JPS6278169A - Bonded structure of ceramic axis - Google Patents

Bonded structure of ceramic axis

Info

Publication number
JPS6278169A
JPS6278169A JP21806185A JP21806185A JPS6278169A JP S6278169 A JPS6278169 A JP S6278169A JP 21806185 A JP21806185 A JP 21806185A JP 21806185 A JP21806185 A JP 21806185A JP S6278169 A JPS6278169 A JP S6278169A
Authority
JP
Japan
Prior art keywords
ceramic
shaft
joint
sleeve
ceramic shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21806185A
Other languages
Japanese (ja)
Other versions
JPH0437035B2 (en
Inventor
多喜男 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP21806185A priority Critical patent/JPS6278169A/en
Publication of JPS6278169A publication Critical patent/JPS6278169A/en
Publication of JPH0437035B2 publication Critical patent/JPH0437035B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えばセラミック製ターボ過給機、ガスタ
ービンロータ、ピストン等のエンジン部品におけるセラ
ミック軸と金属軸の接合部の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an improvement in a joint between a ceramic shaft and a metal shaft in engine parts such as ceramic turbochargers, gas turbine rotors, and pistons.

(従来の技術) 従来、セラミック軸と金属軸を接合するに当シ、セラミ
ック軸の端部を金属軸端に密嵌して接合す、カ、あるい
は、セラミック軸を金属軸の端面をろう材を介して当接
接合することが行われていたが、接合部が高温にさら′
されると、前者にあっては嵌合部の金属部分が薄肉であ
るので機械的強度の低下によシ変形を生じやすく、金属
軸の膨張によシセラミック軸が嵌合部分より離脱するお
それがらシ、また、後者にあっては、接合部のろう付部
分の酸化によシその強度の低下が避けられないものであ
る。上記従来のものの欠点を改善するものとして、セラ
ミック軸と金属軸の接合部外周にスリーブを接合して、
接合強度を高め、ろう材の酸化を防止する提案がなされ
ている。(%願昭59−210279号) (発明が解決しようとする問題点) しかしながら、上記スリーブにより接合部を被覆する場
合には、接合部に隣接するセラミック軸表面がスリーブ
との間に介在するろう材により密嵌されるので、使用中
、ろう溜シによる締めつけ力が強くなシセラミック軸の
くわえるエツジ部に破壊が生じることがある。また、上
記スリーブとセラミック軸表面にろう溜シを作らないよ
うに、ろう材を減少させるとスリーブ内面にろう材が充
分介在しなくなり空隙を生じて全体に均一な締めつけ力
が作用しないこととなるものである。
(Prior art) Conventionally, when joining a ceramic shaft and a metal shaft, the end of the ceramic shaft is tightly fitted to the end of the metal shaft. However, the joint was exposed to high temperatures.
In the former case, since the metal part of the fitting part is thin, it is likely to be deformed due to a decrease in mechanical strength, and there is a risk that the ceramic shaft will separate from the fitting part due to expansion of the metal shaft. In the latter case, a reduction in strength due to oxidation of the brazed portion of the joint is unavoidable. In order to improve the drawbacks of the above conventional ones, a sleeve is joined to the outer periphery of the joint between the ceramic shaft and the metal shaft,
Proposals have been made to increase bonding strength and prevent oxidation of the brazing filler metal. (% Application No. 59-210279) (Problems to be Solved by the Invention) However, when the joint is covered with the above-mentioned sleeve, the surface of the ceramic shaft adjacent to the joint is exposed to the wax interposed between the sleeve and the sleeve. During use, the edge portion held by the ceramic shaft, which is subject to strong clamping force from the solder tank, may be damaged. In addition, if the amount of brazing material is reduced to prevent the formation of wax deposits on the surfaces of the sleeve and ceramic shaft, the amount of brazing material will not be sufficiently interposed on the inner surface of the sleeve, creating a void, which will prevent a uniform tightening force from acting on the entire surface. It is something.

