JPH0218243Y2 - - Google Patents

Info

Publication number
JPH0218243Y2
JPH0218243Y2 JP1984194618U JP19461884U JPH0218243Y2 JP H0218243 Y2 JPH0218243 Y2 JP H0218243Y2 JP 1984194618 U JP1984194618 U JP 1984194618U JP 19461884 U JP19461884 U JP 19461884U JP H0218243 Y2 JPH0218243 Y2 JP H0218243Y2
Authority
JP
Japan
Prior art keywords
boss
impeller
ceramic
metal
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984194618U
Other languages
Japanese (ja)
Other versions
JPS61108801U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984194618U priority Critical patent/JPH0218243Y2/ja
Priority to DE19853545135 priority patent/DE3545135A1/en
Priority to US06/811,160 priority patent/US4747722A/en
Priority to GB08531265A priority patent/GB2169058B/en
Priority to FR858518882A priority patent/FR2574783B1/en
Publication of JPS61108801U publication Critical patent/JPS61108801U/ja
Priority to US07/181,839 priority patent/US4983064A/en
Application granted granted Critical
Publication of JPH0218243Y2 publication Critical patent/JPH0218243Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、内燃機関用ターボ過給機、ガスター
ビン等に使用されて高温ガスに晒されるセラミツ
ク製タービン翼車に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a ceramic turbine wheel that is used in a turbocharger for an internal combustion engine, a gas turbine, etc. and is exposed to high-temperature gas.

従来技術 セラミツクスは、比重が低いにもかかわらず、
金属に比して耐熱性に優れ、かつ金属並みの強度
を有しており、例えば、最近注目されている窒化
珪素(Si2N5)セラミツクスの曲げ強度は、常温
で90Kgf/mm2であるが、1000℃においても、な
お、80Kgf/mm2の曲げ強度を有している。
Conventional technology Although ceramics have a low specific gravity,
It has superior heat resistance compared to metals and strength comparable to that of metals. For example, silicon nitride (Si 2 N 5 ) ceramics, which have been attracting attention recently, have a bending strength of 90 kgf/mm 2 at room temperature. However, even at 1000°C, it still has a bending strength of 80 Kgf/mm 2 .

このような優れた耐熱性を有するセラミツクス
は、金属部材に代つて、使用条件の苛酷な各種機
械部品として採用されつつあり、その一例とし
て、内燃機関のターボ過給機で使用されるタービ
ン翼車を挙げることができる。
Ceramics, which have such excellent heat resistance, are being adopted in place of metal parts for various mechanical parts that are subject to harsh operating conditions.One example is the turbine blade wheel used in the turbocharger of an internal combustion engine. can be mentioned.

ターボ過給機は、機関の排気エネルギーを利用
して排気タービンを回転し、その動力でコンプレ
ツサーを駆動することにより、吸入空気または混
合気を予圧する装置であり、タービン翼車は、高
温の排気に晒されかつ高速回転する部材であるた
め、これを耐熱性が優れ、しかも低比重のセラミ
ツクスで形成するのは効果的である。
A turbocharger is a device that precompresses intake air or a mixture by rotating an exhaust turbine using engine exhaust energy and driving a compressor with that power. Since it is a member that is exposed to heat and rotates at high speed, it is effective to form it from ceramics that have excellent heat resistance and low specific gravity.

しかしながら、タービン翼車と、これを支持す
る加工精度の高い回転軸を一体に形成すること
は、加工上頗る困難であり、これを解決するため
に、熱負担の高いタービン翼車をセラミツク製に
し、加工精度の高い回転軸を金属製にしたセラミ
ツク製タービン翼車があつた。
However, it is extremely difficult to form a turbine wheel and the rotary shaft that supports it with high machining precision into one piece, and in order to solve this problem, the turbine wheel, which has a high heat load, is made of ceramic. , a ceramic turbine wheel with a metal rotating shaft with high machining accuracy was introduced.

