JP3443314B2 - Coated hard tool - Google Patents

Coated hard tool

Info

Publication number
JP3443314B2
JP3443314B2 JP08038298A JP8038298A JP3443314B2 JP 3443314 B2 JP3443314 B2 JP 3443314B2 JP 08038298 A JP08038298 A JP 08038298A JP 8038298 A JP8038298 A JP 8038298A JP 3443314 B2 JP3443314 B2 JP 3443314B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard tool
coated hard
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08038298A
Other languages
Japanese (ja)
Other versions
JPH11256310A (en
Inventor
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP08038298A priority Critical patent/JP3443314B2/en
Publication of JPH11256310A publication Critical patent/JPH11256310A/en
Application granted granted Critical
Publication of JP3443314B2 publication Critical patent/JP3443314B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、皮膜の耐酸化性、耐摩
耗性に優れた被覆硬質工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated hard tool having a coating with excellent oxidation resistance and wear resistance.

【0002】[0002]

【従来の技術】従来、被覆硬質工具、特にイオンプレー
ティング法に代表される物理蒸着法の皮膜としてはTi
N、TiCN等の皮膜が汎用的かつ一般的であったが、
近年、Alを含有させ耐摩耗性、耐酸化性を向上させる
研究がなされ、特公平4−53642号公報、特公平5
−67705号公報に記載されているように、Alの添
加効果を認める事例も種々存在する。これらの事例にお
いては皮膜にAlを添加することにより、皮膜の耐酸化
性、耐摩耗性は確かに改善は成されている。しかしなが
ら、最近は切削速度がさらに高速化する傾向にあり、ま
た熱処理後の高硬度鋼を切削する場合も多く、このよう
な場合工具の刃先温度は著しく高温になり、単にAlを
添加しただけでは使用に耐え得るだけの十分な耐酸化性
は得られなくなっているのが現状である。
2. Description of the Related Art Conventionally, Ti has been used as a coated hard tool, especially as a film for a physical vapor deposition method represented by an ion plating method.
Films of N, TiCN, etc. were general and general,
In recent years, studies have been made to improve wear resistance and oxidation resistance by containing Al, and are disclosed in Japanese Patent Publication No. 4-53642 and Japanese Patent Publication No.
As described in Japanese Patent Publication No.-67705, there are various cases in which the effect of adding Al is recognized. In these cases, the addition of Al to the coating certainly improves the oxidation resistance and wear resistance of the coating. However, recently, the cutting speed tends to be further increased, and in many cases, high hardness steel after heat treatment is cut. In such a case, the cutting edge temperature of the tool becomes extremely high, and simply adding Al At present, it is not possible to obtain sufficient oxidation resistance to withstand use.

【0003】一方、上記の炭化物、窒化物等をさらにそ
の耐酸化性を向上すべく最外層にTiAlON等を被覆
する提案もなされているが(例として、特開平7−32
8811号)、TiとAlの酸化物では十分な耐酸化性
を得るには至っていない。またアルミナを最外層に被覆
する提案(例として、特開平9−192906)もなさ
れてはいるが、イオンプレーティング法におけるアルミ
ナ皮膜は密着性そのものが弱く、剥離し易いため実際の
切削においては衝撃力のため剥離してしまい、いまだ満
足のいくものではない。
On the other hand, it has been proposed to coat the above carbides, nitrides, etc. with TiAlON or the like as the outermost layer in order to further improve the oxidation resistance thereof (for example, JP-A-7-32).
No. 8811), oxides of Ti and Al have not yet achieved sufficient oxidation resistance. A proposal has also been made to coat the outermost layer of alumina (for example, Japanese Patent Laid-Open No. 9-192906), but the alumina coating in the ion plating method has a weak adhesion itself and is easily peeled off, so that impact is not obtained in actual cutting. It peels off due to the force, and it is still not satisfactory.

