and the diameter: 50 mm × thickness: a WC-based cemented carbide support piece having a dimension of 2mm in a state in which the superimposed, usually of ultra-high 圧焼結装置に装入し、通常の条件である圧力:5GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さら Was charged to the sintering device, the pressure is a normal condition: 5 GPa, temperature: 1200 to 1400 a predetermined temperature holding time in the range of ° C.: ultra high pressure sintering under conditions of 0.8 hours, after sintering the top and bottom surfaces were polished using a diamond grindstone, divided into one side 3mm equilateral triangular with a wire electrical discharge machining apparatus further Co: 5 wt%, TaC: 5 wt%, WC: the balance of the composition and CIS standards SNGA120412 shaped brazing of WC-based cemented carbide insert body having (thickness:: 4.76 mm × side length 12.7mm square) to (corner portion), by mass%, Cu: 26%, Ti : 5%, Ni: 2.5%, Ag: brazed using a brazing material of Ag alloy having a composition consisting of the remainder, after the periphery grinding to a predetermined size, width cutting edge: 0.13 mm, angle : subjected to honing of 25 °, further 仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体C1〜C10をそれぞれ製造した。 The tool substrate C1~C10 having the insert shape of ISO standard SNGA120412 by performing finish polishing was produced, respectively.

ついで、上記の工具基体C1〜C10をアセトン中で超音波洗浄し、乾燥した状態で、図2に示される蒸着装置に装着し、蒸発源として、種々の成分組成をもったAl−Cr合金を装着し、まず、装置内を排気して1×10 −2 Pa以下の真空に保持しながら、工具基体を400℃に加熱した後、Arガスを導入して2.0Paとしたのち、工具基体に−200Vのバイアス電圧を印加することによって、前記工具基体を20分間Arボンバード処理し、ついで、装置内を一旦1×10 −3 Pa程度の真空にした後、圧力勾配型Arプラズマガンの放電電力を12kWとし、蒸発源にプラズマビームを入射しAl−Cr合金の蒸気を発生させるとともにプラズマビームでイオン化して、工具基体表面に、表7に示される目標組成および目標 Then, the above tool substrate C1~C10 ultrasonic cleaning in acetone, in a dry state, attached to the vapor deposition apparatus shown in FIG. 2, as an evaporation source, an Al-Cr alloy having various component compositions mounting and, firstly, while maintaining the vacuum below 1 × 10 -2 Pa by evacuating the system, after heating the tool substrate to 400 ° C., after a 2.0Pa while introducing Ar gas, tool substrate a by applying a bias voltage of -200 V, said tool substrate for 20 minutes Ar bombardment, then, after once 1 × 10 -3 Pa vacuum of about in the apparatus, the discharge pressure gradient type Ar plasma gun the power and 12 kW, and ionized in the plasma beam causes incident plasma beam evaporation sources generate steam of Al-Cr alloy, a tool substrate surface, the target composition and the target are shown in Table 7 厚の2軸配向性を有する改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆cBN基インサート(以下、本発明被覆インサートと云う)21〜30をそれぞれ製造した。 Reforming with biaxial orientation of a thickness (Al, Cr) by the N layer formed by evaporation as a hard coating layer, the present invention present invention surface-coated cBN-based inserts as coated tool (hereinafter, referred to as the present invention coated inserts ) 21 to 30 were prepared, respectively.

また、比較の目的で、上記の工具基体C1〜C10のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図3に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったAl−Cr合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、0.7Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記工具基体に印加する For the purpose of comparison, each of the tool base body C1 -C10, ultrasonic cleaning in acetone, in a dry state, was charged to a normal arc ion plating apparatus shown in FIG. 3, the cathode electrode as (evaporation source), the Al-Cr alloy having a component composition corresponding to the target composition, respectively shown in table 3 attached, first, while holding by evacuating the apparatus to a vacuum below 0.1 Pa, a heater in after heating the inside of the apparatus to 500 ° C., while introducing Ar gas, together with an atmosphere of 0.7 Pa, and applying a DC bias voltage of -200V to the tool substrate that rotates while rotating on the table, with and the tool substrate surface bombarded cleaned by argon ions, as well as the reaction atmosphere of 3Pa then introducing nitrogen gas as a reaction gas into the apparatus, is applied to the tool substrate イアス電圧を−30Vに下げて、前記Al−Cr合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体A〜Jのそれぞれの表面に、表3に示される目標組成および目標層厚の(Al,Cr)N層からなる硬質被覆層を蒸着形成することにより、従来被覆工具としての従来表面被覆cBN基焼結インサート(以下、従来被覆インサートという)21〜30をそれぞれ製造した。 Lower the bias voltage to -30 V, the cause arcing between the cathode electrode and the anode electrode of the Al-Cr alloy, on each surface of the tool substrate A~J with a target composition shown in Table 3 respectively and the target layer thickness of (Al, Cr) by depositing form a hard coating layer consisting of N layers, the conventional surface-coated cBN-based sintered inserts as conventional coated tool (hereinafter, referred to as conventional coated inserts) 21 to 30 the It was produced.