この種のタービン翼車においでは、特開昭54−
42520号公報に示されるように、セラミツク製タ
ービン翼車を金属製回転軸に結合するために、タ
ービン翼車のボス部を回転軸の中空筒部に一体に
嵌着していたが、常温の運転停止状態から高温の
運転状態になると、熱膨張率の大きな金属製回転
軸の中空筒部の方がこれよりも熱膨張率の小さな
セラミツク製タービン翼車のボス部よりも大きく
膨張して、タービン翼車ボス部が回転軸中空筒部
よりスツポ抜ける惧れがあり、この防止策として
ボス部の軸方向長さをその径の3倍以上にしてい
た。このため、このタービン翼車ではその回転軸
の径が全長に亘つて太くなつてしまい、軽量化が
困難でもあつた。
For this type of turbine blade wheel, Japanese Patent Application Laid-Open No. 1983-
As shown in Publication No. 42520, in order to connect a ceramic turbine wheel to a metal rotating shaft, the boss part of the turbine wheel was fitted integrally into the hollow cylindrical part of the rotating shaft. When the state changes from a stopped state to a high-temperature operating state, the hollow cylindrical part of the metal rotary shaft, which has a high coefficient of thermal expansion, expands more than the boss part of the ceramic turbine wheel, which has a lower coefficient of thermal expansion. There is a risk that the turbine impeller boss portion may slip out of the rotary shaft hollow cylinder portion, and as a measure to prevent this, the axial length of the boss portion is made to be at least three times its diameter. For this reason, in this turbine wheel, the diameter of the rotating shaft becomes thick over the entire length, making it difficult to reduce the weight.

また実開昭56−150801号公報記載のタービン翼
車では、セラミツクタービン翼車のボス部にこれ
と略同程度の熱膨張率の金属製スリーブを介して
金属製回転軸の中空円筒部を焼ばめでもつて嵌着
していたが、軸の外径が大きくなつて、やはり軽
量化が困難じあつた。
In addition, in the turbine wheel described in Japanese Utility Model Publication No. 56-150801, a hollow cylindrical portion of the metal rotary shaft is connected to the boss portion of the ceramic turbine wheel through a metal sleeve having approximately the same coefficient of thermal expansion. Although it was a tight fit, the outer diameter of the shaft had increased, making it difficult to reduce the weight.

このような難点を克服したものとして実開昭56
−5701号公報および特開昭59−103902号公報に記
載されたものがある。
As a product that overcomes these difficulties, the
There are those described in JP-A-5701 and JP-A-59-103902.

考案が解決しようとする問題点 実開昭56−5701号公報に記載されたものでは、
第1図に図示するようにセラミツク製翼車01の
ボス部02の長さをその径と略等しい長さに設定
し、このボス部02に、該セラミツクの熱膨張率
に近い金属で製作されたスリーブ03を焼ばめ、
ろう付け等で接続し、該金属製スリーブ03と金
属製軸04とを溶接で接続したので、金属製軸0
4の径を小さくして軽量化を図ることができる
が、その反面スリーブ03と軸04との溶接の際
に生じた溶接歪により残留応力がその溶接近傍に
存在し、かつスリーブ03の底隅部03aと軸0
4の隅部04aとに応力が集中しがちであるため
に、両隅部03a,04aを結ぶ線05に沿つて
クラツクが生じ易い。しかもボス部02がスリー
ブ03よりすつぽ抜けしないように、焼ばめ代を
大きく取ると、ボス部02の基部に大きな応力が
生じて破断し易い。
Problems that the invention attempts to solve The problem described in Utility Model Application Publication No. 56-5701 is as follows:
As shown in FIG. 1, the length of the boss part 02 of the ceramic impeller 01 is set to be approximately equal to its diameter, and the boss part 02 is made of a metal whose coefficient of thermal expansion is close to that of the ceramic. Shrink fit sleeve 03,
Since the metal sleeve 03 and the metal shaft 04 were connected by welding, the metal shaft 0
However, on the other hand, residual stress exists near the welding due to the welding strain that occurs when welding the sleeve 03 and the shaft 04, and the bottom corner of the sleeve 03 Part 03a and axis 0
Since stress tends to be concentrated at the corner 04a of 4, cracks are likely to occur along the line 05 connecting both corners 03a and 04a. Moreover, if a large shrink fit allowance is taken to prevent the boss part 02 from slipping out from the sleeve 03, a large stress will be generated at the base of the boss part 02, making it easy to break.

