JP2000015514A - Twisted drill made of cemented carbide - Google Patents

Twisted drill made of cemented carbide

Info

Publication number
JP2000015514A
JP2000015514A JP18356998A JP18356998A JP2000015514A JP 2000015514 A JP2000015514 A JP 2000015514A JP 18356998 A JP18356998 A JP 18356998A JP 18356998 A JP18356998 A JP 18356998A JP 2000015514 A JP2000015514 A JP 2000015514A
Authority
JP
Japan
Prior art keywords
phase
solid solution
cemented carbide
type solid
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18356998A
Other languages
Japanese (ja)
Inventor
Atsushi Yukimura
淳 幸村
Yoshihiro Kondo
芳弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP18356998A priority Critical patent/JP2000015514A/en
Publication of JP2000015514A publication Critical patent/JP2000015514A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a twisted drill having prolonged life by improving the strength and welding resistance of a cemented carbide used for the twisted drill; and by improving the welding resistance and abrasion resistance of the knife-edge of a tip blade at around its outer periphery liable to be high temperatures. SOLUTION: A twisted drill made of a cemented carbide and consisting of a B1 type solid solution phase, a WC phase, and a binder phase, consists of a solid phase, 50-70 percent by area, consisting of tungsten carbide, a solid phase, 15-30 percent by area, consisting of the B1 type solid solution phase, and the binder phase, 15-25 percent by weight, consisting of an iron-family metal. A sintered body has average grain sizes of 0.3 to 1.2 microns in the tungsten carbide phase and 0.3 to 2 microns in the B1 type solid solution phase, and a lattice constant of 3.565 to 3.575 Å in Co.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本願発明は、穴あけ加工等に用い
る超硬合金製のツイストドリルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide twist drill used for drilling and the like.

【0002】[0002]

【従来の技術】超硬合金製ツイストドリルは、高速度鋼
製のツイストドリルに比較し、長寿命、高速切削等に優
れる特徴をもつため、MC等の普及に伴い広範に用いら
れている。また、ドリル自体の形状は、MC等の高速・
高送りに対応するため、切り屑処理性、特に切り屑の排
出を優先させた形状が用いられ、その例として、特許第
2674124号がある。この例には、切り屑排出溝を
拡幅し、切り屑排出性に優れたツイストドリルを提供
し、超硬合金の特徴である高速・高送りに対応したツイ
ストドリルとなっている。また、ツイストドリルに用い
られる超硬合金には、2種類有り、JIS K10相当
の0.数ミクロンの微粒子からなる超微粒子超硬合金
と、JIS P30相当の強靱超硬と称される硬質相が
炭化タングステンとB−1型固溶体からなる超硬合金
で、特に前者は強度を重視した用途に、後者は鋼切削に
対するすぐれた耐摩耗性から用いられている。
2. Description of the Related Art Cemented carbide twist drills are widely used with the spread of MC and the like, because they have characteristics such as long life and high speed cutting as compared with high speed steel twist drills. In addition, the shape of the drill itself is high-speed
In order to cope with the high feed, a shape giving priority to the chip processing property, particularly, the discharge of the chip is used. As an example, there is Japanese Patent No. 2,674,124. In this example, a chip discharge groove is widened to provide a twist drill excellent in chip discharge property, and a twist drill adapted to high speed and high feed, which is a feature of cemented carbide. In addition, there are two types of cemented carbide used for twist drills. Ultra-fine-grain cemented carbide consisting of fine particles of several microns, and a cemented carbide consisting of tungsten carbide and a B-1 type solid solution in which the hard phase called tough cemented carbide equivalent to JIS P30 is used. In addition, the latter is used because of its excellent wear resistance against steel cutting.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、K10
相当の超硬合金は、鋼切削において、そのプラス面は強
度上優れるが、マイナス面は溶着等に起因する刃先の損
傷にある。この溶着等を被覆により減少させることはで
きるが、再研磨を繰り返すツイストドリルにおいては好
ましくない。また、P30相当の超硬合金は、鋼切削に
おいて、そのプラス面はTiCにTaC、NbC等を固
溶したB1固溶体相により溶着等に優れるが、マイナス
面はTi等を含むことによる強度がK10相当に比べて
低下するため、ツイストドリルにおいては折損等を生じ
やすくなる。従って、上記に着目し、基体である超硬合
金の強度、耐溶着性を改善することにより満足のいく工
具寿命を達成することが可能となる。
However, the K10
A considerable amount of cemented carbide is superior in strength on the plus side in steel cutting, but the minus side is damage to the cutting edge due to welding or the like. This welding and the like can be reduced by coating, but this is not preferable in a twist drill where re-polishing is repeated. In addition, a cemented carbide equivalent to P30 is excellent in welding and the like due to a B1 solid solution phase in which TaC, NbC, etc. are dissolved in TiC, and a minus surface has a strength of K10 due to the inclusion of Ti, etc., in steel cutting. Since the twist drill is considerably reduced, the twist drill is likely to be broken. Therefore, paying attention to the above, it is possible to achieve a satisfactory tool life by improving the strength and welding resistance of the cemented carbide as the base.