つぎに、上記の各種の被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート21〜30および従来被覆インサート21〜30のうち、本発明被覆インサート21〜25および従来被覆インサート21〜25については、以下に示す切削条件B1〜B3で切削加工試験を行い、また、本発明被覆インサート26〜30および従来被覆インサート26〜30については、同じく以下に示す切削条件C1〜C3で切削加工試験を実施した。 Next, the various coated inserts, in a state where both the set screw in the tool steel byte tip fixture, the present invention coated inserts 21-30 and of the conventional coated inserts 21-30, the for an invention coated inserts 21-25 and the conventional coated inserts 21-25 performs cutting test with cutting conditions B1~B3 shown below, also the present invention coated inserts 26-30 and the conventional coated inserts 26 to 30, similarly it was performed cutting tests with cutting conditions C1~C3 below.
[切削条件B1] [Cutting conditions B1]
被削材:JIS・SCM415の焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、 Workpiece: hardened material of JIS · SCM415 (HRC60) in the lengthwise direction at equal intervals of four longitudinal grooves containing round bar,
切削速度: 200 m/min. Cutting speed: 200 m / min. ,
切り込み: 0.28 mm、 Cut: 0.28 mm,
送り: 0.25 mm/rev. Feed: 0.25 mm / rev. ,
切削時間: 5 分、 Cutting time: 5 minutes,
の条件での合金鋼の焼入れ材の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.15mm、0.15mm/rev.)、 Dry intermittent heavy cutting test quenching material in conditions of alloy steel (normal cut and feed, respectively, 0.15mm, 0.15mm / rev.),
[切削条件B2] [Cutting conditions B2]
被削材:JIS・SUJ2の焼入れ材(HRC60)の長さ方向等間隔4本縦溝入り丸棒、 Workpiece: hardened material of JIS · SUJ2 (HRC60) in the lengthwise direction at equal intervals of four longitudinal grooves containing round bar,
切削速度: 140 m/min. Cutting speed: 140 m / min. ,
切り込み: 0.2 mm、 Cut: 0.2 mm,
送り: 0.2 mm/rev. Feed: 0.2 mm / rev. ,
切削時間: 4 分、 Cutting time: 4 minutes,
の条件での軸受鋼の焼入れ材の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.1mm、0.1mm/rev.)、 Dry intermittent heavy cutting test quenching material bearing steel was performed under the following conditions (normal cut and feed, respectively, 0.1mm, 0.1mm / rev.),
[切削条件B3] [Cutting Conditions B3]
被削材:JIS・SKD61の焼入れ材(HRC61)の長さ方向等間隔4本縦溝入り丸棒、 Workpiece: hardened material of JIS · SKD61 (HRC61) in the lengthwise direction at equal intervals of four longitudinal grooves containing round bar,
切削速度: 180 m/min. Cutting speed: 180 m / min. ,
切り込み: 0.2 mm、 Cut: 0.2 mm,
送り: 0.2 mm/rev. Feed: 0.2 mm / rev. ,
切削時間: 4 分、 Cutting time: 4 minutes,
の条件でのダイス鋼の焼入れ材の乾式断続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.12mm、0.12mm/rev.)、 Dry intermittent heavy cutting test quenching material at conditions die steel (normal cut and feed, respectively, 0.12mm, 0.12mm / rev.),
[切削条件C1] [Cutting conditions C1]
被削材:JIS・SCr420H(HRC60)の丸棒、 Workpiece: round bar of JIS · SCr420H (HRC60),
切削速度: 230 m/min. Cutting speed: 230 m / min. ,
切り込み: 0.28 mm、 Cut: 0.28 mm,
送り: 0.28 mm/rev. Feed: 0.28 mm / rev. ,
切削時間: 10 分、 Cutting Time: 10 minutes,
の条件でのクロム鋼の焼入れ材の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.2mm、0.16mm/rev.)、 Dry continuous heavy cutting test quenching material chrome steel was performed under the following conditions (normal cut and feed, respectively, 0.2mm, 0.16mm / rev.),
[切削条件C2] [Cutting conditions C2]
被削材:JIS・SUJ2の焼入れ材(HRC60)の丸棒、 Workpiece: round bar of hardened material of JIS · SUJ2 (HRC60),
切削速度: 180 m/min. Cutting speed: 180 m / min. ,
切り込み: 0.28 mm、 Cut: 0.28 mm,
送り: 0.25 mm/rev. Feed: 0.25 mm / rev. ,
切削時間: 8 分、 Cutting time: 8 minutes,
の条件での軸受鋼の焼入れ材の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.18mm、0.14mm/rev.)、 Dry continuous heavy cutting test quenching material in conditions bearing steel (normal cut and feed, respectively, 0.18mm, 0.14mm / rev.),
[切削条件C3] [Cutting conditions C3]
被削材:JIS・SKD61(HRC61)の丸棒、 Workpiece: JIS · SKD61 round bar (HRC61),
切削速度: 200 m/min. Cutting speed: 200 m / min. ,
切り込み: 0.28 mm、 Cut: 0.28 mm,
送り: 0.30 mm/rev. Feed: 0.30 mm / rev. ,
切削時間: 8 分、 Cutting time: 8 minutes,
の条件でのダイス鋼の焼入れ材の乾式連続重切削加工試験(通常の切り込み及び送りは、それぞれ、0.15mm、0.16mm/rev.)、 Dry continuous heavy cutting test of die steel hardened material at conditions (normal cut and feed, respectively, 0.15mm, 0.16mm / rev.),
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅(mm)を測定した。 It was carried out to determine the cutting edge flank wear width (mm) at any cutting test. この測定結果を表9に示した。 The measurement results are shown in Table 9.