【0004】[0004]

【発明が解決しようとする課題】本発明者らの研究によ
れば、TiにAlを添加したTiAlN皮膜において、
大気中での酸化開始温度はTiNの450℃に対し向上
し、Alの添加量に依存し750℃〜900℃に改善さ
れる。しかしながら、最近の高速切削においては刃先温
度は900℃を越える場合がしばしばあり単にAlを添
加しただけでは十分な切削寿命を得ることができない。
従って、この様な高速切削においても、長寿命でかつ安
定した切削を実現するためには、皮膜の耐酸化性をさら
に格段に高める必要がある。
According to the research of the present inventors, in a TiAlN film in which Al is added to Ti,
The oxidation start temperature in the atmosphere is higher than 450 ° C of TiN, and is improved to 750 ° C to 900 ° C depending on the amount of Al added. However, in recent high-speed cutting, the cutting edge temperature often exceeds 900 ° C., and a sufficient cutting life cannot be obtained by simply adding Al.
Therefore, even in such high-speed cutting, in order to realize long-life and stable cutting, it is necessary to further increase the oxidation resistance of the coating.

【0005】[0005]

【課題を解決するための手段】本発明者らは皮膜の耐酸
化性を改善すべく鋭意研究を重ねた結果、周期律表の4
a、5a、6a族及びAlの化合物の第一の層、例え
ば、TiAlN層とAlO層を交互に積層し被覆するこ
とにより、TiAlN層の耐酸化性に対し著しく耐酸化
性が向上するということを確認するに至った。さらに最
外層にAlO層を被覆することにより一層耐酸化性は向
上し、さらには第一の層にSiや3a族の成分を添加す
ることにより第一の層そのものの耐酸化性が向上し、い
っそう皮膜全体の耐酸化性が向上するという知見を得る
に至った。
[Means for Solving the Problems] As a result of intensive studies conducted by the present inventors to improve the oxidation resistance of the coating, the results of the periodic table 4
By alternately laminating and coating a first layer of a compound of group a, 5a, 6a and Al, for example, a TiAlN layer and an AlO layer, the oxidation resistance of the TiAlN layer is significantly improved with respect to the oxidation resistance of the TiAlN layer. Came to confirm. Further, by coating the outermost layer with an AlO layer, the oxidation resistance is further improved, and by adding Si or a group 3a component to the first layer, the oxidation resistance of the first layer itself is improved. We have come to the knowledge that the oxidation resistance of the entire coating is further improved.

【0006】[0006]

【作用】上記酸化に関して詳細に説明すると、耐酸化性
が優れると言われるTiAlN層を大気中で酸化テスト
を行った場合、皮膜表面近傍のAlが最表面に拡散しそ
こでアルミナを形成する。このアルミナの形成が酸素の
皮膜内部への拡散を抑制し耐酸化性を向上せしめる理由
であるが、この場合アルミナ直下の皮膜はAlが最表面
に拡散した結果Alの存在しないルチル構造のTi酸化
物となる。このTiの酸化物は非常にポーラスであり最
表面に形成されたアルミナは静的な酸化テストでは酸化
の促進に対し酸素拡散のバリヤーとして機能するが、動
的な切削においては最表面のアルミナはポーラスなTi
の酸化物層より容易に剥離してしまう結果となり、酸化
の促進に対しバリヤー効果を十分に発揮しなく、連続的
に酸化が進行する。
In detail, when the TiAlN layer, which is said to have excellent oxidation resistance, is subjected to an oxidation test in the atmosphere, Al near the film surface diffuses to the outermost surface to form alumina. The formation of this alumina is the reason why the diffusion of oxygen into the inside of the film is suppressed and the oxidation resistance is improved. In this case, the film immediately below the alumina is a Ti oxide of rutile structure where Al does not exist as a result of Al diffusing to the outermost surface. It becomes a thing. This Ti oxide is very porous, and the alumina formed on the outermost surface functions as a barrier for oxygen diffusion in promoting static oxidation in the static oxidation test. Porous Ti
As a result of being easily peeled off from the oxide layer, the barrier effect is not sufficiently exerted against the promotion of oxidation, and the oxidation proceeds continuously.

【0007】TiAlNの第一の層の間にAlOの第二
の層を介在させ積層構造にした場合、第一の層の一つに
層が上述のごとく酸化し、ポーラスなTiの酸化物層か
ら剥離してもそこで最表層を形成するAlOの第二の層
が酸素拡散の障壁として機能するため、特に皮膜の酸化
が動的な切削において大幅に抑制される結果となり、切
削において安定した長寿命が達成される。勿論、AlO
膜も切削中に剥離もしくは摩滅により消滅するが、さら
に下層にあるAlO膜が同様に機能するため、皮膜全体
の耐酸化性を大幅に向上せしめる結果となる。従って、
第二のAlO層はできるだけ多く、好ましくは10層以
上介在させることにより十分に満足される切削寿命を達
成することが可能である。また、第二の層は第一の層と
結晶構造の連続性を形成せしめることにより、第二の層
の密着性は格段に向上し、切削中の剥離は発生しなくな
る。つまり、たとえば第一の層がfcc構造である場合
には第二の層は超格子を形成せしめたfcc構造を有す
るAlO層とすることである。
When a second layer of AlO is interposed between the first layer of TiAlN to form a laminated structure, one of the first layers is oxidized as described above and a porous oxide layer of Ti is formed. The second layer of AlO forming the outermost layer functions as a barrier to oxygen diffusion even when peeled from the surface, so that oxidation of the coating is greatly suppressed during dynamic cutting, resulting in a stable length during cutting. Lifespan is achieved. Of course, AlO
The film also disappears due to peeling or abrasion during cutting, but since the underlying AlO film functions in the same way, the oxidation resistance of the entire film is greatly improved. Therefore,
By interposing as many second AlO layers as possible, preferably 10 or more layers, it is possible to achieve a sufficiently satisfactory cutting life. In addition, the second layer forms a continuity of the crystal structure with the first layer, so that the adhesiveness of the second layer is remarkably improved and peeling during cutting does not occur. That is, for example, when the first layer has an fcc structure, the second layer is an AlO layer having an fcc structure in which a superlattice is formed.

【0008】さらに、最外層にAlO層を付与すること
により、切削初期での耐酸化性を向上させるとともに、
被加工物に対する耐溶着性も向上し、切削におけるさら
なる長寿命化が可能である。この場合、最外層のAlO
層がアモルファス状の結晶構造の場合、より一層の耐酸
化性の向上が認められる。つまり、酸素は粒界で優先的
に拡散するため、粒界のないアモルファス層であると一
層酸素の拡散が抑制され耐酸化の向上に効果的であると
考えられる。また、最外層のAlO層がγ、κ、θ、α
といった結晶質にした場合には多少耐酸化性は劣化する
が、AlO層そのものが硬質となり、耐摩耗性を向上さ
せるため、切削用途によりアモルファス層か、結晶選択
することが好ましい。AlO層の結晶形態は被覆温度に
主に依存し、低温側からアモルファス、γ、θ、κ、α
構造となる。AlO層は絶縁層であるため、イオンプレ
ーティング法において100nm以上被覆したい場合に
は、パルスバイアスを用いるほうが好ましい。
Further, by providing an AlO layer as the outermost layer, the oxidation resistance at the initial stage of cutting is improved and
The welding resistance to the work piece is also improved, and the life in cutting can be further extended. In this case, the outermost layer of AlO
When the layer has an amorphous crystal structure, the oxidation resistance is further improved. That is, since oxygen diffuses preferentially at grain boundaries, it is considered that the amorphous layer having no grain boundaries is more effective in suppressing the diffusion of oxygen and improving the oxidation resistance. Further, the outermost AlO layer has γ, κ, θ, α
Although such a crystalline material deteriorates the oxidation resistance to some extent, the AlO layer itself becomes hard and the wear resistance is improved. Therefore, it is preferable to select an amorphous layer or a crystal according to the cutting application. The crystal morphology of the AlO layer mainly depends on the coating temperature, and is amorphous, γ, θ, κ, α from the low temperature side.
It becomes a structure. Since the AlO layer is an insulating layer, it is preferable to use a pulse bias when it is desired to cover 100 nm or more in the ion plating method.

【0009】さらに、第一の皮膜の耐酸化性を向上すべ
く、種々の第三成分の添加を試みた結果Si及び3a族
金属のY、Nd、Sm、Scの添加において、皮膜の耐
酸化性が著しく向上する結果となった。これらの成分は
第一の皮膜の結晶粒界に偏析し粒界での酸素の拡散を抑
制し皮膜の耐酸化性を向上せしめることが本発明者らの
研究で明らかとなった。
Further, as a result of attempting to add various third components in order to improve the oxidation resistance of the first coating, the oxidation resistance of the coating is improved by adding Y, Nd, Sm and Sc of Si and Group 3a metals. As a result, the property is remarkably improved. It has been clarified by the inventors of the present invention that these components segregate at the crystal grain boundaries of the first film and suppress the diffusion of oxygen at the grain boundaries to improve the oxidation resistance of the film.

【0010】次に、数値を限定した理由を述べる。積層
にした場合の第二の層のAlO層の厚さは1nm未満だ
と耐酸化性の向上に効果がなく50nmを越えると酸化
物層内で破壊が発生し、結果皮膜が剥離する場合がある
ため、1nm以上50nm以下とした。第3成分の置換
量は1原子%未満だと耐酸化性の向上に効果がなく、3
0原子%を越えて含有させると皮膜の耐摩耗性を劣化さ
せるため1〜30原子%とした。
Next, the reason for limiting the numerical values will be described. When the thickness of the AlO layer of the second layer when laminated is less than 1 nm, it has no effect on improving the oxidation resistance, and when it exceeds 50 nm, destruction occurs in the oxide layer, and as a result, the film may peel off. Therefore, it is set to 1 nm or more and 50 nm or less. If the substitution amount of the third component is less than 1 atomic%, there is no effect on improving the oxidation resistance.
If it is contained in excess of 0 atomic%, the wear resistance of the coating is deteriorated, so the content was made 1 to 30 atomic%.

【0011】[0011]

【実施例】以下、実施例に基づいて本発明を説明する。 実施例1 小型アークイオンプレーティング装置を用い表1に示す
条件において本発明例、比較例のコーティングを行いコ
ーティッド超硬エンドミル(φ8mm、6枚刃)を試作
した。コーティング条件はバイアス電圧−300V、反
応ガス圧力4×10−2mbrとした。総膜厚さは2.
5μとした。従って、皮膜全体における総層数は各本発
明例においては異なるものである。尚、第二の層及び最
外層のAlOはAlターゲットを用い、酸素ガスを間欠
に導入することにより成膜した。表1中、特に結晶構造
の記載していないAlOはアモルファス構造のものであ
る。
EXAMPLES The present invention will be described below based on examples. Example 1 A coated carbide end mill (8 mm in diameter, 6 blades) was manufactured by performing coating of the examples of the present invention and comparative examples under the conditions shown in Table 1 using a small arc ion plating device. The coating conditions were a bias voltage of −300 V and a reaction gas pressure of 4 × 10 −2 mb. Total film thickness is 2.
It was set to 5μ. Therefore, the total number of layers in the entire coating is different in each of the examples of the present invention. The AlO of the second layer and the outermost layer were formed by using an Al target and introducing oxygen gas intermittently. In Table 1, AlO whose crystal structure is not particularly described has an amorphous structure.

【0012】[0012]

【表1】 [Table 1]

【0013】得られたエンドミルで次の切削諸元にて、
被削材は、SKD11の調質材HRC60、切削速度は
40m/min、送り量は0.06mm/刃、切り込み
量は12mmx0.8mmの肩削りで、切削油は用いず
(dry)に切削テストを行った。折損するまで切削を
行い、折損が発生した時点の切削長を表1に併記した。
次いで、大気中1000℃で30分間酸化テストを行
い、酸化層の厚さを測定した。その結果を表1に併記し
た。
With the obtained end mill, the following cutting specifications were made:
Work material is SKD11 tempered material HRC60, cutting speed is 40 m / min, feed amount is 0.06 mm / blade, depth of cut is 12 mm x 0.8 mm, shoulder cutting, cutting test without using cutting oil (dry) I went. Cutting was performed until breakage occurred, and Table 1 also shows the cutting length at the time when breakage occurred.
Then, an oxidation test was performed in the atmosphere at 1000 ° C. for 30 minutes to measure the thickness of the oxide layer. The results are also shown in Table 1.