【0004】[0004]

【課題を解決するための手段】そのため、本願発明で
は、B1型固溶体相、WC相及び結合相からなる超硬合
金製ツイストドリルにおいて、炭化タングステンからな
る硬質相50〜70面積%、B1型固溶体相からなる硬
質相15〜30面積%、鉄族金属からなる結合相15〜
25重量%からなるとともに、焼結体に於ける平均粒度
が炭化タングステン相が0.3ミクロン〜1.2ミクロ
ン、B1型固溶体相が0.3ミクロン〜2ミクロンより
なり、前記Coの格子定数が3.565Å〜3.575
Åであるツイストドリルである。
SUMMARY OF THE INVENTION Therefore, according to the present invention, in a twisted carbide drill made of a B1-type solid solution phase, a WC phase and a binder phase, a hard phase of 50 to 70 area% of tungsten carbide and a B1-type solid solution are used. 15 to 30% by area of a hard phase composed of a phase, 15 to 30% of a binder phase composed of an iron group metal
25 wt%, and the average particle size in the sintered body is 0.3 to 1.2 microns for the tungsten carbide phase and 0.3 to 2 microns for the B1 type solid solution phase. From 3.565Å to 3.575
It is a twist drill that is Å.

【0005】[0005]

【作用】まず、鋼の耐溶着性を高めるには、TiC等を
主とするB1型固溶体の面積比を高めれば良いが、Ti
C等はWCに比して弾性率が低く、剛性を含め曲げ強度
を著しく低下させる。そのためこれらのバランスのとれ
る面積比を検討することにより可能な限りその添加量を
低減させる検討を行った。第1に、B1型固溶体の粒度
に着目し、その微粒化を計った。B1型固溶体は、Ti
C、TiN、TaC、NbC等のFCC相の成分に、W
Cが侵入した固溶体であり、基となるTiC等とWCを
予め固溶体としておくことによりその粒度を微細化、均
粒化した。第2に、B1型固溶体中のW率をさげ耐摩耗
性の向上をはかった。B1型固溶体に窒化物を添加する
とWの固溶を抑制し、B1型固溶体の組成を調整するこ
とができる。特に、窒化物としては、TiN、TaNの
効果が大きい。またB1型固溶体の微細化についても上
記窒化物は効果が高い。第3に、WCに関しては、出発
原料の平均粒度で調整するが、粒度分布が問題となり、
均一化が困難である。そのため、その粒度調整をB1型
固溶体中へのWC固溶化に伴う細かなWC粒子の消滅よ
り均粒化を行った。以上により、鋼切削時の耐溶着性に
十分なB1型固溶体相を分散させると共に、添加量、組
成、微粒化を計ることにより強度の低下をおさえること
ができた。
First, to improve the welding resistance of steel, the area ratio of a B1-type solid solution mainly composed of TiC or the like may be increased.
C and the like have a lower elastic modulus than WC and significantly lower bending strength including rigidity. For this reason, studies were made to reduce the amount of addition as much as possible by examining the area ratios that achieve these balances. First, attention was paid to the particle size of the B1 type solid solution, and its atomization was measured. The B1 type solid solution is Ti
The components of the FCC phase such as C, TiN, TaC, NbC, etc.
This is a solid solution in which C has penetrated, and its particle size is refined and uniformized by previously forming a solid solution of the base TiC and the like and WC. Second, the wear resistance was improved by reducing the W ratio in the B1 type solid solution. When a nitride is added to the B1 type solid solution, the solid solution of W can be suppressed, and the composition of the B1 type solid solution can be adjusted. In particular, TiN and TaN have a great effect as nitrides. The nitride is also highly effective in miniaturizing the B1 type solid solution. Third, for WC, the average particle size of the starting material is adjusted, but the particle size distribution becomes a problem,
It is difficult to equalize. For this reason, the particle size was adjusted by uniform WC particles disappearing due to WC solid solution in the B1 type solid solution. As described above, it was possible to disperse the B1 type solid solution phase sufficient for the welding resistance at the time of cutting steel, and to suppress the decrease in strength by measuring the addition amount, the composition, and the atomization.

【0006】次に、耐溶着性を向上するためにCo含有
量は5〜20面積%が好ましく、この場合、合金の含有
炭素量は低い側に調整することにより耐チッピング性の
劣化が防止可能であった。つまり、Coの格子定数は超
硬合金製造における脱炭相が出現しないぎりぎりの低炭
素側で3.575Å、遊離炭素が出現しないぎりぎりの
高炭素側で3.555Åまで連続的に変化するが、それ
が 3.565〜3.575Åにはいる低炭素側に制御
することで耐チッピング性の劣化の防止が可能であっ
た。低炭素側とすることにより、超微粒子超硬では液相
焼結工程の後の1250℃から1330℃の凝固までの
冷却工程において、液相中に固溶していたWCが既存W
C粒子表面に晶出し板状WC粒子を形成しながら粒成長
する。低炭素側においては凝固温度が1330℃と高く
晶出WC量が少なく粒成長に伴うWC粒子同士の合体が
発生し難く粒子の形状も比較的丸い結果となる。
Next, in order to improve the welding resistance, the Co content is preferably 5 to 20% by area. In this case, the carbon content of the alloy is adjusted to a lower side to prevent the chipping resistance from deteriorating. Met. That is, the lattice constant of Co continuously changes up to 3.575 ° on the low carbon side just before the decarburized phase does not appear in the cemented carbide production, and to 3.555 ° on the high carbon side just before free carbon appears. By controlling it to the low carbon side where it falls within 3.565 to 3.575 °, it was possible to prevent deterioration of chipping resistance. By setting to the low carbon side, in the ultra-fine particle carbide, in the cooling step from the liquid phase sintering step to solidification of 1250 ° C. to 1330 ° C., the WC which was dissolved in the liquid phase becomes the existing W.
Grains grow while forming crystallization plate-like WC particles on the surface of the C particles. On the low carbon side, the solidification temperature is as high as 1330 ° C., the amount of crystallized WC is small, and coalescence of WC particles due to grain growth does not easily occur, and the shape of the particles is relatively round.

【0007】一方、高炭素側では冷却工程中に比較的多
量のWCが晶出し角状粒子となるとともに粒成長中に粒
子が合体する傾向にある。角状粒子が合体すると応力集
中し、クラックが発生した場合、伝播しやすく、その結
果チッピングを誘発し易くなる。この作用は、特に回転
中心付近に見られる耐チッピング性と相関する。ツイス
トドリルの中心付近は低速故に生じる切削抵抗に抗ずる
ため耐クラック性が要求される。また、低炭素側に制御
することによりCo相は格子定数の増大からも明らかな
ように高炭素側のくらべWを多量に固溶する結果、固溶
強化されCo相自体が強化され、刃先が極めて高温にな
る特殊切削条件下で工具寿命の向上に極めて効果を発揮
し好ましい結果となる。
On the other hand, on the high carbon side, a relatively large amount of WC tends to crystallize into cubic grains during the cooling step, and the grains tend to coalesce during grain growth. When the horn-like particles coalesce, the stress concentrates, and when a crack occurs, it tends to propagate, and as a result, it tends to induce chipping. This effect correlates with the chipping resistance particularly seen near the center of rotation. In the vicinity of the center of the twist drill, crack resistance is required in order to resist cutting force generated due to low speed. Also, by controlling to the low carbon side, the Co phase dissolves a large amount of W in comparison with the high carbon side as apparent from the increase in the lattice constant. Under special cutting conditions in which the temperature is extremely high, the tool life is extremely improved and the preferable result is obtained.

【0008】そこで、本発明者らはビッカース硬さの測
定時の圧痕の4隅に生じるクラックに着目しクラックの
伝播経路を詳細に観察した。前記高炭素合金の場合に
は、角状粒子が多く、ビッカース圧痕の4隅に生じるク
ラックは長く、また、その状態をミクロ組織で観察する
と、角状粒子を破壊して伝播してゆくの特徴がある。ま
た、前記低炭素合金では比較的丸い粒子となるので、粒
子周辺を通って伝播する特徴がある。上記のように、超
微粒子超硬合金では、やや成長したWC粒子はクラック
に対してマイナスな作用がある。その特徴を、ビッカ−
ス圧痕の4隅に生じるクラックの長さを測定し、その4
本の合計長さとビッカース荷重との関係で現す。(以
下、クラック抵抗と称する。)すなわち、クラック抵抗
(kg/mm)=(ビッカース荷重)÷(4本のクラック長
さの和)であり、低炭素合金の如く粒子が形状化されて
いる超硬では、クラックが伝播しにくいため、クラック
長さは短く、したがってクラック抵抗は大きな数値とな
る。それとは反対に、高炭素合金では、角状粒子に応力
集中を生じ、クラックが伝播しやすいためクラック長さ
は長くなり、したがって、クラック抵抗は小さな数値と
なる。
Therefore, the present inventors paid attention to cracks formed at the four corners of the indentation at the time of measuring the Vickers hardness, and observed the crack propagation path in detail. In the case of the high carbon alloy, there are many angular particles, the cracks generated at the four corners of the Vickers indentation are long, and when the state is observed with a microstructure, the angular particles are broken and propagated. There is. In addition, since the low-carbon alloy has relatively round particles, the low-carbon alloy has a characteristic of propagating around the particles. As described above, in the ultrafine-grain cemented carbide, the slightly grown WC particles have a negative effect on cracks. The feature, Vicca-
The length of the cracks formed at the four corners of the
Expressed by the relationship between the total length of the book and the Vickers load. (Hereinafter referred to as crack resistance.) That is, crack resistance (kg / mm) = (Vickers load) ÷ (sum of the lengths of four cracks), and the particle is shaped like a low carbon alloy. In the case of hard, the crack length is short because the crack is difficult to propagate, so that the crack resistance is a large value. Conversely, in the high carbon alloy, stress concentration occurs in the angular particles, and the cracks are easily propagated, so that the crack length becomes longer, and thus the crack resistance becomes a small value.

【0009】次に数値を限定した理由を説明する。炭化
タングステンからなる硬質相50〜70面積%としたの
は、50%未満では相対的にB1型固溶体相、結合相が
多くなりすぎ、特に剛性に影響するため50%未満とし
た。また、70%をこえると、相対的にB1型固溶体
相、結合相が少なくなりすぎ、特に靱性を劣化させるた
め50%未満とした。また、B1型固溶体相からなる硬
質相は耐溶着性と関連し、上記炭化タングステン相中に
散在しており、その面積が15%未満では耐溶着性に対
して効果が無く、また30%をこえてはB1相が多くな
りすぎ強度的に劣るため15〜30%とした。次に、C
oの含有量は15面積%未満であると超硬合金の強度が
低くツイストドリルが折損し易くなり、25面積%を越
えて含有させると耐塑性変形性が劣化するため、15〜
25面積%とした。
Next, the reason for limiting the numerical values will be described. The reason why the hard phase made of tungsten carbide is set to 50 to 70 area% is that if it is less than 50%, the B1 type solid solution phase and the binder phase are relatively too large, and particularly the rigidity is affected. On the other hand, if it exceeds 70%, the B1 type solid solution phase and the binder phase become relatively small, and particularly, the toughness is deteriorated. In addition, the hard phase composed of the B1 type solid solution phase is scattered in the tungsten carbide phase in relation to the welding resistance, and if the area is less than 15%, there is no effect on the welding resistance, and 30% is not effective. If it exceeds this, the B1 phase becomes too large and the strength is inferior. Next, C
If the content of o is less than 15 area%, the strength of the cemented carbide is low, and the twist drill is easily broken. If the content of o exceeds 25 area%, the plastic deformation resistance is deteriorated.
25 area%.

【0010】WC平均粒子径は0.3ミクロン未満であ
ると超硬合金の硬さが極めて高くなり靭性を劣化させ、
1.2ミクロンを越えると耐摩耗性が劣化するため0.
5ミクロン〜1.2ミクロンとした。B1型固溶体相の
平均粒子径は0.3ミクロン未満であると超硬合金の硬
さが極めて高くなり靭性を劣化させ、1.2ミクロンを
越えるとB1型固溶体相が大きいため、クラック等の伝
播しやすく、強度が低下するため0.5ミクロン〜1.
2ミクロンとした。Coの格子定数は、前述のごとく
3.565Å未満の高炭素側では耐チッピング性の劣化
とCoそのものの固溶強化が十分でないため、また3.
575Åを越えると脆弱な脱炭相が出現するため3.5
65Å〜3.575Åとした。クラック抵抗は、60k
g/未満であると偶発的に生じる切削力の作用に対して
十分な強度を保つことができ、特にツイストドリルとし
て用いたとき、欠損・折損に対し安定した性能を示す。
好ましくは、70kg/mm以上である。以下、実施例
に基づき本願発明を詳細に説明する。
When the WC average particle size is less than 0.3 micron, the hardness of the cemented carbide becomes extremely high and the toughness is deteriorated.
If the thickness exceeds 1.2 microns, the wear resistance deteriorates.
5 microns to 1.2 microns. When the average particle size of the B1 type solid solution phase is less than 0.3 μm, the hardness of the cemented carbide becomes extremely high and the toughness is deteriorated. When the average particle size exceeds 1.2 μm, the B1 type solid solution phase has a large It is easy to propagate and the strength is reduced.
It was 2 microns. As described above, since the lattice constant of Co is lower than 3.565 ° on the high carbon side, the chipping resistance deteriorates and the solid solution strengthening of Co itself is not sufficient.
If it exceeds 575 °, a fragile decarburized phase will appear, so 3.5
65 to 3.575. Crack resistance is 60k
When it is less than g / g, sufficient strength can be maintained against the action of a cutting force that occurs accidentally, and when used as a twist drill, stable performance against chipping and breakage is exhibited.
Preferably, it is 70 kg / mm or more. Hereinafter, the present invention will be described in detail based on examples.

【0011】[0011]

【実施例】市販のWC粉末(平均粒度0.8μm) 、
TiC粉末(同1.0μm) 、TiN粉末(同1.0
μm) 、DC粉末(WC/TiC=70/30 同1.
5μm) 、及び、上記粉末を使用してWC−TiC−
TiNの固溶体を作成した。固溶体は WC/TiC
/TiN=50/48/2、WC/TiC/TiN/
Ta(Nb)C=50/25/5/20、となるよう配
合し、乾燥後、1600℃、2時間、N雰囲気中で固溶
化処理し、粒度調整を行い、平均粒度0.5μmの粉末
を作成した。これらの粉末を用いて、残り:WC、B1
型固溶体5〜25%、結合相5〜25容量%の組成にな
るよう配合した。組成等を表1に示す。
Examples: Commercially available WC powder (average particle size 0.8 μm),
TiC powder (1.0 μm), TiN powder (1.0 μm)
μm), DC powder (WC / TiC = 70/30)
5 μm) and WC-TiC-
A solid solution of TiN was prepared. Solid solution is WC / TiC
/ TiN = 50/48/2, WC / TiC / TiN /
Ta (Nb) C = 50/25/5/20, dried and then subjected to a solution treatment in an N atmosphere at 1600 ° C. for 2 hours to adjust the particle size, to obtain a powder having an average particle size of 0.5 μm. It was created. Using these powders, the rest: WC, B1
It was blended so as to have a composition of 5 to 25% by volume of the solid solution and 5 to 25% by volume of the binder phase. Table 1 shows the composition and the like.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に示す組成で、混合、乾燥した後、試
験片をプレス成形し、真空中1400℃で焼結したの
ち、所定の形状に加工した。また、物性、ミクロ組織上
の変化を確認するため、上記チップを研磨、ラップした
後、硬さ、クラック抵抗及びCoの格子定数を測定し
た。その結果も併せて表1に併記する。また、平均粒度
は電子顕微鏡による組織観察を行い、その写真より測定
した。本発明1と比較例10の測定結果は、本発明1が
WC相の平均粒度は0.51μm、B1固溶体は0.9
5μmであり、比較例10は、WC相の平均粒度は0.
53μm、B−1型固溶体は1.8μmと粗く成ってい
た。
After mixing and drying with the compositions shown in Table 1, a test piece was press-formed, sintered at 1400 ° C. in a vacuum, and worked into a predetermined shape. Further, in order to confirm changes in physical properties and microstructure, the chip was polished and wrapped, and then hardness, crack resistance, and lattice constant of Co were measured. The results are also shown in Table 1. The average particle size was determined by observing the structure with an electron microscope and using the photograph. The measurement results of Invention 1 and Comparative Example 10 show that Invention 1 has an average particle size of the WC phase of 0.51 μm and a B1 solid solution of 0.9.
In Comparative Example 10, the average particle size of the WC phase was 0.5 μm.
The 53 μm, B-1 type solid solution was as coarse as 1.8 μm.

【0014】更に、本発明例2、4及び比較例10の試
料を用いて、2枚刃、外径8mm、先端角140度の標
準的な形状のツイストドリルを製作し、被覆後、切削試
験を行った。切削諸元は、被削財SCM440(焼鈍
材)を用いて、切削速度60m/min、送り速度50
0mm/minで、穴深さ24mm(ドリル径の3倍)
の穴加工を水溶性切削油を用いて行った。寿命は、切り
屑等の形状を観察しつつ、一定加工穴数毎に刃先の損傷
状態を確認しつつ行った。その結果、本発明例2、4の
ツイストドリルでは、切削初期には分断された切り屑が
生成され、切り屑排出性もよく、スムーズな穴加工が行
え、溶着等もなかった。比較例10も切削初期は本発明
例同様に行えた。定常的な摩耗状態となる500穴加工
後、摩耗量の増加に伴い、皮膜が摩耗により基体自体が
切り屑と接触するようになると、比較例10では溶着部
が激しくなり、欠損を生じ、寿命となった。更に、本発
明例2、4では、外周との交叉部も正常な摩耗を示し、
更に加工を継続すると、2000穴加工で刃先を観察す
ると、ドリル先端部と外周との交叉部の摩耗が大きくな
り、基体自体が切削に関与していたが正常な切り屑が得
られていた。この状態で3000穴まで加工し、ツイス
トドリルの先端部を観察すると、ドリルのシンニング
刃、直線刃付近はまだ正常な摩耗であるが、ドリル先端
部と外周の交叉部は塑性変形はしておらず、継続可能な
寿命であった。
Further, using the samples of Examples 2 and 4 of the present invention and Comparative Example 10, a twist drill having a standard shape with two blades, an outer diameter of 8 mm, and a tip angle of 140 ° was manufactured. Was done. The cutting specifications are as follows: using a work material SCM440 (annealed material), cutting speed 60 m / min, feed speed 50
0mm / min, hole depth 24mm (3 times the drill diameter)
Was performed using a water-soluble cutting oil. The life was determined while observing the shape of chips and the like, and checking the damage state of the cutting edge for each fixed number of processing holes. As a result, in the twist drills of Examples 2 and 4 of the present invention, separated chips were generated in the initial stage of cutting, the chip discharge property was good, smooth drilling was performed, and there was no welding or the like. In Comparative Example 10, the initial stage of cutting was performed in the same manner as in the present invention. After machining 500 holes, which are in a steady state of wear, if the film comes into contact with the chip itself due to abrasion as the amount of wear increases, in Comparative Example 10, the welded portion becomes violent, causing chipping and resulting in a long life. It became. Further, in Examples 2 and 4 of the present invention, the intersection with the outer periphery also shows normal wear,
When the machining was further continued, when the cutting edge was observed in 2000-hole machining, the wear at the intersection between the drill tip and the outer periphery increased, and although the substrate itself was involved in the cutting, normal chips were obtained. When drilling up to 3000 holes in this state and observing the tip of the twist drill, the wear near the thinning blade and the straight blade of the drill is still normal, but the intersection between the drill tip and the outer periphery has undergone plastic deformation. And had a sustainable life.

【0015】次に、本発明例6、8及び比較例12の試
料を用いて、前記同様のツイストドリルを製作し、被覆
後、切削試験を行った。その結果、本発明例6、8のツ
イストドリルでは、切り屑排出性もよく、スムーズな穴
加工が行え、溶着等もなかった。比較例12も切削初期
は本発明例同様に行えた。本発明例6、8は1000穴
加工、2000穴加工後でも、ドリル先端部と外周との
交叉部の摩耗が大きくなったものの、基体自体が切削に
関与していたが正常な切り屑が得られていた。この状態
で3000穴まで加工し、ツイストドリルの先端部を観
察すると、ドリルのシンニング刃、直線刃付近はまだ正
常な摩耗であり、ドリル先端部と外周の交叉部は塑性変
形はしておらず、継続可能な寿命であった。それに対
し、比較例12は、B1固溶体相の粒度が粗いため、1
00穴前後の繰り返しで折損した。
Next, using the samples of Examples 6 and 8 of the present invention and Comparative Example 12, a twist drill similar to that described above was manufactured, and after coating, a cutting test was performed. As a result, the twist drills of Examples 6 and 8 of the present invention had good chip dischargeability, could perform smooth hole drilling, and had no welding or the like. In Comparative Example 12, the initial stage of cutting was performed in the same manner as in the present invention. In Examples 6 and 8 of the present invention, even after machining of 1000 holes and 2000 holes, although the wear at the intersection of the drill tip and the outer periphery increased, the base itself was involved in the cutting, but normal chips were obtained. Had been. When drilling up to 3000 holes in this state and observing the tip of the twist drill, the wear near the thinning blade and straight blade of the drill is still normal wear, and the intersection between the drill tip and the outer periphery has not undergone plastic deformation. , A sustainable life. On the other hand, in Comparative Example 12, since the particle size of the B1 solid solution phase was coarse, 1
It was broken by repeating around 00 holes.

【0016】次に、表1で示した本発明例2、4(WC
粒子0.8μm)の組成の合金を用いてカーボン量を変
化させた合金を製作した。カーボン量は飽和磁束密度の
測定の結果より、Coの格子定数に換算した。その結果
を表2に示す。
Next, Examples 2 and 4 of the present invention shown in Table 1 (WC
An alloy having a composition of 0.8 μm) was prepared by changing the amount of carbon. The amount of carbon was converted into a lattice constant of Co from the result of the measurement of the saturation magnetic flux density. Table 2 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】表2より、カーボン量を変化させた試料の
中で、本発明例の13〜18の例では、WC粒子が丸味
を帯び、角状に成長し、かつ、合体した粒子がほとんど
無いため硬さが高く、クラック抵抗はおおきな値となっ
たにのに対し、比較例19、22ではカーボン量が高い
ため、正常な組織ではあるが部分的に、WC粒子が角状
に成長し、WC粒子が接触し、また、合体した粒子も観
察され、硬さのわりにはクラック抵抗が小さな値となっ
た。更に、比較例23、24ではカーボン量が低すぎる
ため、イータ相と称されるM6C相が部分的に観察され
るため、硬さは高いが脆く、クラック抵抗は小さな値と
なった。次に、これらの試料を前実施例同様なツイスト
ドリルを製作し、切削諸元も同じで行った。その結果も
表2に併記する。
According to Table 2, among the samples in which the amount of carbon was changed, in Examples 13 to 18 of the present invention, the WC particles were rounded, grew in a square shape, and there were almost no coalesced particles. Therefore, the hardness was high, and the crack resistance was a large value. On the other hand, in Comparative Examples 19 and 22, the amount of carbon was high. The WC particles were in contact with each other, and the coalesced particles were also observed, and the crack resistance was a small value for the hardness. Further, in Comparative Examples 23 and 24, since the amount of carbon was too low, an M6C phase called an eta phase was partially observed, so that the hardness was high but brittle, and the crack resistance was a small value. Next, a twist drill similar to the previous example was manufactured from these samples, and the cutting specifications were the same. The results are also shown in Table 2.

【0019】表2より、カーボン量の高い比較例19等
では、外周コーナー部の損傷により寿命となった。ま
た、脱炭層が観察された比較例22等では、負荷を繰り
返すうちにシャンク側から折損した。本試験では、適正
なカーボン量とすることにより、WC粒子の形状を特定
することにより、不安定さを包含するツイストドリルの
様な切削工具においても、安定、良好な結果が得られ
た。
As shown in Table 2, in Comparative Example 19 and the like having a high carbon content, the life was shortened due to damage to the outer peripheral corners. In Comparative Example 22 and the like in which a decarburized layer was observed, it was broken from the shank side while the load was repeated. In this test, by specifying an appropriate amount of carbon and specifying the shape of the WC particles, stable and good results were obtained even with a cutting tool such as a twist drill which involves instability.

【0020】[0020]

【発明の効果】超硬合金製のツイストドリルを、WC
相、B1固溶体相、Co相で、かつ硬質相の粒度、Co
格子定数を所定の数値範囲とすることにより、耐溶着性
を保ちつつ、耐摩耗性を向上させることができた。特
に、ツイストドリルのように切り屑を巻き込みチッピン
グ、欠損等を生じ易い切削工具ではクラックに対する抵
抗を高めることにより、安定した長寿命なドリルが得ら
れる。
The twist drill made of cemented carbide can be used with WC
Phase, B1 solid solution phase, Co phase and hard phase particle size, Co
By setting the lattice constant in a predetermined numerical range, it was possible to improve the wear resistance while maintaining the welding resistance. In particular, in a cutting tool such as a twist drill, in which cutting chips are liable to be involved and cause chipping, chipping, and the like, a stable and long-life drill can be obtained by increasing resistance to cracks.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 B1型固溶体相、WC相及び結合相から
なる超硬合金製ツイストドリルにおいて、炭化タングス
テンからなる硬質相50〜70面積%、B1型固溶体相
からなる硬質相15〜30面積%、鉄族金属からなる結
合相15〜25重量%からなるとともに、焼結体に於け
る平均粒度が炭化タングステン相が0.3ミクロン〜
1.2ミクロン、B1型固溶体相が0.3ミクロン〜2
ミクロンよりなり、前記Coの格子定数が3.565Å
〜3.575Åであることを特徴とする超硬合金製ツイ
ストドリル。
1. In a twisted carbide drill made of a B1 type solid solution phase, a WC phase and a binder phase, 50 to 70 area% of a hard phase made of tungsten carbide and 15 to 30 area% of a hard phase made of a B1 type solid solution phase. And 15 to 25% by weight of a binder phase composed of an iron group metal, and the average particle size of the sintered body is from 0.3 μm to 0.3 μm.
1.2 microns, B1 type solid solution phase 0.3 microns to 2
Microns, and the lattice constant of Co is 3.565 °.
A cemented carbide twist drill characterized in that the angle is 3.575 °.
【請求項2】 請求項1記載の超硬合金製ツイストドリ
ルにおいて、クラックの伝播に対する抵抗が60kg/
mm以上であることをことを特徴とする超硬合金製ツイ
ストドリル。
2. The cemented carbide twist drill according to claim 1, wherein the resistance to crack propagation is 60 kg / kg.
mm or more, a twist drill made of cemented carbide.
【請求項3】 請求項1乃至2記載の超硬合金製ツイス
トドリルにおいて、硬質皮膜及び/又は潤滑性皮膜を被
覆したことを特徴とする超硬合金製ツイストドリル。
3. The twisted carbide drill according to claim 1, further comprising a hard coating and / or a lubricating coating.
JP18356998A 1998-06-30 1998-06-30 Twisted drill made of cemented carbide Pending JP2000015514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18356998A JP2000015514A (en) 1998-06-30 1998-06-30 Twisted drill made of cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18356998A JP2000015514A (en) 1998-06-30 1998-06-30 Twisted drill made of cemented carbide

Publications (1)

Publication Number Publication Date
JP2000015514A true JP2000015514A (en) 2000-01-18

Family

ID=16138112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18356998A Pending JP2000015514A (en) 1998-06-30 1998-06-30 Twisted drill made of cemented carbide

Country Status (1)

Country Link
JP (1) JP2000015514A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191109A (en) * 2001-12-25 2003-07-08 Kyocera Corp Cemented carbide and cutting tool using it
WO2012153858A1 (en) * 2011-05-12 2012-11-15 株式会社タンガロイ Superhard alloy and coated superhard alloy
JP6957828B1 (en) * 2020-10-30 2021-11-02 住友電工ハードメタル株式会社 Cemented carbide and cutting tools equipped with it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003191109A (en) * 2001-12-25 2003-07-08 Kyocera Corp Cemented carbide and cutting tool using it
WO2012153858A1 (en) * 2011-05-12 2012-11-15 株式会社タンガロイ Superhard alloy and coated superhard alloy
JP2012251242A (en) * 2011-05-12 2012-12-20 Tungaloy Corp Superhard alloy and coated superhard alloy
JP6957828B1 (en) * 2020-10-30 2021-11-02 住友電工ハードメタル株式会社 Cemented carbide and cutting tools equipped with it
WO2022091343A1 (en) * 2020-10-30 2022-05-05 住友電工ハードメタル株式会社 Cemented carbide and cutting tool comprising same

Similar Documents

Publication Publication Date Title
WO2011002008A1 (en) Cermet and coated cermet
JPH0392210A (en) Super hard alloy-made drill
JP4028368B2 (en) Surface coated cemented carbide cutting tool
JP2710934B2 (en) Cermet alloy
JP2007044807A (en) Extremely small diameter end mill made of cemented carbide
JPH06158213A (en) Cutting tool made of titanium carbonitride-based cermet excellent in wear resistance
JP2004076049A (en) Hard metal of ultra-fine particles
JP2000015514A (en) Twisted drill made of cemented carbide
JP2004315903A (en) Fine-grained cemented carbide
JP2004263254A (en) Cemented carbide, coated cemented carbide member, and their production methods
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPH10298698A (en) Cemented carbide
JP3206972B2 (en) Fine-grain cemented carbide
JPH0346538B2 (en)
JP2006131975A (en) Cermet for saw blade
US20210238716A1 (en) Composite sintered material
JP2009006413A (en) Ti based cermet
JP2000015513A (en) Cemented carbide twist drill
JP2004330314A (en) Coated cemented carbide tool
JP3451949B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JP7473871B2 (en) WC-based cemented carbide cutting tool with excellent wear resistance and chipping resistance and surface-coated WC-based cemented carbide cutting tool
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JPH10168537A (en) Coated cermet for cutting tool
JPH09227981A (en) Cemented carbide
JPH04152004A (en) Cutting tool