表5、9に示される結果から、本発明被覆インサート1〜16、21〜30は、いずれも硬質被覆層がすぐれた耐欠損性を備えているので、重切削加工に用いられた場合であっても硬質被覆層に欠損の発生はなく、長期に亘って、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が従来(Al,Cr)N層からなる従来被覆インサート1〜16、21〜30は、硬質被覆層に欠損が発生し、短時間で使用寿命に至ることが明らかである。 From the results shown in Table 5 and 9, the present invention coated inserts 1~16,21~30 Since both and a fracture resistance of the hard coating layer has excellent, there when used in heavy cutting work no occurrence of defects in the hard coating layer even, a long time, and with respect to exhibit excellent wear resistance, the conventional coated inserts hard layer is made of conventional (Al, Cr) N layer 1-16 , 21-30 is defective in hard layer is produced, it is apparent that lead to a short time use life.

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr 32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8 As the raw material powder having an average particle diameter coarse WC powder in with 5.5 [mu] m, the 0.8μm of fine WC powder, TaC powder of the 1.3 .mu.m, the 1.2 [mu] m of NbC powder, the same 1.2 [mu] m ZrC powder, Cr 3 C 2 powder in the same 2.3 .mu.m, VC powder of the same 1.5 [mu] m, [in mass ratio, 50/50] (Ti, W) C in the 1.0μm powder, and the 1.8μm of Co powder was prepared, by blending these starting material powders in the blend composition being respectively shown in table 10, in addition to wax and mixed for 24 hours ball milling in acetone, dried under reduced pressure, various pressures of a predetermined shape at a pressure of 100MPa powder was press-molded, one hour these green compacts in a vacuum atmosphere of of 6 Pa, the temperature was raised to a predetermined temperature in the range of 1,370 to 1,470 ° C. at a heating rate of 7 ° C. / min, at this temperature after holding, the sintering under the conditions of furnace cooling, diameter 8 m、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエアの形状をもったエンドミル用超硬基体D1〜D8をそれぞれ製造した。 m, 13 mm, and 26mm to form a three carbide substrate for forming a round rod sintered body, the further three round bar sintered body of said at grinding, in combinations shown in Table 6, cutting edge diameter × length 6 mm × 13 mm, respectively, 10 mm × 22 mm, and the dimensions of 20 mm × 45 mm, as well as any twist angle: 30 degrees carbide substrate D1~ end mill having 4 flute square shape D8 was prepared, respectively.

ついで、これらのエンドミル用超硬基体D1〜D8および試験片を、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1の本発明被覆インサート1〜16における改質(Al,Cr)N層の形成条件と同じ条件で、表11に示される目標組成および目標層厚の改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Then, these carbide substrates D1~D8 and test pieces for end mills, ultrasonic cleaning in acetone, in a dry state, also charged into the vapor deposition apparatus shown in FIG. 2, the present invention of Example 1 reforming the coated inserts 1 to 16 (Al, Cr) under the same conditions as conditions for forming the N layer, deposition target composition and the target layer thickness of the reforming shown in Table 11 (Al, Cr) N layer as a hard coating layer by forming, the present invention surface-coated cemented carbide end mill of the present invention coated tool (hereinafter, the present invention refers to the coating end mill) 1-8 were prepared, respectively.

また、比較の目的で、上記実施例1の従来被覆インサート1〜16における従来(Al,Cr)N層の形成条件と同じ条件で、従来(Al,Cr)N層を硬質被覆層として蒸着形成することにより、同じく表11に示される通りの従来被覆工具としての従来表面被覆超硬合金製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, under the same conditions as the conditions for forming the conventional (Al, Cr) N layer in the conventional coated inserts 1 to 16 of Example 1, vapor deposited conventional (Al, Cr) N layer as a hard coating layer by likewise conventional surface-coated cemented carbide end mill of the conventional coated tool of as shown in Table 11 (hereinafter, conventional coating end mill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、 Next, the present invention coated end mill 8 and of the conventional coating end mill 8,
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、 The present invention coated end mill 3 and the conventional coated end mills 1-3,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · SKD61,
切削速度: 113 m/min. Cutting speed: 113 m / min. ,
溝深さ(切り込み): 2.8 mm、 Groove depth (cut): 2.8 mm,
テーブル送り: 1350 mm/min、 Table feed: 1350 mm / min,
の条件での工具鋼の乾式高速高送り溝切削加工試験(通常の切削速度、送りは、それぞれ、50m/min、150mm/min)、 Dry high-speed high feed groove cutting test tool steel in the conditions (normal cutting speed, feed, respectively, 50m / min, 150mm / min),
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、 The present invention coated end mill 4-6 and the conventional coated end mills 4-6,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS304の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm in JIS · SUS304,
切削速度: 89 m/min. Cutting speed: 89 m / min. ,
溝深さ(切り込み): 5 mm、 Groove depth (cut): 5 mm,
テーブル送り: 950 mm/min、 Table feed: 950 mm / min,
の条件でのステンレス鋼の乾式高速高送り溝切削加工試験(通常の切削速度、送りは、それぞれ、50m/min、300mm/min)、 Dry high-speed high feed groove cutting test stainless steel in the conditions (normal cutting speed, feed, respectively, 50m / min, 300mm / min),
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、 The present invention coated end mill 7, 8 and the conventional coated end mills 7 and 8,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SNCM439の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · SNCM439,
切削速度: 176 m/min. Cutting speed: 176 m / min. ,
溝深さ(切り込み): 10 mm、 Groove depth (cut): 10 mm,
テーブル送り: 950 mm/min、 Table feed: 950 mm / min,
の条件での合金鋼(生材)の乾式高速高送り溝切削加工試験(通常の切削速度、送りは、それぞれ、100m/min、300mm/min)、 Dry high-speed high feed groove cutting test of an alloy steel was performed under the following conditions (green wood) (normal cutting speed, feed, respectively, 100m / min, 300mm / min),
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。 Performed respectively, were measured cutting groove length up to 0.1mm to flank wear width of the peripheral cutting edge of the cutting edge is a measure of service life at any groove cutting test. この測定結果を表11にそれぞれ示した。 The measurement results are shown in Tables 11.

上記の実施例3で製造した直径が8mm(エンドミル用超硬基体D1〜D3)、13mm(エンドミル用超硬基体D4〜D6)、および26mm(エンドミル用超硬基体D7、D8)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(ドリル用超硬基体E1〜E3)、8mm×22mm(ドリル用超硬基体E4〜E6)、および16mm×45mm(ドリル用超硬基体E7、E8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもったドリル用超硬基体E1〜E8をそれぞれ製造した。 Diameter prepared in Example 3 above is 8 mm (carbide substrates D1~D3 end mill), 13 mm (carbide substrates D4~D6 end mill), and 26 mm 3 kinds of (end mill for carbide substrate D7, D8) using round bar sintered body, from the three round bar sintered at grinding, respectively in diameter × length of the groove forming portion 4 mm × 13 mm (carbide substrates drill E1 to E3), 8 mm × 22mm dimensions (carbide substrate E4~E6 drill), and 16 mm × 45 mm (drill carbide substrate E7, E8), as well as any twist angle: 30 degrees drill carbide substrate having two blades shape E1~E8 was prepared, respectively.

ついで、これらのドリル用超硬基体E1〜E8の切刃に、ホーニングを施し、上記の試験片と共に、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される蒸着装置に装入し、上記実施例1の本発明被覆インサート1〜16における改質(Al,Cr)N層の形成条件と同じ条件で、かつ表12に示される目標組成および目標層厚の改質(Al,Cr)N層を硬質被覆層として蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Then, these cutting edges of the drill carbide substrate E1 to E8, subjected to honing, with the above test pieces were ultrasonically cleaned in acetone, in a dry state, also instrumentation deposition apparatus shown in FIG. 2 Type, modification in the present invention coated inserts 1 to 16 of example 1 (Al, Cr) under the same conditions as conditions for forming the N layer, and a target composition and the target layer thickness of the reforming shown in Table 12 (Al , by depositing form Cr) N layer as a hard coating layer, the present invention surface-coated cemented carbide drills of the present invention coated tool (hereinafter, the present invention refers to the coating drills) 1-8 were prepared, respectively.

また、比較の目的で、上記実施例1の従来被覆インサート1〜16における従来(Al,Cr)N層の形成条件と同じ条件で、従来(Al,Cr)N層を硬質被覆層として蒸着形成することにより、表12に示される通りの従来被覆工具としての従来表面被覆超硬合金製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。 For the purpose of comparison, under the same conditions as the conditions for forming the conventional (Al, Cr) N layer in the conventional coated inserts 1 to 16 of Example 1, vapor deposited conventional (Al, Cr) N layer as a hard coating layer by conventional surface-coated cemented carbide drills of the conventional coated tool of as shown in Table 12 (hereinafter, conventional coating drill called) was 1-8 were prepared, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、 Then, among the present invention cover the drill 1-8 and the conventional coated drill 1-8, the present invention cover the drill 1-3 and the conventional coated drill 1-3,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · SKD61,
切削速度: 80 m/min. Cutting speed: 80 m / min. ,
送り: 0.26 mm/rev、 Feed: 0.26 mm / rev,
穴深さ: 10 mm Hole depth: 10 mm
の条件での工具鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、40m/min、0.12mm/rev.)、 Wet high-speed high feed drilling cutting test tool steel in the conditions (normal cutting speed and feed, respectively, 40m / min, 0.12mm / rev.),
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、 The present invention coated drill 4-6 and the conventional coated drill 4-6,
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FCD400の板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: 50mm plate material JIS · FCD400,
切削速度: 120 m/min. Cutting speed: 120 m / min. ,
送り: 0.35 mm/rev、 Feed: 0.35 mm / rev,
穴深さ: 20 mm Hole depth: 20 mm
の条件でのダクタイル鋳鉄の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、70m/min、0.25mm/rev.)、 Wet high-speed high feed drilling cutting test of ductile cast iron in the condition (normal cutting speed and feed, respectively, 70m / min, 0.25mm / rev.),
本発明被覆ドリル7,8および従来被覆ドリル7,8については、 The present invention coated drill 7, 8 and the conventional coated drills 7 and 8
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S50Cの板材、 Workpiece: planar dimensions: 100 mm × 250 mm, thickness: sheet of 50mm in JIS · S50C,
切削速度: 162 m/min. Cutting speed: 162 m / min. ,
送り: 0.58 mm/rev、 Feed: 0.58 mm / rev,
穴深さ: 0.50 mm Hole depth: 0.50 mm
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、65m/min、0.30mm/rev.)、 Wet high-speed high feed drilling cutting test carbon steel under the condition of (normal cutting speed and feed, respectively, 65m / min, 0.30mm / rev.),
をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。 It was carried out, respectively, flank wear width of the end cutting surfaces either wet drilling cutting test (water-soluble cutting oil used) was measured drilling number of up to 0.3 mm. この測定結果を表12に示した。 The measurement results are shown in Table 12.

この結果得られた本発明被覆工具としての本発明被覆インサート1〜16、21〜30、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の改質(Al,Cr)N層、並びに従来被覆工具としての従来被覆インサート1〜16、21〜30、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の従来(Al,Cr)N層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 The resulting invention The present invention coated inserts as coated tools 1~16,21~30, the present invention coated end mills 1-8, and the present invention reforming of coating the drill 1-8 (Al, Cr) N layer, and conventional coated inserts 1~16,21~30 as a conventional coated tools, conventional coating end mills 1-8, and the composition of the prior art (Al, Cr) N layer of the conventional coated drill 1-8 using Auger spectrometer It was measured and showed substantially the same composition as the target composition, respectively.
また、これらの本発明被覆工具および従来被覆工具の改質(Al,Cr)N層および従来(Al,Cr)N層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, modification (Al, Cr) of the present invention coated tools and conventional coated tools N layer and a conventional (Al, Cr) the thickness of the N layer, was cross-sectional measured using a scanning electron microscope, both shows the target value substantially the same average layer thickness (average of five points measurement).

さらに、上記の本発明被覆工具の改質(Al,Cr)N層と従来被覆工具の従来(Al,Cr)N層について、上記の両(Al,Cr)N層の表面を研磨面とした状態で、電子線後方散乱回折装置(EBSD)を用いて個々の結晶粒の結晶方位を解析した(すなわち、30×50μmの領域を、0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフを作成し、また、同様に、表面研磨面の法線と直交する任意の方向に対する前記(a)の改質(Al,Cr) Further, modification of the invention described above coated tools (Al, Cr) N layer and the conventional prior art coated tools (Al, Cr) for N layers, and the surface of the both (Al, Cr) N layer and the polishing surface state, and analyzed the crystal orientation of individual crystal grains by using an electron backscatter diffraction apparatus (EBSD) (i.e., an area of ​​30 × 50 [mu] m, at intervals of 0.1 [mu] m / step, law of the surface polishing plane with respect to the line, the inclination angle normal forms of crystal plane is a {100} plane of the crystal grains was measured, based on this measurement result, of the measurement inclination angle, in the range of 0-54 degrees with distinguishing certain measurement inclination angle for each pitch of 0.25 degrees, by aggregating the frequencies present in each segment, creating a tilt angle frequency distribution graph, Similarly, the normal of the surface polishing plane modification of the (a) for any direction perpendicular to the (Al, Cr) 層の結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向となす角度が0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したところ、前記従来(Al,Cr)N層は、表面研磨面の法線に対する結晶粒の結晶方位<100>がなす傾斜角の分布は、法線方向に対して0〜15度の範囲内の傾斜角区分にピークを有することがあったとしても、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は0〜54度の範囲内で不偏的であり特段のピークを示さない(図5)のに対して、前記(a)の改質(Al,Cr)N層の結晶方位<100>の測定傾斜角の分布は、図4に例示される通り、法線方向に対して0〜1 Crystal grains of the inclined angle which the crystal orientation <100> is formed of a layer is measured, among the measurement inclination angle, measured tilt angle of 0.25 degrees angle formed with the normal line direction is within the range of 0-54 degrees of was aggregated frequencies present in classification to the respective divided for each pitch, the conventional (Al, Cr) N layer, the crystal grain relative to the normal of the surface polishing plane of the crystal orientation angle of inclination is <100> distribution, even if it has a peak in the tilt angle sections of the range of 0 to 15 degrees with respect to the normal direction, the crystal orientation with respect to an arbitrary direction orthogonal to the normal of the surface polishing surface of the <100> distribution of the measurement inclination angle shows no special peak was unbiased manner within the 0-54 degrees with respect to (5) of the crystal orientation of the modified (Al, Cr) N layer of the (a) distribution measurement inclination angle of the <100> is 0-1 as against the normal direction, which is illustrated in FIG. 4 5度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、さらに、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角の分布は、ある特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内(最高ピーク傾斜角±7.5度の範囲内)の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し(図4)、改質(Al,Cr)N層は上記のとおり2軸結晶配向性を有するものであった。 Grain area ratio of crystal orientation <100> is present in the tilt angle sections of 5 ° range represents 50% or more the crystal orientation of the crystal grains the total area, further, perpendicular to the normal of the surface polishing plane distribution measurement inclination angle of the crystal orientation <100> with respect to any direction is the highest peak exists in a specific tilt angle indicator, within the range of 15 degrees around the highest peak (the highest peak tilt angle ± 7.5 area ratio of crystal grains existing crystal orientation <100> with the inclination angle segment degrees within the range of) represents 50% or more the crystal orientation of the crystal grains the total area (Fig. 4), modification (Al, Cr) N layer had a biaxial crystal orientation as described above.