【0014】表1より、第二の層(AlO層)を積層に
設けた本発明においては、皮膜の耐酸化性が著しく改善
され、焼入れした高硬度材の切削において優れた特性を
示すことが明らかである。本発明者等の測定によれば、
HRC60の鋼を本条件下で切削した場合、刃先温度は
950℃に達することが確認されている。また、HRC
50の鋼では切削速度120m/min(他条件は実施
例1の切削条件に準ずる)で950℃に達する。本発明
例は、被切削材の硬さによらず刃先温度が950℃を越
えるような切削条件下で、優れた切削特性を示す。特に
乾式切削においては、有効な効果をもたらすものであ
る。
From Table 1, it can be seen that in the present invention in which the second layer (AlO layer) is provided in the laminated structure, the oxidation resistance of the coating is remarkably improved, and excellent characteristics are exhibited in the cutting of the hardened and hardened material. it is obvious. According to the measurement by the inventors,
It has been confirmed that the cutting edge temperature reaches 950 ° C. when HRC60 steel is cut under these conditions. Also, HRC
With steel No. 50, the cutting speed reaches 950 ° C. at a cutting speed of 120 m / min (other conditions are in accordance with the cutting conditions of Example 1). The examples of the present invention show excellent cutting characteristics under cutting conditions in which the cutting edge temperature exceeds 950 ° C regardless of the hardness of the material to be cut. Particularly in dry cutting, it brings an effective effect.

【0015】また、1000℃での酸化層の厚さを対比
すると、TiN、TiAlN等の皮膜ではその酸化層の
厚さが全皮膜厚さや、ほぼ全膜厚程度まで酸化がされて
いるのに対し、本発明例では最外層直下のTiAlN層
が酸化されておらず優れた耐酸化性を示した。また、本
発明例1の様に酸化層厚さが外から数えて3番目の層で
止まっており、このことは摩耗が進んで最外層がなくな
った後でも、中間のAlO層により酸化の進展が食い止
められることを示している。
When the thickness of the oxide layer at 1000 ° C. is compared, it can be seen that in the case of a film made of TiN, TiAlN, etc., the oxide layer is oxidized to the total film thickness or almost the total film thickness. On the other hand, in the examples of the present invention, the TiAlN layer immediately below the outermost layer was not oxidized and showed excellent oxidation resistance. Further, as in Example 1 of the present invention, the thickness of the oxide layer stops at the third layer counted from the outside, which means that even after the outermost layer disappears due to wear, the progress of oxidation due to the intermediate AlO layer. Indicates that it can be stopped.

【0016】実施例2 実施例1に示した同一の本発明例、比較例の皮膜を超硬
合金ドリル、超硬合金インサートに被覆し、次に示す条
件で切削テストを行った。ドリルでは、湿式にて、φ6
mm(P40グレード)のドリルを用いて、被削材SC
M440(焼鈍材)、切削速度は100m/min、送
り量は0.1mm/revで、穴深さ15mmの穴明け
加工を行い、3000穴切削後の摩耗量を、インサート
では、インサート形状をSEE42TN(P40グレー
ド)を用いて、被削材SKD61(調質材HRC42、
巾100mm×長さ250mmの面取り)、切削速度1
50m/min、送り量0.15m/刃、切込み量1.
5mmで、10m切削後の逃げ面摩耗量を測定した。そ
の結果を表2に示す。
Example 2 Cemented carbide drills and cemented carbide inserts were coated with the same films of the present invention example and comparative example shown in Example 1, and a cutting test was conducted under the following conditions. With a wet drill, φ6
Work material SC using a mm (P40 grade) drill
M440 (annealed material), cutting speed is 100 m / min, feed rate is 0.1 mm / rev, hole depth of 15 mm is drilled, wear amount after 3000 hole cutting, insert shape is SEE42TN. (P40 grade), the work material SKD61 (tempered material HRC42,
Chamfer of width 100 mm x length 250 mm), cutting speed 1
50 m / min, feed amount 0.15 m / blade, depth of cut 1.
The flank wear amount after cutting 10 m at 5 mm was measured. The results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】表2より明らかなように。本発明例はドリ
ル、インサートでも同様に、優れた工具寿命を示すこと
が確認された。この傾向は、エンドミル、ドリル、イン
サートともに同様である。特に、ドリルのような連続切
削を行う先端刃の摩耗では、先端部の外周部の摩耗が小
さく、加工穴数を飛躍的に延ばすことができた。
As is clear from Table 2. It was confirmed that the examples of the present invention similarly show excellent tool life in drills and inserts. This tendency is the same for end mills, drills and inserts. In particular, with the wear of the tip blade that performs continuous cutting such as with a drill, the wear of the outer peripheral portion of the tip was small, and the number of drilled holes could be dramatically increased.

【0019】実施例3 小型アークイオンプレーティング装置を用い、表3に示
すコーティングを行い、本発明例を被覆した超硬合金エ
ンドミルおよび超硬合金インサートを制作した。最外層
の結晶化AlO層は、αの場合790℃、γの場合68
0℃、の被覆条件にて成膜を行った。本発明例と比較例
を、実施例1および実施例2で示した切削条件にて切削
評価を行い、その結果を表3に併記した。また、大気中
1000℃、2時間保持の条件で酸化テストを行い、形
成した酸化層の厚さについても表3に併記した。尚、本
実施例においても、総膜厚を2.5μmとした.
Example 3 Using a compact arc ion plating device, coating shown in Table 3 was carried out to produce a cemented carbide end mill and a cemented carbide insert coated with the examples of the present invention. The outermost crystallized AlO layer is 790 ° C. for α and 68 for γ.
The film was formed under the coating condition of 0 ° C. Cutting evaluation was performed on the inventive example and the comparative example under the cutting conditions shown in Example 1 and Example 2, and the results are also shown in Table 3. Further, an oxidation test was conducted under the conditions of 1000 ° C. for 2 hours in the atmosphere, and the thickness of the formed oxide layer is also shown in Table 3. Also in this embodiment, the total film thickness is 2.5 μm.

【0020】[0020]

【表3】 [Table 3]

【0021】表3に示す通り、本発明例の多層膜の耐酸
化性は実施例1の時間(30分)を更に1.5時間延ば
して2時間として、より酸化の厚さ方向への進行状況を
確認したところ、最外層から6〜10番目の第一の層ま
で酸化の影響が進展しているもの、中間の第二の層で止
まっており、更に、試料番号15、16、17の例では
30分では2μm前後の酸化層であったものが、2時間
では全厚に達していることからも、より優れた耐酸化
性、切削寿命を示すことが明らかである。また、切削に
おいても、切削長を大幅に延ばすことができ、特にその
傾向は、インサートの場合に顕著である。インサートで
は乾式で用いられることが多く、また、刃型からもエン
ドミル等より切削抵抗が大きく、切削時の熱的影響を受
けることが大きいため、より長寿命化が計れた。内部に
酸化物皮膜を介在させることにより、耐酸化性、工具寿
命はより一層向上することは明らかである。
As shown in Table 3, the oxidation resistance of the multilayer film of the present invention was further extended from the time of Example 1 (30 minutes) by 1.5 hours to 2 hours, and the oxidation progressed further in the thickness direction. When the situation was confirmed, the influence of oxidation progressed from the outermost layer to the 6th to 10th first layers, it stopped in the second layer in the middle, and further, in sample numbers 15, 16, and 17. In the example, the oxide layer had a thickness of about 2 μm in 30 minutes, but reached the total thickness in 2 hours, so it is clear that it shows more excellent oxidation resistance and cutting life. Also in cutting, the cutting length can be greatly extended, and this tendency is particularly remarkable in the case of inserts. The inserts are often used in a dry type, and the cutting resistance is greater than that of end mills due to the blade type, and the thermal effect during cutting is great, resulting in a longer life. It is clear that the interposition of the oxide film further improves the oxidation resistance and the tool life.

【0022】実施例4 所定量の第3成分Xを含むTiAlX合金ターゲットを
用い、表4に示す本発明例を被覆した超硬合金エンドミ
ルを作成し、実施例1と同一の切削評価ならびに実施例
3と同一の酸化テストを行った。それらの結果を表4に
併記する。この場合第二の層はfccのAlO(5n
m)に統一し最外層はアモルファスAlO層に統一し
た。
Example 4 Using a TiAlX alloy target containing a predetermined amount of the third component X, a cemented carbide end mill coated with the example of the present invention shown in Table 4 was prepared, and the same cutting evaluation and example as in Example 1 were carried out. The same oxidation test as 3 was performed. The results are also shown in Table 4. In this case, the second layer is fcc AlO (5n
m) and the outermost layer is an amorphous AlO layer.