(問題点を解決するための手段) そこで、金属軸にろう付けするセラミック軸の熱膨張差
により生ずる、残留応力を調べると、第1四におけるよ
うに接合部(5)よ)の距離伝)に対して、生じる応力
は、第3図に示すように、接合部付近に応力集中が起る
ことが認められ、その後距離とともに滑らかに減少して
いる。他方、第1図に示す、スリーブ(3)がセラ2ツ
ク軸にろう付けされる長さく2)とセラミック軸の直径
0との関係を、すなわちA/Dが0.1.02,0.3
,0.4とぶ=On/D=0)の場合に1振動による曲
げと回転数変化によるねじシトルクによシ発生する応力
を示すと、第4図のとおシであって、スリーブとセラミ
ック軸の接合長(くわえ長さ)が0,3し。
(Means for solving the problem) Therefore, we investigated the residual stress caused by the difference in thermal expansion of the ceramic shaft that is brazed to the metal shaft. On the other hand, as shown in FIG. 3, it is recognized that stress concentration occurs near the joint, and then it decreases smoothly with distance. On the other hand, as shown in FIG. 1, the relationship between the length 2) at which the sleeve (3) is brazed to the ceramic shaft and the diameter 0 of the ceramic shaft, that is, A/D is 0.1.02, 0. 3
, 0.4 jump = On/D = 0), the stress generated by the bending due to one vibration and the screw torque due to the change in rotational speed is shown in Fig. 4. The joining length (gripping length) is 0.3.

0.40の時には、エツジ部(ηに大きな応力集中が、
くわえ長さがない場合には接合部に大きな応力集中が起
ることが認められる。そして、第3図、第4図の結果を
合せたものが第5図であり、その最大応力を結んで図に
示した第6図から見ると、くわえ長さが0.05 D〜
0.2 Dの間では、応力集中は減少されることが明ら
かである。したがって、この発明は、上記知見に基づき
、従来の接合部の欠点を改善するため、セラミック軸を
金属軸との端部を当接ろう付けし、その接合部外周に焼
はめ又はろう付けするに轟υ、スリーブのセラミ ツク
軸とのくわえ長さをセラミック軸の直径をDとすると0
.05〜0.2Dとするものである。すなわち、上記0
.05Dより小さい場合は接合部に応力集中が生じ、0
.2Dよシ大きい場合はエツジ部に応力集中が起るおそ
れがあるものである。
When 0.40, there is a large stress concentration at the edge (η),
It is recognized that when there is no gripping length, a large stress concentration occurs at the joint. Figure 5 is a combination of the results of Figures 3 and 4, and when viewed from Figure 6, which shows the maximum stress, the grip length is 0.05 D~
It is clear that between 0.2 D the stress concentration is reduced. Therefore, based on the above findings, the present invention aims to improve the drawbacks of the conventional joint by brazing the end of the ceramic shaft to the metal shaft and shrink-fitting or brazing the joint to the outer periphery of the joint. Todoroki υ, the grip length of the sleeve with the ceramic shaft is 0 if the diameter of the ceramic shaft is D.
.. 05 to 0.2D. In other words, the above 0
.. If it is smaller than 05D, stress concentration will occur at the joint, and the
.. If it is larger than 2D, stress concentration may occur at the edge portion.

(作用) 上記のように構成されるので、端部において金属軸に接
合されこの接合部の周囲をスリーブによシ密嵌されたセ
ラミック軸が回転したシ、振動したり、曲げたシすると
、そのくわえ長さく至)を上記軸の0.05 D〜0.
2Dとする場合、接合部に働らく応力とくわえエツジ部
に働らく応力が均衡する−ことなるものである。
(Function) Since the structure is as described above, if the ceramic shaft, which is joined to the metal shaft at the end and tightly fitted with a sleeve around this joint, rotates, vibrates, or bends, The length of the grip) is 0.05D to 0.05D on the above axis.
In the case of 2D, the stress acting on the joint portion and the stress acting on the gripping edge portion are balanced - they are different.

なお、上記の応力の他、セラミック軸を高温で使用する
場合には、熱応力が発生するが、この発明の構成におい
てはスリーブが軸方向に膨張しようとし、セラミック軸
に応力が働らくもので1)、この応力はスリーブのくわ
え長さに比例するので上記限定範囲を越えると問題が生
じるが、この発明の範囲においては、熱応力についても
影響の生じることはない。
In addition to the stress mentioned above, thermal stress is generated when the ceramic shaft is used at high temperatures, but in the structure of this invention, the sleeve tends to expand in the axial direction, and no stress is applied to the ceramic shaft. 1) Since this stress is proportional to the gripping length of the sleeve, a problem will occur if it exceeds the above-mentioned limited range, but within the scope of the present invention, thermal stress will not have any effect.

(実施例) これを第2図に示すセラミックターボ過給機に適用した
実施例について説明する。第1図におけると同一の部品
には同一符号を付して説明する。
(Example) An example in which this is applied to a ceramic turbocharger shown in FIG. 2 will be described. The same parts as in FIG. 1 will be described with the same reference numerals.

(1)はセラミックにより形成される直径IQu+のタ
ービンロータ軸であり、(2)はロータ(1)端部にN
i。
(1) is a turbine rotor shaft with a diameter IQu+ made of ceramic, and (2) is a shaft with N
i.

Ni −W 系合金、Niの3層よりなる応力緩衝板を
介してろう付けする接合部(5)によシ接合される金属
軸であり、同時に上記接合部(5)上に密嵌するスリー
ブ(3)を金属軸(2)にろう付けし、スリーブ(3)
の一部はセラミック!I¥II(11にも嵌合してろう
付け(4)してなるものである。図中(6)は7ル−ド
である。
It is a metal shaft that is joined to a joint (5) that is brazed through a stress buffer plate made of three layers of Ni-W alloy and Ni, and at the same time, a sleeve that tightly fits onto the joint (5). (3) is brazed to the metal shaft (2), and the sleeve (3) is
Some of them are ceramic! I\II (11) is also fitted and brazed (4). In the figure, (6) is 7 rd.

上記タービンロータをエンジンに組入れくわえ長さの異
なるものを用意して、エンジンを全開してアイドリング
のくシ返し試験(Go−8TOP試験)を行なったとこ
ろ、以下の結果を得た。
The above turbine rotor was assembled into an engine, different lengths were prepared, and an idling cycle test (Go-8TOP test) was conducted with the engine fully open, and the following results were obtained.

上記のとおシ、くわえ長さくt3)が13/D= 0.
05〜2の間にある時には、接合部1、エツジ部のいず
れからも破壊の生じないことが明らかである。
As above, the grip length t3) is 13/D=0.
It is clear that when the value is between 05 and 02, no breakage occurs from either the joint 1 or the edge.

この発明において、セラミックス材料としては、窒化硅
素、炭化珪素等の耐熱−セラミックスが好ましく、金属
材料としては、炭素鋼、合金鋼、ステンレス鋼、マルエ
ージング鋼、インコネル等の耐熱鋼、中空鋼、Fe−N
i−Co合金(:I 74− ル)チタン等が好ましい
。また、スリーブ材としては、上記金属材料の他、タン
グステン、銀、ジルコニウム、モリブデン、鋼等の低膨
張あるいは低ヤング率材料、もしくは形状記憶合金が望
ましい。
In this invention, the ceramic materials are preferably heat-resistant ceramics such as silicon nitride and silicon carbide, and the metal materials are carbon steel, alloy steel, stainless steel, maraging steel, heat-resistant steel such as Inconel, hollow steel, Fe -N
i-Co alloy (:I74-) titanium and the like are preferred. In addition to the above metal materials, the sleeve material is preferably a low expansion or low Young's modulus material such as tungsten, silver, zirconium, molybdenum, steel, or a shape memory alloy.

ろう材は、Ag−Cu共晶ろう、Au−Cu−Pdろう
、Ni又はNi合金ろうを使用できる。
As the brazing material, Ag-Cu eutectic brazing, Au-Cu-Pd brazing, Ni, or Ni alloy brazing can be used.

(発明の効果) 以上のとおシ、セラミック軸と金属軸との接合に当シ、
この接合部に密嵌するスリーブのセラミック軸へのくわ
え長さを所定範囲内としたので、発生する応力を低減さ
せて、接合部あるいはエツジ部において、セラミック軸
の破壊を防止することができる優れた効果をもつもので
ある。
(Effects of the invention) Through the above, this invention is suitable for joining ceramic shafts and metal shafts.
Since the grip length of the sleeve that fits tightly into the joint is within a specified range, the generated stress can be reduced and the ceramic shaft can be prevented from breaking at the joint or edge. It has a certain effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明のセラミック軸体の接合構造を示し
、第2図はこれをターボ過給機のロータに適用した一部
縦断面図であり、第3図〜第6図は、この発明を示す各
資料である。 1・・・セラミック軸、2・・・金属軸、3・・・スリ
ーブ、4・・・ろう材、5・・・接合部、6・・・ブリ
ード、7・・・エツジ部。 特許出願人 代理人弁理士 藤木三幸 第3図 第5図 資%、 /′i::ガーイζしrsr畜−3トうb力゛
らQソ巨虜−り第4図 第6図 B/WπAヒしk(わん艮で
Fig. 1 shows the joining structure of the ceramic shaft body of the present invention, Fig. 2 is a partial vertical cross-sectional view of this applied to the rotor of a turbocharger, and Figs. These are various materials showing the invention. DESCRIPTION OF SYMBOLS 1... Ceramic shaft, 2... Metal shaft, 3... Sleeve, 4... Brazing metal, 5... Joining part, 6... Bleed, 7... Edge part. Patent Applicant Representative Patent Attorney Miyuki Fujiki Figure 3 Figure 5 Capital %, /'i:: Gai ζ and rsr - 3 Forces and Q Soviet Captives Figure 4 Figure 6 B/ WπA Hishik

Claims (1)

【特許請求の範囲】[Claims] セラミック軸と金属軸とをろう付けし、この接合部外周
に焼ばめ又はろう付けによりスリーブを密嵌してなり、
セラミック軸体の直径をD、セラミック軸体に密嵌する
スリーブの長さをlとすると、l/Dが0.05〜0.
2であるセラミック軸体の接合構造。
A ceramic shaft and a metal shaft are brazed together, and a sleeve is tightly fitted around the outer periphery of this joint by shrink fitting or brazing,
If the diameter of the ceramic shaft is D and the length of the sleeve that fits tightly onto the ceramic shaft is l, then l/D is 0.05 to 0.
2. The joining structure of the ceramic shaft body.
JP21806185A 1985-10-02 1985-10-02 Bonded structure of ceramic axis Granted JPS6278169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21806185A JPS6278169A (en) 1985-10-02 1985-10-02 Bonded structure of ceramic axis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21806185A JPS6278169A (en) 1985-10-02 1985-10-02 Bonded structure of ceramic axis

Publications (2)

Publication Number Publication Date
JPS6278169A true JPS6278169A (en) 1987-04-10
JPH0437035B2 JPH0437035B2 (en) 1992-06-18

Family

ID=16714032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21806185A Granted JPS6278169A (en) 1985-10-02 1985-10-02 Bonded structure of ceramic axis

Country Status (1)

Country Link
JP (1) JPS6278169A (en)

Also Published As

Publication number Publication date
JPH0437035B2 (en) 1992-06-18

Similar Documents

Publication Publication Date Title
JPS6278172A (en) Bonded structure of ceramic to metal
JPS62104696A (en) Metallic ceramics junction body and metallic ceramics coupling body formed by using said body
JPS63251127A (en) Combined construction of members with different thermal expansion and combining method thereof
JPS60226464A (en) Joint structure of ceramic and metal
JP2531708Y2 (en) Ceramic / metal composite
JPS62191478A (en) Ceramics-metal bonded body
JPH043129Y2 (en)
JPS6335464A (en) Method of joining different thermal expansion members
JPH03279277A (en) Joint structure of turbine rotor
US4959258A (en) Joined metal-ceramic assembly method of preparing the same
JPS6278169A (en) Bonded structure of ceramic axis
JPS63231928A (en) Bonding body
JPH0516192Y2 (en)
JPH0352962Y2 (en)
JPS61169164A (en) Joint structure of rotary shaft
JPH0240031B2 (en)
JPH061701U (en) Joining structure of metal rotating shaft and ceramic rotating body
JPS61127674A (en) Structure of bonding ceramic and metal
JPH0692722B2 (en) Ceramic rotor
JPH0646001B2 (en) Ceramic rotor
JPH061672A (en) Joining structure for ceramic shaft and metallic shaft
JPH0322489Y2 (en)
JPS6325281Y2 (en)
JPH0351321Y2 (en)
JPH0410198Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees