JP2007030130A - Gear cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent wear resistance in high-speed cutting gear cutting of alloy steel - Google Patents

Gear cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent wear resistance in high-speed cutting gear cutting of alloy steel Download PDF

Info

Publication number
JP2007030130A
JP2007030130A JP2005220178A JP2005220178A JP2007030130A JP 2007030130 A JP2007030130 A JP 2007030130A JP 2005220178 A JP2005220178 A JP 2005220178A JP 2005220178 A JP2005220178 A JP 2005220178A JP 2007030130 A JP2007030130 A JP 2007030130A
Authority
JP
Japan
Prior art keywords
layer
gear cutting
cutting tool
cemented carbide
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005220178A
Other languages
Japanese (ja)
Other versions
JP4720989B2 (en
Inventor
Yukio Aoki
幸生 青木
Tsutomu Ogami
強 大上
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005220178A priority Critical patent/JP4720989B2/en
Publication of JP2007030130A publication Critical patent/JP2007030130A/en
Application granted granted Critical
Publication of JP4720989B2 publication Critical patent/JP4720989B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent wear resistance in high-speed gear cutting of alloy steel. <P>SOLUTION: In the gear cutting tool made of surface coated cemented carbide, a hard coated layer including an upper layer and a lower layer is formed on the surface of a tungsten carbide-base cemented carbide-made gear cutting tool base body by deposition, wherein (a) the upper layer and the lower layer are both formed of (Ti, Al, B)N, the upper layer has an average layer thickness ranging from 0.5 to 1.5 μm and the lower layer has an average layer thickness ranging from 2 to 6 μm, (b) the upper layer has an alternately stacking layer structure of a thin layer A and a thin layer B respectively having an average layer thickness of 5 to 20 nm per layer, the thin layer A is formed of (Ti, Al, B)N layer satisfying a composition formula [Ti<SB>1-(E+F</SB>)Al<SB>E</SB>B<SB>F</SB>]N, the thin layer B is formed of (Ti, Al, B)N layer satisfying a composition formula: [Ti<SB>1-(M+N)</SB>Al<SB>M</SB>B<SB>N</SB>]N, and (c) the lower layer is formed of (Ti, Al, B) N layer having a single phase structure and satisfying a composition formula [Ti<SB>1-(X+Y)</SB>Al<SB>X</SB>B<SB>Y</SB>]N. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、硬質被覆層がすぐれた熱伝導性を有し、さらに高温硬さおよび高温強度も具備し、したがって特に合金鋼などの高い発熱を伴なう高速歯切加工に用いた場合にも、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆超硬合金製歯切工具(以下、被覆超硬歯切工具という)に関するものである。   This invention also has a high thermal conductivity as well as high-temperature hardness and high-temperature strength, so that the hard coating layer is particularly suitable for high-speed gear cutting with high heat generation such as alloy steel. The present invention relates to a surface-coated cemented carbide gear cutting tool (hereinafter referred to as a coated carbide gear cutting tool) that exhibits excellent wear resistance over a long period of time.

従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられ、これら歯車の歯形の歯切加工に被覆超硬歯切工具(ソリッドホブ)が用いられている。

また、被覆超硬歯切工具としては、例えば図3に概略斜視図で示される通り、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状に機械加工された炭化タングステン基超硬合金製歯切工具本体(以下、超硬歯切基体という)の表面に、各種の硬質被覆層を物理蒸着してなる被覆超硬歯切工具が知られている。
Conventionally, various gears are generally used as structural members for automobiles, aircrafts, and various drive devices, and coated carbide gear cutting tools (solid hobs) are used for gear cutting of gear teeth.

Further, as the coated carbide gear cutting tool, for example, as shown in a schematic perspective view in FIG. 3, a plurality of tooth grooves are formed radially with respect to the rotation axis and along the length direction. Between the front and rear surfaces that face the tooth gap and the front surface is a rake face with respect to the rotation direction, and the tooth is composed of a top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) that are flank surfaces Various hard parts are formed on the surface of a tungsten carbide based cemented carbide cutting tool body (hereinafter referred to as a carbide cutting base) machined into a shape in which a plurality of parts are continuously formed along the length direction. A coated carbide gear cutting tool formed by physical vapor deposition of a coating layer is known.

一方、通常のスローアウエイチップやエンドミル、さらにドリルなどの表面被覆超硬合金製切削工具の硬質被覆層としては、例えば、

組成式:[Ti1-(X+Y) AlX ]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)、

を満足するTiとAlとB(ボロン)の複合窒化物[以下、(Ti,Al,B)Nで示す]層からなる硬質被覆層を2〜8μmの層厚で蒸着形成することが知られており、さらに、上記硬質被覆層を構成する(Ti,Al,B)N層が、構成成分であるAlによって高温硬さ、同Tiによって高温強度、同Bによって熱伝導性を具備し、特に前記B成分により抜熱効果が発揮されることから、切削時に発熱を伴う合金鋼の切削加工に用いた場合にも、すぐれた耐摩耗性を示すことも知られている。
On the other hand, as a hard coating layer of a cutting tool made of a surface-coated cemented carbide such as a normal throwaway tip, end mill, and drill, for example,

Formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is .50 to 0.60, Y represents a 0.01-0.10)

It is known that a hard coating layer composed of a composite nitride of Ti, Al, and B (boron) satisfying the following conditions (hereinafter referred to as (Ti, Al, B) N) is deposited with a layer thickness of 2 to 8 μm. Further, the (Ti, Al, B) N layer constituting the hard coating layer has high temperature hardness by Al as a constituent component, high temperature strength by Ti, and thermal conductivity by B, Since the heat removal effect is exhibited by the B component, it is also known to exhibit excellent wear resistance even when used for cutting alloy steel that generates heat during cutting.

さらに、上記の硬質被覆層を備えた被覆超硬歯切工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬歯切基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−B合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体には、例えば−100Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Ti,Al,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2793696号明細書
Furthermore, the above-mentioned coated carbide cutting tool provided with the above-mentioned hard coating layer is obtained by, for example, applying the above-mentioned carbide cutting base to an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. For example, between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al—B alloy having a predetermined composition is set in a state where the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater. Arc discharge was generated under the condition of current: 90 A, and simultaneously nitrogen gas was introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, a bias voltage of, for example, −100 V was applied to the substrate. It is also known that it is produced by vapor-depositing a hard coating layer comprising the (Ti, Al, B) N layer on the surface of the substrate.
Japanese Patent No. 2793696

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記従来の被覆超硬歯切工具においては、これを通常の歯切加工条件で用いた場合には問題はないが、これを高熱発生を伴う合金鋼等の高速歯切加工条件で用いた場合には、特に硬質被覆層の具備する熱伝導性(抜熱効果)が十分でないため、切刃部に偏摩耗の原因となる熱塑性変形が発生し、摩耗進行が促進され、このため比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. In the coated carbide gear cutting tool, there is no problem when this is used under normal gear cutting conditions, but when this is used under high speed gear cutting conditions such as alloy steel with high heat generation, In particular, since the thermal conductivity (heat extraction effect) of the hard coating layer is not sufficient, the cutting edge is subject to thermoplastic deformation that causes uneven wear, and the wear progress is promoted. The current situation is that it reaches the end of its life.

そこで、本発明者等は、上述のような観点から、特に合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬歯切工具を開発すべく、上記従来の被覆超硬歯切工具の硬質被覆層を構成する(Ti,Al,B)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,B)N層において、B成分の含有割合を多くすれば熱伝導性が向上するが、上記の従来(Ti,Al,B)N層における1〜10原子%程度のB含有割合では、合金鋼の高速歯切加工で要求される高い熱伝導性を確保することができず、これらの要求に満足に対応させるためには前記1〜10原子%をはるかに越えた15〜35原子%のB含有が必要であり、一方15〜35原子%のB成分を含有した(Ti,Al,B)N層を硬質被覆層として実用に供するには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合は著しく低い状態となるのが避けられず、この結果高温硬さのきわめて低いものとなること。
In view of the above, the present inventors have developed the above-described conventional cemented carbide cutting tool that exhibits excellent wear resistance with a hard coating layer particularly in high-speed gear cutting of alloy steel. As a result of conducting research by focusing on the (Ti, Al, B) N layer that constitutes the hard coating layer of the coated carbide gear cutting tool,
(A) In the (Ti, Al, B) N layer constituting the hard coating layer, the thermal conductivity is improved by increasing the content ratio of the B component, but in the conventional (Ti, Al, B) N layer described above. When the B content is about 1 to 10 atomic%, the high thermal conductivity required for high-speed gear cutting of alloy steel cannot be ensured. In order to satisfy these requirements satisfactorily, It is necessary to contain 15 to 35 atomic% of B, far exceeding atomic%, while a (Ti, Al, B) N layer containing 15 to 35 atomic% of B component is put to practical use as a hard coating layer. It is necessary to ensure a predetermined high-temperature strength by containing a predetermined amount of Ti. In this case, however, it is inevitable that the content ratio of the Al component is extremely low, and as a result, the high-temperature hardness is extremely low. To be.


(b)組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.01〜0.10、Fは0.15〜0.35を示す)を満足する、B含有割合が15〜35原子%の(Ti,Al,B)N層と、
組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.25〜0.40、Nは0.01〜0.10を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,B)N層、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の(Ti,Al,B)N層は、上記薄層の交互積層構造によって、上記の高B含有の(Ti,Al,B)N層(以下、薄層Aという)のもつすぐれた熱伝導性と、前記薄層Aに比してB含有割合が低く、かつ相対的にAl含有割合が高い(Ti,Al,B)N層(以下、薄層Bという)のもつ所定の相対的に高い高温硬さを具備するようになること。

(B) the composition formula: [Ti 1- (E + F ) Al E B F] N ( provided that an atomic ratio, E is 0.01 to 0.10, F denotes the 0.15-0.35) satisfies A (Ti, Al, B) N layer having a B content of 15 to 35 atomic%;
Formula: [Ti 1- (M + N ) Al M B N] N ( provided that an atomic ratio, M is 0.25 to 0.40, N denotes the 0.01-0.10) satisfies, relative (Ti, Al, B) N layer with an increased content of Al component,
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers), and the resulting (Ti, Al, B) N layer is formed by the laminated structure of the thin layers. The excellent thermal conductivity of the (Ti, Al, B) N layer (hereinafter referred to as the thin layer A) having a high B content, the B content ratio being lower than that of the thin layer A, and relative And (Ti, Al, B) N layer (hereinafter referred to as thin layer B) having a high Al content ratio has a predetermined relatively high high temperature hardness.

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,B)N層は、合金鋼の高速歯切加工で要求されるすぐれた熱伝導性と所定の高温硬さを具備するものの、十分満足な高温硬さを有するものでないので、これを硬質被覆層の上部層として設け、一方同下部層として、熱伝導性は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さを具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,B)N層、すなわち、
組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足する、単一相構造の(Ti,Al,B)N層、
を設けた構造にすると、この結果の硬質被覆層は、すぐれた熱伝導性に加えて、高温硬さと高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬歯切工具は、高熱発生を伴う合金鋼の高速歯切加工でも、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, B) N layer having the alternately laminated structure of the thin layer A and the thin layer B of (b) above has excellent thermal conductivity required for high-speed gear cutting of alloy steel and a predetermined value. However, since it does not have a sufficiently satisfactory high temperature hardness, it is provided as the upper layer of the hard coating layer, while the lower layer has insufficient thermal conductivity, but relative (Ti, Al, B) N layer having a composition corresponding to the above conventional hard coating layer having a high Al component content and excellent high-temperature hardness,
Formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is .50 to 0.60, Y represents a 0.01-0.10) satisfies the single (Ti, Al, B) N layer of single phase structure,
With this structure, the resulting hard coating layer has high-temperature hardness and high-temperature strength in addition to excellent thermal conductivity. The gear cutting tool should exhibit excellent wear resistance over a long period of time without chipping even in high-speed gear cutting of alloy steel with high heat generation.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状を有する炭化タングステン基超硬合金製歯切工具基体の表面に、
(a)いずれも(Ti,Al,B)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚が5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、

上記薄層Aは、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Aは0.01〜0.10、Fは0.15〜0.35を示す)を満足する(Ti,Al,B)N層、
上記薄層Bは、
組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.25〜0.40、Nは0.01〜0.10を示す)を満足する(Ti,Al,B)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足する(Ti,Al,B)N層、
からなる硬質被覆層を蒸着形成してなる、合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬歯切工具(表面被覆超硬合金製歯切工具)に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of tooth spaces are formed radially and along the length direction with respect to the rotation axis. The tooth part that consists of the front and rear faces that face the groove and the front face is a rake face with respect to the rotation direction, and the top face (tooth tip tooth face) and both side faces (left and right tooth faces) that are flank faces On the surface of the tungsten carbide based cemented carbide cutting tool base having a shape formed continuously along the direction,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, B) N, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternate layered structure of thin layers A and thin layers B each having an average layer thickness of 5 to 20 nm (nanometer),

The thin layer A is
Composition formula: [Ti 1− (E + F) Al E B F ] N (wherein A represents 0.01 to 0.10 and F represents 0.15 to 0.35 in terms of atomic ratio) (Ti , Al, B) N layer,
The thin layer B is
Composition formula: [Ti 1− (M + N) Al M B N ] N (wherein M is 0.25 to 0.40 and N is 0.01 to 0.10 in atomic ratio) (Ti , Al, B) N layer,
(C) the lower layer has a single phase structure;
Formula: [Ti 1- (X + Y ) Al X B Y] N ( provided that an atomic ratio, X is .50 to 0.60, Y represents a 0.01-0.10) satisfying (Ti , Al, B) N layer,
For the coated carbide cutting tool (surface coated cemented carbide cutting tool) that exhibits excellent wear resistance in high-speed gear cutting of alloy steel, formed by vapor-depositing a hard coating layer consisting of It has characteristics.

つぎに、この発明の被覆超硬歯切工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,B)N層におけるAl成分には高温硬さを向上させ、一方同Ti成分には高温強度、さらに同B成分には熱伝導性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さを具備せしめるが、Alの含有割合を示すX値がTiとBとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、合金鋼の高速歯切加工で要求されるすぐれた高温硬さを確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.60を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、X値を0.50〜0.60と定めた。
また、Bの割合を示すY値がTiとAlの合量に占める割合で、0.01未満では、所定の熱伝導性を確保することができず、一方同Y値が0.10を超えると、所定の高温強度確保が困難になることから、Y値を0.01〜0.10と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, regarding the hard coating layer of the coated carbide gear cutting tool of the present invention, the reason why the numerical values are limited as described above will be described.
(A) Composition formula and layer thickness of lower layer As described above, the Al component in the (Ti, Al, B) N layer constituting the hard coating layer improves the high temperature hardness, while the Ti component has a high temperature strength. Furthermore, the B component has the effect of improving the thermal conductivity, and the lower layer has a relatively high Al component content to provide a high high temperature hardness, but the X value indicating the Al content rate. Is less than 0.50 in the total amount of Ti and B (atomic ratio, the same shall apply hereinafter), the ratio of Ti is relatively high, and the excellent high temperature required for high-speed gear cutting of alloy steel Hardness cannot be secured, and the progress of wear is accelerated rapidly. On the other hand, when the X value indicating the Al ratio exceeds 0.60, the Ti ratio is relatively decreased, High-temperature strength drops rapidly, resulting in chipping (slight chipping). Since it becomes easy, X value was defined as 0.50-0.60.
Further, the Y value indicating the ratio of B is the ratio of the total amount of Ti and Al, and if it is less than 0.01, the predetermined thermal conductivity cannot be ensured, while the Y value exceeds 0.10. Then, since it becomes difficult to ensure the predetermined high-temperature strength, the Y value is set to 0.01 to 0.10.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 6 μm, chipping occurs. The layer thickness was determined to be 2 to 6 μm because it easily occurs.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,B)NにおけるB成分は、上記の通り相対的に含有割合を高くして、熱伝導性を向上させ、もって高熱発生を伴う合金鋼の高速歯切加工ですぐれた抜熱効果を発揮させ、熱塑性変形の発生を防止する作用があるが、その含有割合を示すF値がTiとAlの合量に占める割合で、0.15未満では前記作用に所望のすぐれた効果を確保することができず、一方同F値が0.35を越えると、隣接して高温強度のすぐれた薄層Bが存在しても、上部層の高温強度低下は避けられず、チッピング発生の原因となることから、F値を0.15〜0.35と定めた。
また、Alの割合を示すE値がTiとBの合量に占める割合で、0.01未満では、最低限の高温硬さを確保することができず、摩耗促進の原因となり、一方同E値が0.10を超えると、高温強度が低下し、チッピング発生の原因となることから、E値を0.01〜0.10と定めた。
(B) Composition formula of upper layer thin layer A The B component in (Ti, Al, B) N of the upper layer thin layer A is relatively increased in content as described above to improve thermal conductivity. Therefore, it has the effect of preventing the occurrence of thermoplastic deformation by exhibiting excellent heat removal effect in high-speed gear cutting of alloy steel with high heat generation, but the F value indicating the content ratio is the total amount of Ti and Al. If the ratio is less than 0.15, a desired excellent effect cannot be ensured for the above action. On the other hand, if the F value exceeds 0.35, a thin layer B having an excellent high-temperature strength is formed adjacently. Even if it exists, the high temperature strength of the upper layer is inevitably lowered, and this causes chipping. Therefore, the F value is set to 0.15 to 0.35.
Further, the E value indicating the proportion of Al is the proportion of the total amount of Ti and B, and if it is less than 0.01, the minimum high-temperature hardness cannot be ensured, causing wear promotion, while the E If the value exceeds 0.10, the high-temperature strength decreases and causes chipping, so the E value was determined to be 0.01 to 0.10.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、B成分の含有割合を相対的に低くし、一方Al成分の含有割合を相対的に高く維持することで、相対的に高い高温硬さを具備せしめ、隣接する薄層Aの高温硬さ不足を補強し、もって、前記薄層Aのもつすぐれた熱伝導性と、前記薄層Bのもつ所定の高温硬さを具備した上部層を形成するものであるが、前記薄層Bの組成式におけるAlの含有割合を示すM値が0.25未満になると、Alの含有割合が少なくなり過ぎて、所定の高温硬さを確保することができず、この結果摩耗進行が促進するようになり、一方同M値が0.40を越えると、相対的にTi成分の含有割合が低下して、上部層の高温強度低下は避けられず、チッピング発生の原因となることから、M値を0.25〜0.40と定めた。
また、Bの割合を示すN値がTiとAlの合量に占める割合で、0.01未満では、上部層全体の熱伝導性低下が避けられず、一方同N値が0.10を超えると、高温強度が低下し、チッピングが発生し易くなることから、N値を0.01〜0.10と定めた。
(C) Composition formula of upper layer thin layer B In the upper layer thin layer B, the content ratio of the B component is relatively low, while the content ratio of the Al component is maintained relatively high, The high-temperature hardness of the thin layer A is strengthened, and the lack of high-temperature hardness of the adjacent thin layer A is reinforced, so that the excellent thermal conductivity of the thin layer A and the predetermined high-temperature hardness of the thin layer B are obtained. However, when the M value indicating the Al content ratio in the composition formula of the thin layer B is less than 0.25, the Al content ratio is too low, and a predetermined high temperature is obtained. Hardness cannot be ensured, and as a result, the progress of wear is promoted. On the other hand, when the M value exceeds 0.40, the content ratio of the Ti component is relatively lowered, and the high temperature of the upper layer is increased. A decrease in strength is unavoidable and causes chipping. It was set to 0.40.
Further, the N value indicating the ratio of B is the ratio of the total amount of Ti and Al. If the N value is less than 0.01, a decrease in the thermal conductivity of the entire upper layer is unavoidable, while the N value exceeds 0.10. Then, the N value was determined to be 0.01 to 0.10 because the high temperature strength decreased and chipping was likely to occur.

(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた熱伝導性と、所定の高温硬さを確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さ不足、薄層Bであれば熱伝導性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの層厚を5〜20nmと定めた。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent thermal conductivity and predetermined high-temperature hardness cannot be ensured, and when the thickness of each layer exceeds 20 nm, each thin layer has defects, that is, if it is thin layer A, the high-temperature hardness is insufficient. In the case of the thin layer B, a thermal conductivity deficiency appears locally in the layer, and this makes it easy to generate chipping and promotes the progress of wear. It was determined.

(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた熱伝導性、さらに所定の高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, the excellent thermal conductivity of itself and the predetermined high temperature hardness cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.

この発明の被覆超硬歯切工具は、硬質被覆層が(Ti,Al,B)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた熱伝導性と所定の高温硬さを具備せしめ、同単一相構造の下部層がすぐれた高温硬さを有することから、特に高熱発生を伴う合金鋼の高速歯切加工でも、前記硬質被覆層がすぐれた抜熱効果を発揮し、この結果切刃部に偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the coated carbide gear cutting tool of the present invention, the hard coating layer is composed of a (Ti, Al, B) N layer, and the upper layer of the hard coating layer has an alternately laminated structure of the thin layer A and the thin layer B. It has excellent thermal conductivity and predetermined high-temperature hardness, and the lower layer of the single-phase structure has excellent high-temperature hardness. Therefore, even in high-speed gear cutting of alloy steel with high heat generation, The coating layer exhibits an excellent heat removal effect, and as a result, excellent wear resistance is exhibited over a long period without occurrence of thermoplastic deformation that causes uneven wear in the cutting edge portion.


つぎに、この発明の被覆超硬歯切工具を実施例により具体的に説明する。

Next, the coated carbide gear cutting tool of the present invention will be specifically described with reference to examples.


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結して、直径:85mm×長さ:125mmの超硬合金製丸棒素材を形成し、この素材から機械加工にて、外径:80mm×長さ:120mmの全体寸法をもち、3条右捩れ×19溝の形状をもった図3に示されるソリッドホブ型の超硬歯切基体A〜Jをそれぞれ製造した。

WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour to form a cemented carbide round bar material of diameter: 85 mm × length: 125 mm, and machined from this material, outer diameter: 80 mm × Length: Solid hob type carbide gear cutting bases A to J shown in FIG. 3 each having the overall dimensions of 120 mm and the shape of three right-handed twists × 19 grooves were manufactured.


(a)ついで、上記の超硬歯切基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−B合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−B合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−B合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−B合金を装着し、

(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Ti−Al−B合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬歯切基体の表面に、表2に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−B合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬歯切基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−B合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬歯切基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬歯切工具1〜10をそれぞれ製造した。

(A) Next, each of the above-mentioned superhard gear cutting bases A to J is ultrasonically cleaned in acetone and dried, and the central axis on the rotary table in the arc ion plating apparatus shown in FIG. A thin layer of an upper layer having a component composition corresponding to the target composition shown in Table 2 as a cathode electrode (evaporation source) on one side, mounted along a peripheral portion at a predetermined distance in the radial direction from Ti-Al-B alloy for forming A and Ti-Al- for forming thin layer B of the upper layer having the component composition corresponding to the target composition shown in Table 2 as the cathode electrode (evaporation source) on the other side B alloy is placed opposite to the rotary table, and Ti-Al- for forming a lower layer as a cathode electrode (evaporation source) along the rotary table at a position shifted by 90 degrees from both Ti-Al-B alloys. Wearing B alloy And,

(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the interior of the apparatus is heated to 500 ° C. with a heater, and then rotated onto the rotating table while rotating on the rotating table. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the Ti—Al—B alloy for forming the lower layer and the anode electrode to generate an arc discharge. Bombarded with Ti-Al-B alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the carbide cutting base rotating while rotating on the rotary table, and An arc discharge is generated by flowing a current of 100 A between the Ti—Al—B alloy for forming the lower layer and the anode electrode, so that the target composition and target shown in Table 2 are formed on the surface of the cemented carbide cutting base. (Ti, Al, B) N layer having a single-phase structure of layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced as a reaction gas into the apparatus to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the carbide cutting base rotating while rotating on the rotary table. In this state, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-B alloy for forming the thin layer A to generate arc discharge, and the cemented carbide cutting A thin layer A having a predetermined thickness is formed on the surface of the substrate. After the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Ti-Al-B alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). May be used again to form the thin layer A. Formation of thin layer A by arc discharge between the cathode electrode and anode electrode of the i-Al-B alloy, and thin layer B by arc discharge between the cathode electrode and anode electrode of the Ti-Al-B alloy for forming the thin layer B Are alternately and repeatedly formed on the surface of the cemented carbide substrate by alternating lamination of thin layers A and B having a target composition and a single target layer thickness shown in Table 2 along the layer thickness direction. Similarly, the coated carbide carbide cutting tools 1 to 10 of the present invention were manufactured by vapor-depositing the upper layer with the entire target layer thickness shown in Table 2.


また、比較の目的で、上記の超硬歯切基体A〜Jを、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったTi−Al−B合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Ti−Al−B合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬歯切基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−B合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬歯切基体の表面に、表3に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,B)N層からなる硬質被覆層を蒸着形成することにより、比較被覆超硬歯切工具1〜10をそれぞれ製造した。

Further, for the purpose of comparison, the above-described superhard gear cutting bases A to J are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. As the (evaporation source), a Ti—Al—B alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less. Then, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V is applied to the cemented carbide cutting base, and 100 A is applied between the Ti—Al—B alloy of the cathode electrode and the anode electrode. When an electric current is applied to generate an arc discharge, the surface of the cemented carbide cutting substrate is bombarded with the Ti—Al—B alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 3 Pa. In addition, the bias voltage applied to the cemented carbide cutting base is lowered to −100 V, and arc discharge is generated between the cathode electrode and the anode electrode of the Ti—Al—B alloy, thereby the carbide cutting base. A comparative coated carbide gear cutting tool is formed by vapor-depositing a hard coating layer composed of a (Ti, Al, B) N layer having a single phase structure with the target composition and target layer thickness shown in Table 3 on the surface of 1 to 10 were produced.


つぎに、上記の本発明被覆超硬歯切工具1〜10および比較被覆超硬歯切工具1〜10を用いて、材質がJIS・SCr420Hの合金鋼にして、

モジュール:1.5、圧力角:14.5度、歯数:70、ねじれ角:30度右捩れ、歯幅:22.5mmの寸法および形状をもった歯車の加工を、

切削速度(回転速度): 500m/min、
送り: 1.5mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の高速歯切加工条件(上記JIS・SCr420Hの合金鋼歯車の加工の場合の切削速度は通常 350m/min)で行い、
逃げ面摩耗幅が 0.1mmに至るまでの歯車加工数を測定した。
この測定結果を表2、3にそれぞれに示した。

Next, using the above-described coated carbide cutting tool 1-10 of the present invention and the comparative coated carbide cutting tool 1-10, the material is alloy steel of JIS / SCr420H,

Module: 1.5, Pressure angle: 14.5 degrees, Number of teeth: 70, Twist angle: 30 degrees Right twist, Teeth width: Processing of gears with dimensions and shapes of 22.5 mm,

Cutting speed (rotational speed): 500 m / min,
Feed: 1.5mm / rev,
Processing form: climb, no shift, dry (air blow),
The high-speed gear cutting conditions (the cutting speed in the case of machining the above-mentioned JIS / SCr420H alloy steel gear is usually 350 m / min),
The number of gear machining until the flank wear width reached 0.1 mm was measured.
The measurement results are shown in Tables 2 and 3, respectively.


Figure 2007030130
Figure 2007030130

Figure 2007030130
Figure 2007030130

Figure 2007030130
Figure 2007030130


この結果得られた本発明被覆超硬歯切工具1〜10の(Ti,Al,B)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに比較被覆超硬歯切工具1〜10の(Ti,Al,B)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。

The thin layer A and the thin layer B constituting the hard coating layer made of (Ti, Al, B) N of the coated carbide cutting tool 1 to 10 of the present invention obtained as a result of this, and the composition of the lower layer In addition, the composition of the hard coating layer made of (Ti, Al, B) N of the comparative coated carbide gear cutting tools 1 to 10 was measured by an energy dispersive X-ray analysis method using a transmission electron microscope. Each showed substantially the same composition as the target composition.

Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表2、3に示される結果から、本発明被覆超硬歯切工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,B)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さ、さらに前記上部層がすぐれた熱伝導性を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、合金鋼製歯車の歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、前記硬質被覆層が前記上部層によってすぐれた抜熱効果を発揮し、切刃部に偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,B)N層からなる比較被覆超硬歯切工具は、前記高速歯切加工条件では、特に熱伝導性不足が原因で切刃部に熱塑性変形が発生し、これによって摩耗形態が偏摩耗形態をとるようになることから、摩耗進行が速くなり、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の表面被覆超硬合金製歯切工具(本発明被覆超硬歯切工具)は、通常の条件での歯切加工は勿論のこと、特に各種の合金鋼製歯車などの歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた性能を示すものであるから、歯切加工装置の高性能化、並びに歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 2 and 3, the coated carbide cutting tool of the present invention has a single-phase structure lower layer made of (Ti, Al, B) N, each of which has a hard coating layer having a different composition, It consists of an upper layer having an alternating layer structure of thin layers A and B each having a thickness of 5 to 20 nm, the lower layer has excellent high-temperature hardness, and the upper layer has excellent thermal conductivity. In addition, since the hard coating layer combines these excellent characteristics, even when gear cutting of alloy steel gears is performed under high-speed gear cutting conditions with high heat generation, the hard coating layer is Excellent heat removal effect is achieved by the upper layer, and excellent wear resistance is exhibited without the occurrence of thermoplastic deformation that causes uneven wear at the cutting edge, whereas the hard coating layer has a single-phase structure. The comparative coated carbide gear cutting tool composed of (Ti, Al, B) N layer is Under gear cutting conditions, especially the thermal deformation of the cutting edge occurs due to insufficient thermal conductivity, and this causes the wear form to become an uneven wear form. It is clear that the service life is reached.
As described above, the surface-coated cemented carbide gear cutting tool of the present invention (the coated carbide gear cutting tool of the present invention) is not only gear cutting under normal conditions, but also various alloy steel gears, etc. Even when the gear cutting is performed under high-speed gear cutting conditions with high heat generation, the hard coating layer exhibits excellent wear resistance and exhibits excellent performance over a long period of time. It is possible to satisfactorily cope with the high performance of the cutting device, the labor saving and energy saving of gear cutting, and the cost reduction.


この発明の被覆超硬歯切工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated carbide gear cutting tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus. 超硬歯切工具(ソリッドホブ)の概略斜視図である。It is a schematic perspective view of a cemented carbide cutting tool (solid hob).

Claims (1)

炭化タングステン基超硬合金製歯切工具基体の表面に、
(a)いずれもTiとAlとB(ボロン)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(E+F)Al]N(ただし、原子比で、Eは0.01〜0.10、Fは0.15〜0.35を示す)を満足するTiとAlとBの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(M+N)Al]N(ただし、原子比で、Mは0.25〜0.40、Nは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.60、Yは0.01〜0.10を示す)を満足するTiとAlとBの複合窒化物層、
からなる硬質被覆層を蒸着形成してなることを特徴とする合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製歯切工具。
On the surface of the tungsten carbide base cemented carbide cutting tool base,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and B (boron), the upper layer being an average layer of 0.5 to 1.5 μm, and the lower layer being an average layer of 2 to 6 μm Each has a thickness,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1− (E + F) Al E B F ] N (wherein E is 0.01 to 0.10 and F is 0.15 to 0.35 in atomic ratio) A composite nitride layer of Al and B;
The thin layer B is
Ti satisfying the composition formula: [Ti 1− (M + N) Al M B N ] N (wherein M is 0.25 to 0.40 and N is 0.01 to 0.10 in atomic ratio) A composite nitride layer of Al and B,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: [Ti 1− (X + Y) Al X B Y ] N (wherein X is 0.50 to 0.60 and Y is 0.01 to 0.10 in atomic ratio) A composite nitride layer of Al and B;
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed gear cutting of alloy steel, characterized by being formed by vapor-depositing a hard coating layer comprising:
JP2005220178A 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel Active JP4720989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220178A JP4720989B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220178A JP4720989B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Publications (2)

Publication Number Publication Date
JP2007030130A true JP2007030130A (en) 2007-02-08
JP4720989B2 JP4720989B2 (en) 2011-07-13

Family

ID=37789998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220178A Active JP4720989B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Country Status (1)

Country Link
JP (1) JP4720989B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703925A (en) * 2012-04-23 2012-10-03 江阴安凯特电化学设备有限公司 Production process of double-coating combined electrode
KR20150040963A (en) * 2012-08-03 2015-04-15 발터 악티엔게젤샤프트 Tialn-coated tool
WO2021085253A1 (en) * 2019-10-29 2021-05-06 三菱マテリアル株式会社 Surface-coated cutting tool
WO2022176057A1 (en) * 2021-02-17 2022-08-25 住友電工ハードメタル株式会社 Cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2002096206A (en) * 2000-09-19 2002-04-02 Hitachi Tool Engineering Ltd Hard film covering tool
JP2004130495A (en) * 2002-10-15 2004-04-30 Mitsubishi Materials Kobe Tools Corp Surface-covered cermet made cutting tool with hard film layer having excellent chipping resistance under high-speed heavy cutting condition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2002096206A (en) * 2000-09-19 2002-04-02 Hitachi Tool Engineering Ltd Hard film covering tool
JP2004130495A (en) * 2002-10-15 2004-04-30 Mitsubishi Materials Kobe Tools Corp Surface-covered cermet made cutting tool with hard film layer having excellent chipping resistance under high-speed heavy cutting condition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703925A (en) * 2012-04-23 2012-10-03 江阴安凯特电化学设备有限公司 Production process of double-coating combined electrode
KR20150040963A (en) * 2012-08-03 2015-04-15 발터 악티엔게젤샤프트 Tialn-coated tool
JP2015529571A (en) * 2012-08-03 2015-10-08 バルター アクチェンゲゼルシャフト TiAlN coated tool
KR102093529B1 (en) * 2012-08-03 2020-03-26 발터 악티엔게젤샤프트 Tialn-coated tool
WO2021085253A1 (en) * 2019-10-29 2021-05-06 三菱マテリアル株式会社 Surface-coated cutting tool
WO2022176057A1 (en) * 2021-02-17 2022-08-25 住友電工ハードメタル株式会社 Cutting tool

Also Published As

Publication number Publication date
JP4720989B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP4720989B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP6376466B2 (en) Surface coated cutting tool
JP4720987B2 (en) Surface-coated high-speed tool steel gear cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4706911B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP4706912B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP4716007B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP3959737B2 (en) A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP6471546B2 (en) Surface coated cutting tool
JP4120243B2 (en) A method of forming a hard coating layer with excellent wear resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP4716006B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP5692636B2 (en) Surface coated cutting tool
JP4007104B2 (en) A surface-coated stripping tool that provides excellent chipping resistance with a hard coating layer in high-speed gear cutting.
JP2005022044A (en) Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting
JP4720986B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP2006224216A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of heat resisting alloy
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4706909B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4257512B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20071226

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Effective date: 20080715

Free format text: JAPANESE INTERMEDIATE CODE: A621

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20110309

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110322

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150