図4に、本発明被覆工具3の改質(Al,Cr)N層の表面研磨面の法線方向に対する結晶方位<100>の測定傾斜角分布と、表面研磨面の法線と直交する方向に対する結晶方位<100>の測定傾斜角分布を示す。 4, a direction perpendicular to the measurement inclination angle distribution of the modification of the present invention coated tool 3 (Al, Cr) crystal orientation with respect to the normal direction of the surface polishing surface of the N layer <100>, the normal of the surface polishing plane It shows the measurement inclination angle distribution of the crystal orientation <100> with respect.
また、図5には、従来被覆工具2の従来(Al,Cr)N層の表面研磨面の法線方向に対する結晶方位<100>の測定傾斜角分布と、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定傾斜角分布を示す。 Further, in FIG. 5, orthogonal conventional (Al, Cr) of the conventional coated tool 2 and measuring the inclination angle distribution of the crystal orientation with respect to the normal direction of the surface polishing surface of the N layer <100>, the normal of the surface polishing plane shows the measurement inclination angle distribution of the crystal orientation <100> with respect to any direction.
上記図4と図5との比較からも明らかなように、改質(Al,Cr)N層では2軸結晶配向性を示すのに対して、従来(Al,Cr)N層では、表面研磨面の法線と直交する任意の方向に対する結晶方位<100>の測定において、特段ピークを示す測定傾斜角がないことから2軸配向していない結晶組織を有していることが明らかである。 As is apparent from comparison between FIG. 4 and FIG. 5, modified (Al, Cr) relative to indicate biaxial crystal orientation is N layer, in the conventional (Al, Cr) N layer, surface polishing in the measurement of arbitrary crystal orientation with respect to the direction <100> perpendicular to the surface normal, it is apparent that has a crystal structure that is not biaxially oriented since it is not measuring the inclination angle indicating the particular peak.

表3、4、7、8、11、12に示される結果から、本発明被覆工具は、いずれも硬質被覆層を構成する改質(Al,Cr)N層が2軸結晶配向性を示し、これによりすぐれた耐欠損性を具備するようになることから、上記各種の重切削加工試験で、すぐれた耐摩耗性を示すのに対して、従来被覆工具においては、硬質被覆層が2軸結晶配向性を有さず、その結果として耐欠損性の向上が見られないことから、高切り込み、高送りなど大きな機械的負荷がかかる重切削加工では、比較的短時間で欠損を発生し使用寿命に至ることが明らかである。 From the results shown in Table 3,4,7,8,11,12, the present invention coated tool are both reforming constituting the hard layer (Al, Cr) N layer is shown a biaxial crystal orientation, since so including the same by excellent chipping resistance, heavy cutting test described above various whereas exhibit excellent wear resistance, in the conventional coated tools, hard layer is biaxial crystal no orientation, resulting from the fact that not observed improvement in chipping resistance as, cut high, in a large mechanical load is imposed heavy cutting and high feed, a relatively short time a defect occurs service life it is clear that lead to.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの連続切削や断続切削ですぐれ工具特性を示すのは勿論のことであり、さらに、高切り込み、高送りなど切刃に大きな機械的負荷がかかる重切削加工条件であっても、改質(Al,Cr)N層からなる硬質被覆層がすぐれた耐欠損性を備えるため、長期に亘ってすぐれた切削性能を発揮し、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化の要求に十分満足に対応できるものである。 As mentioned above, coated tool of the present invention, show the tool characteristics excellent in continuous cutting or interrupted cutting of various steels or cast iron it is of course possible, furthermore, high cut, a large machine cutting and high feed load even with such a heavy cutting conditions, since with a modification (Al, Cr) fracture resistance of the hard coating layer has excellent consisting of N layers, exhibit excellent cutting performance over a long period of time, cutting FA of processing equipment, as well as labor saving and energy saving of the cutting, but can respond to satisfactory further demand for cost reduction.

硬質被覆層を構成する各種(Al,Cr)N層における結晶粒の結晶面である{100}面の法線が表面研磨面の法線に対する傾斜角の測定範囲を示す概略説明図である。 Various composing the hard coating layer (Al, Cr) normal of a crystal plane of the crystal grains in the N layer {100} plane is a schematic diagram illustrating a measurement range of the inclination angle relative to the normal of the surface polishing plane. 本発明被覆工具の硬質被覆層を構成する2軸結晶配向性を有する改質(Al,Cr)N層の蒸着形成に用いたプラズマを利用したイオンプレーティング装置の概略説明図である。 Is a schematic illustration of a modification (Al, Cr) ion plating apparatus using plasma used for deposition formation of N layers having a biaxial crystal orientation constituting the hard layer of the present invention coated tools. 従来被覆工具の硬質被覆層を構成する従来(Al,Cr)N層の蒸着形成に用いたアークイオンプレーティング(AIP)装置の概略説明図である。 Is a schematic illustration of a conventional coating prior constituting the hard layer of the tool (Al, Cr) arc ion plating using the vapor deposition formation of the N layer (AIP) apparatus. 本発明被覆インサート3の硬質被覆層を構成する改質(Al,Cr)N層をEBSDで測定し、表面研磨面の法線方向に対する結晶粒の結晶方位<100>がなす測定傾斜角と、表面研磨面の法線方向と直交する任意の方向に対して0〜54度の範囲内にある結晶粒の結晶方位<100>がなす測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した傾斜角度数分布グラフである。 Reforming (Al, Cr) composing the hard coating layer of the present invention coated inserts 3 N layer were measured by EBSD, the measurement inclination angle formed by the crystal grains of the crystal orientation <100> with respect to the normal direction of the surface polishing plane, by dividing the crystal grains measured tilt angle crystal orientation <100> is formed in the range of 0-54 degrees with respect to an arbitrary direction orthogonal to the normal direction of the surface polishing plane for each pitch of 0.25 degrees the inclination angle frequency distribution graph obtained by aggregating the frequencies present in each segment. 従来被覆インサート2の硬質被覆層を構成する従来(Al,Cr)N層をEBSDで測定し、表面研磨面の法線方向に対する結晶粒の結晶方位<100>がなす測定傾斜角と、表面研磨面の法線方向と直交する任意の方向に対して0〜54度の範囲内にある結晶粒の結晶方位<100>がなす測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計した傾斜角度数分布グラフである。 Conventional (Al, Cr) composing the hard coating layer of the conventional coated inserts 2 N layer were measured by EBSD, the measurement inclination angle formed by the crystal orientation <100> of the crystal grain relative to the normal direction of the surface polishing plane, surface polishing each section by dividing the crystal grains measured tilt angle crystal orientation <100> is formed in the range of 0-54 degrees with respect to an arbitrary direction orthogonal to the normal direction of the surface for each pitch of 0.25 degrees the inclination angle frequency distribution graph obtained by aggregating the frequencies that exist within.

Claims (1)

  1. 超硬合金、サーメットあるいは立方晶窒化ほう素基超高圧焼結体からなる切削工具基体の表面に、 Cemented carbide, the surface of the cutting tool substrate made of cermet or cubic boron nitride containing group ultrahigh pressure sintered body,
    組成式:(Al 1−X Cr )N(ただし、原子比で、Xは0.30〜0.60) Composition formula: (Al 1-X Cr X ) N ( provided that an atomic ratio, X is 0.30 to 0.60)
    を満足し、平均層厚1〜10μmのAlとCrの複合窒化物層を蒸着形成した表面被覆切削工具において、 In the surface-coated cutting tool satisfied, it was deposited forming a composite nitride layer having an average layer thickness 1~10μm of Al and Cr, and
    上記AlとCrの複合窒化物層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析した場合、 The composite nitride layer of the Al and Cr, when analyzed the crystal orientation of individual crystal grains by using an electron backscatter diffraction apparatus,
    (a)表面研磨面の法線方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、 (A) measuring the inclination angle of the crystal orientation <100> forms of the crystal grain relative to the normal direction of the surface polishing plane, of the measuring tilt angle, is in the range of 0-54 degrees with respect to the normal direction measurements when aggregated frequencies existing in the tilt angle of the division to the respective divided for each pitch of 0.25 degrees, the crystal grains of the presence of the crystal orientation <100> with the inclination angle segment within the range of 0 to 15 degrees area ratio indicates 50% or more the crystal orientation of the crystal grains the total area,
    (b)前記表面研磨面の法線と直交する任意の方向に対する前記結晶粒の結晶方位<100>がなす傾斜角を測定し、前記測定傾斜角のうち、法線方向に対して0〜54度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、特定傾斜角区分に最高ピークが存在し、その最高ピークを中心とした15度の範囲内の傾斜角区分に結晶方位<100>が存在する結晶粒の面積割合が結晶粒全面積の50%以上である結晶配向を示し、 (B) the inclination angle which the crystal grains of the crystal orientation <100> forms for any direction perpendicular to the normal of the surface polishing plane is measured, among the measurement inclination angle, 0-54 with respect to the normal direction when aggregating the frequencies present the measurement inclination angle is within the range of time in each by dividing divided for each pitch of 0.25 degrees, there is the highest peak in a specific tilt angle segment, and around the highest peak area ratio of crystal grains the crystal orientation in tilt angle indicator <100> exists in a range of 15 degrees that represents 50% or more the crystal orientation of the crystal grains the total area,
    上記(a)、(b)の2軸結晶配向性を示すAlとCrの複合窒化物層からなる硬質被覆層を蒸着形成したことを特徴とする重切削加工で硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具。 Above (a), chipping of the hard coating layer has excellent heavy cutting, characterized in that depositing form a hard coating layer made of a composite nitride layer of Al and Cr showing the biaxial crystal orientation of (b) surface-coated cutting tool exhibits sex.
JP2007027395A 2007-02-06 2007-02-06 Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent Active JP5036338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007027395A JP5036338B2 (en) 2007-02-06 2007-02-06 Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027395A JP5036338B2 (en) 2007-02-06 2007-02-06 Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent

Publications (2)

Publication Number Publication Date
JP2008188734A true true JP2008188734A (en) 2008-08-21
JP5036338B2 JP5036338B2 (en) 2012-09-26

Family

ID=39749327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027395A Active JP5036338B2 (en) 2007-02-06 2007-02-06 Surface-coated cutting tool exhibits chipping resistance of the hard coating layer has excellent

Country Status (1)

Country Link
JP (1) JP5036338B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056541A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer achieving excellent chipping resistance
JP2010094764A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance and wear resistance
JP2010094761A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP2010207921A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
JP2011194535A (en) * 2010-03-23 2011-10-06 Mitsubishi Materials Corp Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2011218542A (en) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2011224767A (en) * 2010-03-29 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
WO2015147160A1 (en) * 2014-03-26 2015-10-01 三菱マテリアル株式会社 Surface-coated cutting tool and production method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337989A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated high-speed steel tool
JP2006326729A (en) * 2005-05-25 2006-12-07 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent high-temperature strength

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337989A (en) * 2003-05-13 2004-12-02 Hitachi Tool Engineering Ltd Coated high-speed steel tool
JP2006326729A (en) * 2005-05-25 2006-12-07 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent high-temperature strength

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009056541A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer achieving excellent chipping resistance
JP2010094764A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance and wear resistance
JP2010094761A (en) * 2008-10-15 2010-04-30 Mitsubishi Materials Corp Surface-coated cutting tool provided with hard coated layer demonstrating superior chipping resistance
JP2010207921A (en) * 2009-03-06 2010-09-24 Mitsubishi Materials Corp Surface coated cutting tool exhibiting excellent chip dischargeability
JP2011194535A (en) * 2010-03-23 2011-10-06 Mitsubishi Materials Corp Surface-coat cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2011218542A (en) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2011224767A (en) * 2010-03-29 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
WO2015147160A1 (en) * 2014-03-26 2015-10-01 三菱マテリアル株式会社 Surface-coated cutting tool and production method therefor
CN106132602A (en) * 2014-03-26 2016-11-16 三菱综合材料株式会社 Surface-coated cutting tool and production method therefor

Also Published As

Publication number Publication date Type
JP5036338B2 (en) 2012-09-26 grant

Similar Documents

Publication Publication Date Title
JP2004050381A (en) Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP2011224715A (en) Surface-coated cutting tool with hard coating layer for exhibiting excellent abrasion resistance
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
CN101077645A (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP2006021257A (en) Surface-coated cemented carbide cutting tool having lubrication-coated layer exhibiting superior abrasion resistance
JP2006326729A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent high-temperature strength
JP2005230926A (en) Surface-coated cermet-made cutting tool with hard coating layer exerting excellent chipping resistance under high-speed deep cutting condition
JP2007203447A (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance in high-speed intermittent cutting work
JP2011218542A (en) Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP2007167988A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting chipping resistance in high-speed cutting material hard to cut
JP2006346777A (en) Surface coated cemented carbide cutting tool having lubricative coating layer exhibiting excellent wear resistance
JP2011152627A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP2006181654A (en) Surface coated cubic boron nitride-base sintered material-made cutting tool having hard coating layer exhibiting excellent chipping resistance in intermittent heavy cutting for high-hardness steel
JP2013248675A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP2006198731A (en) Cutting tool made of surface coated cermet with hard coating layer displaying excellent chipping resistance in high speed cutting
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP2011104737A (en) Surface coated cutting tool
JP2008100320A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2006289538A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2003145313A (en) Cutting tool of surface-coated cemented carbide with hard coat layer achieving excellent abrasion-resistance in high speed cutting
JP2011156637A (en) Surface-coated cutting tool having hard coated layer that exhibits excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111031

A521 Written amendment

Effective date: 20111226

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120216

Free format text: JAPANESE INTERMEDIATE CODE: A02

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3