また特開昭59−103902号公報に記載されたもの
では、第2図に図示するように、セラミツク製翼
車01のボス部02の円周面に、前記セラミツク
と同程度の熱膨張率を有する円筒状スリーブ06
を嵌合し、同円筒状スリーブ06の端面06aを
金属製軸04に溶接により固着したので、熱負担
がかかつた状態において、円筒状スリーブ06の
熱膨張率と金属製軸04の熱膨張率の差により両
者の接合面に沿つてクラツク07が生じ易く、さ
らに円筒状スリーブ06の端面06aに隣接した
金属製軸04の軸端外周部04bは、金属製軸0
6とスリーブ06との溶接による残留歪の影響と
前記両熱膨張率の差の影響を強く受けて、金属製
軸04の軸部04cの熱変形に追従し難くなり、
円筒状スリーブ端面06aに接触していない金属
製軸端面04dと軸隅部04aとを結ぶ線に沿つ
てクラツク08が生じ易い。
Furthermore, in the method described in Japanese Patent Application Laid-Open No. 59-103902, as shown in FIG. Cylindrical sleeve with 06
and the end surface 06a of the cylindrical sleeve 06 was fixed to the metal shaft 04 by welding, so that under heat load, the coefficient of thermal expansion of the cylindrical sleeve 06 and the thermal expansion of the metal shaft 04 Cracks 07 are likely to occur along the joint surfaces of the two due to the difference in ratio, and furthermore, the outer circumferential portion 04b of the shaft end of the metal shaft 04 adjacent to the end surface 06a of the cylindrical sleeve 06 is
It becomes difficult to follow the thermal deformation of the shaft portion 04c of the metal shaft 04 due to the influence of residual strain due to welding between the metal shaft 04 and the sleeve 06, and the difference in the thermal expansion coefficients of the two.
Cracks 08 are likely to occur along the line connecting the shaft corner 04a and the metal shaft end surface 04d that is not in contact with the cylindrical sleeve end surface 06a.

課題を解決するための手段および作用 本考案はこのような欠点を解消したセラミツク
製タービン翼車の改良に係り、セラミツク製翼車
のボス部の長さと直径とを略等しい寸法に形成
し、該セラミツクの熱膨張率に近い熱膨張率の金
属製スリーブを前記セラミツク製翼車ボス部に嵌
着し、該金属製スリーブを介して金属製回転軸に
前記セラミツク製翼車を一体に接合してなるセラ
ミツク製タービン翼車において、前記金属製回転
軸には前記セラミツク翼車の熱膨張率よりも大き
な熱膨張率の材料が用いられ、前記翼車側の金属
製回転軸端面には、高温状態で該翼車ボス部が嵌
合し前記高温より低い通常稼働状態で前記ボス部
および回転軸の熱膨張率差により該ボス部が締付
け嵌着される程度の寸法の凹部が形成され、前記
セラミツク製翼車ボス部の先端および金属製回転
軸凹部の底面より翼車側に位置した個所で前記金
属製スリーブおよび金属製回転軸の各端部が溶接
によつて一体に接合されたことを特徴とするもの
である。
Means and Effects for Solving the Problems The present invention relates to an improvement of a ceramic turbine impeller that eliminates the above-mentioned drawbacks. A metal sleeve having a thermal expansion coefficient close to that of ceramic is fitted onto the ceramic impeller boss portion, and the ceramic impeller is integrally joined to the metal rotating shaft via the metal sleeve. In the ceramic turbine impeller, the metal rotating shaft is made of a material having a coefficient of thermal expansion larger than that of the ceramic impeller, and the end surface of the metal rotating shaft on the impeller side is heated to a high temperature. When the impeller boss fits therein, a recess with a size such that the boss fits tightly is formed due to the difference in coefficient of thermal expansion between the boss and the rotating shaft under normal operating conditions lower than the high temperature, and the ceramic The metal sleeve and each end of the metal rotating shaft are integrally joined by welding at a location located closer to the blade wheel than the tip of the blade wheel boss and the bottom of the metal rotating shaft recess. That is.

本考案においては、前記金属製回転軸には前記
セラミツク製翼車の熱膨張率よりも大きな熱膨張
率の材料が用いられ、前記翼車側の金属製回転軸
端面には、高温状態で該翼車ボス部が嵌合し前記
高温より低い通常稼働状態で前記ボス部および回
転軸の熱膨張率差により該ボス部が締付け嵌着さ
れる程度の寸法の凹部を形成したため、高温状態
で前記翼車ボス部を該回転軸凹部に嵌合し、これ
らを低温に冷却すると、前記ボス部周面に中心方
向へ向つて加わる締付け応力を基部から先端に接
近するにつれて漸次増大させることができる。
In the present invention, a material having a coefficient of thermal expansion larger than that of the ceramic impeller is used for the metal rotating shaft, and the end surface of the metal rotating shaft on the impeller side is provided with a material that has a coefficient of thermal expansion larger than that of the ceramic impeller. Since the recess is formed with a size such that the boss part is tightened and fitted due to the difference in coefficient of thermal expansion between the boss part and the rotating shaft in the normal operating state where the impeller boss part is fitted and the temperature is lower than the above-mentioned high temperature, the above-mentioned When the impeller boss is fitted into the rotary shaft recess and cooled to a low temperature, the tightening stress applied to the circumferential surface of the boss toward the center can be gradually increased from the base toward the tip.

また本考案においては、前記セラミツク製翼車
ボス部の先端および金属製回転軸凹部の底面より
翼車体に位置した個所で前記金属製スリーブおよ
び金属製回転軸の各端部を溶接によつて一体に接
合したため、前記回転軸凹部の隅角部には溶接に
伴なつて発生する残留歪の影響を強く受けない。
Further, in the present invention, the metal sleeve and each end of the metal rotating shaft are welded together at a location located on the blade wheel body from the tip of the ceramic blade wheel boss and the bottom of the metal rotating shaft recess. Therefore, the corners of the rotary shaft recess are not strongly affected by residual strain that occurs due to welding.

実施例 以下、本考案を、自動車用ガソリンエンジンに
付設されるターボ過給機に適用した第3図ないし
第7図に図示の実施例について説明する。
Embodiments Hereinafter, the embodiments shown in FIGS. 3 to 7 will be described in which the present invention is applied to a turbocharger attached to an automobile gasoline engine.

ターボ過給機ロータは、窒化硅素セラミツク製
タービン翼車1と、同窒化硅素セラミツクの熱膨
張率と同程度の熱膨張率のコーバル(Ni23〜
30wt%、Co17〜30wt%、Mn0.6〜0.8wt%、残部
Fe)(商標名)製スリーブ10と、Cr−Mo鋼
(JIS SCM 435)製回転軸20と、同Cr−Mo鋼
製回転軸20に一体に組付けられる図示されない
コンプレツサ翼車とよりなつている。
The turbocharger rotor consists of a turbine impeller 1 made of silicon nitride ceramic and Koval (Ni23 to
30wt%, Co17~30wt%, Mn0.6~0.8wt%, balance
It consists of a sleeve 10 made of Fe) (trade name), a rotating shaft 20 made of Cr-Mo steel (JIS SCM 435), and a compressor impeller (not shown) that is integrally assembled to the rotating shaft 20 made of Cr-Mo steel. There is.

また前記コーバル製スリーブ10の内周面11
は、窒化硅素セラミツク製タービン翼車1のボス
部3におけるボス基部周面5からボス先端部周面
7に亘り僅かな略一定間〓を存して嵌合しうる寸
法と形状に形成されている。
In addition, the inner peripheral surface 11 of the sleeve 10 made of Koval
is formed in such a size and shape that it can be fitted to the boss portion 3 of the silicon nitride ceramic turbine impeller 1 with a short, substantially constant distance from the boss base circumferential surface 5 to the boss tip circumferential surface 7. There is.

さらに、Cr−Mo鋼製回転軸20の軸端部21
は中央部27より大径であつて、前記コーバル製
スリーブ10の内周面11と同様に、同軸端部2
1には前記窒化硅素セラミツク製タービン翼車1
のボス先端部6に、僅かな略一定間〓を存して嵌
合しうるような円筒形凹部22が形成され、同円
筒形凹部22の先端面24はコーバル製スリーブ
10の平面状スリーブ端面14に面一に衝接しう
るように平面に形成されている。
Furthermore, the shaft end 21 of the Cr-Mo steel rotating shaft 20
has a larger diameter than the central portion 27, and like the inner circumferential surface 11 of the Koval sleeve 10, the coaxial end portion 2
1 includes the silicon nitride ceramic turbine wheel 1.
A cylindrical recess 22 is formed in the boss tip 6 of the cylindrical recess 22 such that it can be fitted with a short and substantially fixed period of time, and the end surface 24 of the cylindrical recess 22 is connected to the planar sleeve end surface of the Kobal sleeve 10. It is formed flat so that it can collide flush with 14.

さらに円筒形凹部22の底部23と中央部27
の外周面とは連通孔28で連通されている。
Furthermore, the bottom part 23 and the central part 27 of the cylindrical recess 22
It communicates with the outer circumferential surface of through a communication hole 28.

さらにまたCr−Mo鋼製回転軸20の小径部2
9に図示されないコンプレツサ翼車が嵌合され、
同小径部29の雄ねじ30に螺合されるナツト
(図示されず)により同コンプレツサ翼車は小径
部29に一体に組付けられるようになつている。
Furthermore, the small diameter portion 2 of the Cr-Mo steel rotating shaft 20
A compressor impeller (not shown) is fitted to 9.
The compressor wheel is integrally assembled to the small diameter portion 29 by a nut (not shown) that is screwed onto the male thread 30 of the small diameter portion 29.

前記窒化硅素セラミツク製タービン翼車1とコ
ーバル製スリーブ10とCr−Mo鋼製回転軸20
とは、下記の順序に従つて相互に一体に組立てら
れる。
The silicon nitride ceramic turbine wheel 1, Koval sleeve 10, and Cr-Mo steel rotating shaft 20
are assembled together with each other in accordance with the following sequence:

まず、コーバル製スリーブ10のスリーブ端面
14とCr−Mo鋼製回転軸20の軸端部21にお
ける先端面24とを摩擦溶接により一体的に結合
した後、Cr−Mo鋼製回転軸20の凹部底部23
および連通孔28に予め鑞材31を装入し、窒化
硅素セラミツク製タービン翼車1のボス部3をコ
ーバル製スリーブ10の内周面11およびCr−
Mo鋼製回転軸20の円筒形凹部22に嵌合した
状態で、これらを全体的に鑞材31の溶接温度
(約700℃)以上に加熱すると、Cr−Mo鋼製回転
軸20の熱膨張率は窒化硅素セラミツク製タービ
ン翼車1およびコーバル製スリーブ10の熱膨張
率より大きいため、第6図に図示されるように、
コーバル製スリーブ10の内周面11およびCr
−Mo鋼製回転軸20の円筒形凹部22の周面の
径は凹部底部23に接近するにつれて漸次増大
し、その間〓部32に鑞材31が〓間なく充填さ
れる。
First, the sleeve end surface 14 of the sleeve 10 made of Koval and the tip surface 24 of the shaft end 21 of the Cr-Mo steel rotating shaft 20 are integrally joined by friction welding, and then the recess of the Cr-Mo steel rotating shaft 20 is bottom 23
A brazing material 31 is charged in advance into the communication hole 28, and the boss portion 3 of the silicon nitride ceramic turbine wheel 1 is connected to the inner circumferential surface 11 of the Koval sleeve 10 and the Cr-
When the Mo steel rotating shaft 20 is fitted into the cylindrical recess 22 and heated to a temperature higher than the welding temperature of the solder material 31 (approximately 700°C), the Cr-Mo steel rotating shaft 20 thermally expands. Since the coefficient of thermal expansion is larger than that of the silicon nitride ceramic turbine wheel 1 and the Koval sleeve 10, as shown in FIG.
Inner peripheral surface 11 of Koval sleeve 10 and Cr
The diameter of the circumferential surface of the cylindrical recess 22 of the -Mo steel rotary shaft 20 gradually increases as it approaches the recess bottom 23, during which time the bottom portion 32 is filled with the solder material 31.

そして窒化硅素セラミツク製タービン翼車1、
コーバル製スリーブ10およびCr−Mo鋼製回転
軸20の組立体の温度を鑞材31の溶接温度(約
700℃)以下に徐々に低下させると、前記した間
〓部32が第7図に図示されるような均一な厚さ
分布に復帰する前に、鑞材31が凝固を始め、大
気温度に低下した時には、熱膨張率の大きなCr
−Mo鋼製回転軸20が窒化硅素セラミツク製タ
ービン翼車1およびコーバル製スリーブ10より
も大きく収縮し、厚みの大きな部分の鑞材31が
Cr−Mo鋼製回転軸20の収縮に抵抗し、窒化硅
素セラミツク製タービン翼車1のボス部3には、
第7図に図示されるように、ボス基部4からボス
先端部6に接近するにつれて漸次大きな締付け力
が加えられる。
and silicon nitride ceramic turbine impeller 1,
The temperature of the assembly of Koval sleeve 10 and Cr-Mo steel rotating shaft 20 is set to the welding temperature of the brazing material 31 (approximately
When the temperature is gradually lowered to below 700°C, the solder material 31 begins to solidify before the solder material 32 returns to the uniform thickness distribution as shown in FIG. 7, and the temperature decreases to atmospheric temperature. Cr, which has a large coefficient of thermal expansion,
- The Mo steel rotary shaft 20 shrinks more than the silicon nitride ceramic turbine wheel 1 and the Koval sleeve 10, and the thicker part of the brazing material 31
To resist the contraction of the rotating shaft 20 made of Cr-Mo steel, the boss portion 3 of the turbine wheel 1 made of silicon nitride ceramic has a
As shown in FIG. 7, a gradually larger tightening force is applied as one approaches the boss tip 6 from the boss base 4.

このような窒化硅素セラミツク製タービン翼車
1のボス部3は、Cr−Mo鋼製回転軸20の軸端
部21と一体のコーバル製スリーブ10に掴持さ
れるのみならず、Cr−Mo鋼製回転軸20の円筒
形凹部22に掴持され、しかもそのボス部3に対
する締付け力が窒化硅素セラミツク製タービン翼
車1のボス先端部6に近づくにつれ次第に大きく
なるので、Cr−Mo鋼製回転軸20よりの窒化硅
素セラミツク製タービン翼車1のすつぽ抜けを確
実に阻止することができる。
The boss portion 3 of the turbine impeller 1 made of silicon nitride ceramic is not only held by the sleeve 10 made of Koval which is integrated with the shaft end portion 21 of the rotating shaft 20 made of Cr-Mo steel, but also made of Cr-Mo steel. The rotating shaft 20 made of Cr-Mo steel is gripped by the cylindrical recess 22, and the tightening force against the boss 3 gradually increases as it approaches the boss tip 6 of the silicon nitride ceramic turbine wheel 1. It is possible to reliably prevent the silicon nitride ceramic turbine wheel 1 from slipping off from the shaft 20.

また窒化硅素セラミツク製タービン翼車1のボ
ス部3には翼車本体2寄りのボス基部4からボス
先端部6に向つてその締付け力が漸次大きくなる
ため、ボス基部周面5に大きな応力が発生せず、
ボス部3が翼車本体2より破断して分離すること
もない。
Furthermore, the tightening force on the boss portion 3 of the silicon nitride ceramic turbine impeller 1 gradually increases from the boss base 4 near the impeller main body 2 toward the boss tip 6, so that a large stress is applied to the circumferential surface 5 of the boss base. did not occur,
The boss portion 3 will not break and separate from the blade wheel body 2.

さらにボス基部周面5は曲率半径の緩やかな曲
面に形成されているため、ボス基部周面5の近く
に応力が集中しにくい。
Furthermore, since the boss base circumferential surface 5 is formed into a curved surface with a gentle radius of curvature, stress is unlikely to concentrate near the boss base circumferential surface 5.

さらにCr−Mo鋼製回転軸20の軸端部21に
おいても、軸端角部25と軸端隅部26とは緩や
かな曲面に形成されているため、これまたこの部
分に応力は集中せず、円筒形凹部22の隅部と軸
端角部25または軸端隅部26との間にクラツク
が生じにくい。
Furthermore, in the shaft end 21 of the Cr-Mo steel rotating shaft 20, the shaft end corner 25 and the shaft end corner 26 are formed into gently curved surfaces, so stress is not concentrated on these parts. , cracks are less likely to occur between the corner of the cylindrical recess 22 and the shaft end corner 25 or shaft end corner 26.

第3図ないし第7図に図示の実施例において
は、鑞付けにより窒化硅素セラミツク製タービン
翼車1のボス部3をコーバル製スリーブ10およ
びCr−Mo鋼製回転軸20の円筒形凹部22に結
合したが、第8図に図示するように焼ばめにより
ボス部3をコーバル製スリーブ10および円筒形
凹部22に一体に結合してもよく、この場合に
は、常温状態のコーバル製スリーブ10の内周面
11およびCr−Mo鋼製回転軸20の円筒形凹部
22の形状を凹部底部23に向つて僅かに先細に
形成すればよい。
In the embodiment shown in FIGS. 3 to 7, the boss 3 of the silicon nitride ceramic turbine wheel 1 is attached to the Koval sleeve 10 and the cylindrical recess 22 of the Cr-Mo steel rotating shaft 20 by brazing. However, the boss portion 3 may be integrally joined to the Koval sleeve 10 and the cylindrical recess 22 by shrink fitting as shown in FIG. The shape of the inner circumferential surface 11 and the cylindrical recess 22 of the Cr-Mo steel rotating shaft 20 may be formed to be slightly tapered toward the bottom 23 of the recess.

考案の効果 本考案は前記したように、前記ボス部周面に中
心方向に向つて加わる締付け応力を基部から先端
に接近するにつれて漸次増大させることができる
ため、前記ボス部の基部に大きな応力を発生させ
ずにこの部分でのクラツク発生を抑制できるとと
もに、前記セラミツク製翼車のボス部が前記金属
製スリーブおよび金属製回転軸凹部からすつぽ抜
けるのを阻止して該翼車ボス部を前記金属製軸に
確固に一体に結合することができる。
Effects of the Invention As described above, the present invention can gradually increase the tightening stress applied to the circumferential surface of the boss portion toward the center from the base toward the tip, so that large stress can be applied to the base of the boss portion. It is possible to suppress the occurrence of cracks in this part without causing cracks, and to prevent the boss part of the ceramic impeller from slipping out of the metal sleeve and the metal rotary shaft recess, thereby preventing the boss part of the impeller blade from slipping out. It can be firmly and integrally coupled to the metal shaft.

また、本考案においては、前記回転軸凹部の隅
角部には溶接に伴なつて発生する残留歪の影響を
強く受けないので、該隅角部から回転軸表面に向
つてクラツクが生じにくい。
Further, in the present invention, since the corners of the rotary shaft recess are not strongly affected by residual strain generated during welding, cracks are less likely to occur from the corners toward the surface of the rotary shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来のセラミツク製回転
体の一部縦断側面図、第3図は本考案の係るセラ
ミツク製回転体の一実施例を図示した一部縦断側
面図、第4図は第3図の−矢視図、第5図は
同実施例の分解縦断面図、第6図および第7図は
同実施例の原理を図解して示した説明図で、第6
図は鑞付けのための加熱膨張状態、第7図は鑞付
け終了後に冷却収縮状態を示し、第8図は他の実
施例の要部縦断側面図である。 1……窒化硅素セラミツク製タービン翼車、2
……翼車本体、3……ボス部、4……ボス基部、
5……ボス基部周面、6……ボス先端部、7……
ボス先端部周面、10……コーバル製スリーブ、
11……内周面、12……翼車本体側内周面、1
3……回転軸側内周面、14……スリーブ端面、
20……Cr−Mo鋼製回転軸、21……軸端部、
22……円筒形凹部、23……凹部底部、24…
…先端面、25……軸端角部、26……軸端隅
部、27……中央部、28……連通孔、29……
小径部、30……雄ねじ、31……鑞材、32…
…間〓部。
1 and 2 are partially longitudinal side views of a conventional ceramic rotating body, FIG. 3 is a partially longitudinal side view illustrating an embodiment of the ceramic rotating body according to the present invention, and FIG. 4 is a partially longitudinal side view of a conventional ceramic rotating body. FIG. 3 is a view taken along the - arrow in FIG. 3, FIG. 5 is an exploded longitudinal cross-sectional view of the same embodiment, and FIGS.
The figure shows the heated expanded state for brazing, FIG. 7 shows the cooled contracted state after brazing, and FIG. 8 is a longitudinal sectional side view of the main part of another embodiment. 1...Silicon nitride ceramic turbine wheel, 2
...Blade wheel body, 3...Boss part, 4...Boss base,
5...Boss base circumferential surface, 6...Boss tip, 7...
Boss tip circumferential surface, 10... Kobal sleeve,
11... Inner circumferential surface, 12... Inner circumferential surface on the impeller body side, 1
3... Rotating shaft side inner peripheral surface, 14... Sleeve end surface,
20... Cr-Mo steel rotating shaft, 21... Shaft end,
22... Cylindrical recess, 23... Bottom of the recess, 24...
... Tip surface, 25 ... Shaft end corner, 26 ... Shaft end corner, 27 ... Center part, 28 ... Communication hole, 29 ...
Small diameter part, 30... male thread, 31... brazing material, 32...
...Between.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] セラミツク製翼車のボス部の長さと直径とを略
等しい寸法に形成し、該セラミツクの熱膨張率に
近い熱膨張率の金属製スリーブを前記セラミツク
製翼車ボス部に嵌着し、該金属製スリーブを介し
て金属製回転軸に前記セラミツク製翼車を一体に
接合してなるセラミツク製タービン翼車におい
て、前記金属製回転軸には前記セラミツク翼車の
熱膨張率よりも大きな熱膨張率の材料が用いら
れ、前記翼車側の金属製回転軸端面には、高温状
態で該翼車ボス部が嵌合し前記高温より低い通常
稼働状態で前記ボス部および回転軸の熱膨張率差
により該ボス部が締付け嵌着される程度の寸法の
凹部が形成され、前記セラミツク製翼車ボス部の
先端および金属製回転軸凹部の底面より翼車側に
位置した個所で前記金属製スリーブおよび金属製
回転軸の各端部が溶接によつて一体に接合された
ことを特徴とするセラミツク製タービン翼車。
The length and diameter of the boss of the ceramic impeller are approximately equal, and a metal sleeve having a thermal expansion coefficient close to that of the ceramic is fitted onto the ceramic impeller boss. In a ceramic turbine impeller in which the ceramic impeller is integrally joined to a metal rotating shaft through a metal sleeve, the metal rotating shaft has a coefficient of thermal expansion larger than that of the ceramic impeller. The impeller boss fits into the metal rotary shaft end face on the impeller side in a high temperature state, and the difference in thermal expansion coefficient between the boss and the rotary shaft in a normal operating state lower than the high temperature. A recess with a size that allows the boss to be tightened is formed, and the metal sleeve and A ceramic turbine blade wheel characterized in that each end of a metal rotating shaft is integrally joined by welding.
JP1984194618U 1984-12-19 1984-12-22 Expired JPH0218243Y2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1984194618U JPH0218243Y2 (en) 1984-12-22 1984-12-22
DE19853545135 DE3545135A1 (en) 1984-12-19 1985-12-19 FITTING UNIT
US06/811,160 US4747722A (en) 1984-12-19 1985-12-19 Metal-ceramic fitting assembly
GB08531265A GB2169058B (en) 1984-12-19 1985-12-19 Fitting assembly
FR858518882A FR2574783B1 (en) 1984-12-19 1985-12-19 DEVICE FOR ASSEMBLING A CERAMIC ELEMENT TO A METAL ELEMENT, IN PARTICULAR FOR TURBO-COMPRESSORS OF INTERNAL COMBUSTION ENGINES
US07/181,839 US4983064A (en) 1984-12-19 1988-04-15 Metal ceramic fitting assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984194618U JPH0218243Y2 (en) 1984-12-22 1984-12-22

Publications (2)

Publication Number Publication Date
JPS61108801U JPS61108801U (en) 1986-07-10
JPH0218243Y2 true JPH0218243Y2 (en) 1990-05-22

Family

ID=30752072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984194618U Expired JPH0218243Y2 (en) 1984-12-19 1984-12-22

Country Status (1)

Country Link
JP (1) JPH0218243Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510041B2 (en) * 1990-08-23 1996-06-26 日本特殊陶業株式会社 Rotating joint

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442520A (en) * 1977-06-27 1979-04-04 Kuehnle Kopp Kausch Ag Gas turbine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150801U (en) * 1980-04-11 1981-11-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5442520A (en) * 1977-06-27 1979-04-04 Kuehnle Kopp Kausch Ag Gas turbine

Also Published As

Publication number Publication date
JPS61108801U (en) 1986-07-10

Similar Documents

Publication Publication Date Title
US4747722A (en) Metal-ceramic fitting assembly
JPH0477129B2 (en)
JPH0415361B2 (en)
US4518315A (en) Arrangement for connecting a ceramic rotor wheel, particularly a turbine rotor wheel of a turbomachine, such as a gas turbine engine, to a metallic shaft
JPH043129Y2 (en)
JPH0329032B2 (en)
JPH0336787B2 (en)
JPH0218243Y2 (en)
JPH0352962Y2 (en)
JPH06170652A (en) Combined body of ceramic and metal
JPS6148601B2 (en)
JPH018641Y2 (en)
JPH0744722Y2 (en) Coupling shaft structure of ceramic turbine rotor and metal shaft
JPS6325281Y2 (en)
JPS58217814A (en) Construction of shaft
JPH0218242Y2 (en)
JPH0351319Y2 (en)
JPH0415921Y2 (en)
JP2650372B2 (en) Method of joining ceramic member and metal member
JPH0410198Y2 (en)
JPS6278402A (en) Ceramic turbo rotor
JPH037368Y2 (en)
JPH0516192Y2 (en)
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPH0350241Y2 (en)