【0023】[0023]

【表4】 [Table 4]

【0024】表4より、第一の層の耐酸化性を向上させ
ることにより、より酸化の進行を遅くさせることがで
き、また、耐酸化性の向上に伴い、切削寿命は、エンド
ミルでは、TiAlN単層の皮膜(試料番号15、1
6、17)に比べて、3〜4倍の長寿命化がはかれ、更
に向上させることが明らかである。
From Table 4, it is possible to further delay the progress of oxidation by improving the oxidation resistance of the first layer. Further, with the improvement of the oxidation resistance, the cutting life of the end mill is TiAlN. Single layer coating (Sample No. 15, 1)
Compared with 6, 17), the life is extended 3 to 4 times, and it is clear that the life is further improved.

【0025】[0025]

【発明の効果】本発明を適用することにより、従来用い
られているTiAlN皮膜の耐酸化性、耐摩耗性を大幅
に向上でき、特に、大気中での酸化開始温度はTiAl
Nの750℃〜900℃に対し1000℃まで高めるこ
とができ、またその厚さ方向への進展も第二の層により
改善される。その結果として、特に高速切削や高硬度材
の切削においても、長寿命でかつ安定した切削が実現で
きた。
EFFECTS OF THE INVENTION By applying the present invention, the oxidation resistance and wear resistance of the conventionally used TiAlN film can be greatly improved. Especially, the oxidation start temperature in the atmosphere is TiAlN.
The N can be increased up to 1000 ° C with respect to 750 ° C to 900 ° C, and its progress in the thickness direction is also improved by the second layer. As a result, long-life and stable cutting can be realized especially in high-speed cutting and cutting of high hardness material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−252306(JP,A) 特開 平6−262407(JP,A) 特開 平7−136810(JP,A) 特開 平9−291353(JP,A) 特開 平7−97679(JP,A) 特開 平7−133111(JP,A) 特開 平8−209337(JP,A) 特開 平8−199341(JP,A) 特開2000−24809(JP,A) 特開 平11−309606(JP,A) 特開 平11−309607(JP,A) 特開 平8−20871(JP,A) 特開 平9−323204(JP,A) 特開 平9−295204(JP,A) 特開 平11−42504(JP,A) 特開 平11−90737(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 14/00 - 14/58 B23B 27/14 B23P 15/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-1-252306 (JP, A) JP-A-6-262407 (JP, A) JP-A-7-136810 (JP, A) JP-A-9- 291353 (JP, A) JP-A-7-97679 (JP, A) JP-A-7-133111 (JP, A) JP-A-8-209337 (JP, A) JP-A-8-199341 (JP, A) JP 2000-24809 (JP, A) JP 11-309606 (JP, A) JP 11-309607 (JP, A) JP 8-20871 (JP, A) JP 9-323204 ( JP, A) JP 9-295204 (JP, A) JP 11-42504 (JP, A) JP 11-90737 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C23C 14/00-14/58 B23B 27/14 B23P 15/28

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 イオンプレーティング法において硬質被
覆層を被覆してなる、ハイス、超硬合金、サーメット等
の超硬質合金を基体とする被覆硬質工具において、前記
硬質被覆層の第一の層と第二の層を交互に20層以上積
層してなり、前記第一の層は、少なくとも一部は周期律
表の4a、5a、6a族およびAlの炭化物、炭窒化
物、窒化物の一種または二種以上からなり、前記第二の
層は、Alの酸化物層、酸窒化物層もしくは酸炭窒化物
層からなり、且つ、第二の層の厚さが1nm以上50n
m以下であることを特徴とする被覆硬質工具。
1. A coated hard tool comprising a hard coating layer coated by an ion plating method and made of a super hard alloy such as high speed steel, cemented carbide or cermet. The second layer is formed by alternately stacking 20 or more layers, and at least a part of the first layer is one of carbides, carbonitrides, and nitrides of 4a, 5a, and 6a of the periodic table and Al, or It consists of two or more kinds, and the second
The layer is an Al oxide layer, an oxynitride layer, or an oxycarbonitride layer.
The second layer has a thickness of 1 nm or more and 50 n or more.
A coated hard tool characterized by being m or less .
【請求項2】 請求項1記載の被覆硬質工具において、
最外層としてAlの酸化物層、酸窒化物層もしくは酸炭
窒化物層を被覆したことを特徴とする被覆硬質工具。
2. The coated hard tool according to claim 1, wherein
A coated hard tool characterized by being coated with an Al oxide layer, an oxynitride layer or an oxycarbonitride layer as the outermost layer.
【請求項3】 請求項2記載の被覆硬質工具において、
最外層のAlの酸化物層、酸窒化物層もしくは酸炭窒化
物層がアモルファス状結晶構造を有することを特徴とす
る被覆硬質工具。
3. The coated hard tool according to claim 2, wherein
A coated hard tool, wherein the outermost Al oxide layer, oxynitride layer, or oxycarbonitride layer has an amorphous crystal structure.
【請求項4】 請求項2記載の被覆硬質工具において、
最外層のAlの酸化物層、酸窒化物層もしくは酸炭窒化
物層が結晶質であることを特徴とする被覆硬質工具。
4. The coated hard tool according to claim 2, wherein
A coated hard tool, wherein the outermost Al oxide layer, oxynitride layer, or oxycarbonitride layer is crystalline.
【請求項5】 請求項1乃至4項記載の被覆硬質工具に
おいて、積層する第二の層であるAlの酸化物、酸窒化
物もしくは酸炭窒化物層が第一の層と結晶の連続性を有
することを特徴とする被覆硬質工具。
5. The coated hard tool according to claim 1, wherein an Al oxide, oxynitride or oxycarbonitride layer which is a second layer to be laminated is continuous with the first layer and crystallinity. A coated hard tool characterized by having.
【請求項6】 請求項1乃至6記載の被覆硬質工具にお
いて、第一の層の成分の一部を1〜30原子%の範囲で
Si、Y、Nd、Sm、Scの一種もしくは二種以上で
置き換えたことを特徴とする被覆硬質工具。
6. The coated hard tool according to claim 1, wherein a part of the components of the first layer is in the range of 1 to 30 atomic% and is one or more of Si, Y, Nd, Sm and Sc. A coated hard tool characterized by being replaced by.
JP08038298A 1998-03-12 1998-03-12 Coated hard tool Expired - Fee Related JP3443314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08038298A JP3443314B2 (en) 1998-03-12 1998-03-12 Coated hard tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08038298A JP3443314B2 (en) 1998-03-12 1998-03-12 Coated hard tool

Publications (2)

Publication Number Publication Date
JPH11256310A JPH11256310A (en) 1999-09-21
JP3443314B2 true JP3443314B2 (en) 2003-09-02

Family

ID=13716743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08038298A Expired - Fee Related JP3443314B2 (en) 1998-03-12 1998-03-12 Coated hard tool

Country Status (1)

Country Link
JP (1) JP3443314B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6242751B2 (en) * 2014-06-04 2017-12-06 株式会社神戸製鋼所 Manufacturing method of machining tool and machining tool

Also Published As

Publication number Publication date
JPH11256310A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP3031907B2 (en) Multilayer coating member
JP4576638B2 (en) Surface coated cutting tool
JP3382781B2 (en) Multi-layer coated hard tool
JP3719731B2 (en) Coated cutting tool / Coated wear-resistant tool
JPH09323204A (en) Multilayer coated hard tool
JP5010707B2 (en) Hard coating for cutting tools
EP3162911A1 (en) Laminated hard film and cutting tool
JP3001849B2 (en) Coated hard tool
JP2000061708A (en) Coated hard tool
JP2006192531A (en) Surface-coated cutting tool and its manufacturing method
JP3454428B2 (en) Wear-resistant film-coated tools
JP3443314B2 (en) Coated hard tool
JPH11320214A (en) Covered hard tool
JP3712242B2 (en) Coated cutting tool / Coated wear resistant tool
JP4252154B2 (en) Multi-layer coating member
JP3638332B2 (en) Coated hard alloy
JP2005212025A (en) Surface-coated tool
JP3712241B2 (en) Coated cutting tool / Coated wear resistant tool
JP2002337005A (en) Abrasive-resistant coating coated tool
JP3445899B2 (en) Surface coated end mill
JP2556088B2 (en) Surface coated tungsten carbide based cemented carbide cutting tip
JP3016702B2 (en) Coated hard alloy
JP3589396B2 (en) Hard coating tool
JP2001121314A (en) Hard film-coated tool
JP5093917B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees