JPH04366924A - Manufacture of active matrix substrate - Google Patents

Manufacture of active matrix substrate

Info

Publication number
JPH04366924A
JPH04366924A JP3143464A JP14346491A JPH04366924A JP H04366924 A JPH04366924 A JP H04366924A JP 3143464 A JP3143464 A JP 3143464A JP 14346491 A JP14346491 A JP 14346491A JP H04366924 A JPH04366924 A JP H04366924A
Authority
JP
Japan
Prior art keywords
active matrix
matrix substrate
tft
insulating film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3143464A
Other languages
Japanese (ja)
Other versions
JP2690067B2 (en
Inventor
Toru Ueda
徹 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP14346491A priority Critical patent/JP2690067B2/en
Publication of JPH04366924A publication Critical patent/JPH04366924A/en
Application granted granted Critical
Publication of JP2690067B2 publication Critical patent/JP2690067B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To realize the high-definition active matrix display device which is improved in aperture rate and superior in picture quality as to the manufacture of the active matrix substrate which is equipped with a TFT as switching elements and also equipped with an additional capacitor for the improvement of display characteristics. CONSTITUTION:The TFT 21 is formed first on an insulating substrate 1 in the process of a channel area 2a, a source area 5a, a drain area 5b, and a gate electrode 6. Then the additional capacity 22 consisting of a 1st capacity electrode 10, an additional capacity insulating film 11, and a 2nd capacity electrode 12 is formed almost right above an area including the formation area of the TFT 21.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液晶ディスプレイ等の
アクティブマトリクス表示装置に使用されるアクティブ
マトリクス基板の製造方法に関し、より詳しくは、スイ
ッチング素子として薄膜トランジスタ(以下TFTと称
する)を備え、かつ表示特性の向上を図るために付加容
量を備えたアクティブマトリクス基板の製造方法に関す
る。
[Field of Industrial Application] The present invention relates to a method for manufacturing an active matrix substrate used in an active matrix display device such as a liquid crystal display, and more specifically, the present invention relates to a method for manufacturing an active matrix substrate used in an active matrix display device such as a liquid crystal display. The present invention relates to a method of manufacturing an active matrix substrate provided with additional capacitance in order to improve characteristics.

【0002】0002

【従来の技術】図4は付加容量を備えた一般的なアクテ
ィブマトリクス表示装置の等価回路図を示す。この表示
装置は、横方向に平行な複数のゲートバス配線24、2
4…に交差して、複数本のソースバス配線25、25…
を縦方向に配設してなる。ゲートバス配線24及びソー
スバス配線25で囲まれた矩形状をなす1つの絵素領域
には、絵素容量(CLC)23及び付加容量(CS)2
2が並列に設けられている。加えて、ゲートバス配線2
4及びソースバス配線25にはそれぞれTFT21のゲ
ート電極及びソース電極が接続されている。また、TF
T21のドレイン電極には絵素容量23及び付加容量2
2が接続されている。
2. Description of the Related Art FIG. 4 shows an equivalent circuit diagram of a general active matrix display device equipped with additional capacitance. This display device includes a plurality of horizontally parallel gate bus lines 24, 2.
A plurality of source bus wirings 25, 25... intersect with 4...
are arranged vertically. One rectangular picture element area surrounded by the gate bus wiring 24 and the source bus wiring 25 includes a picture element capacitor (CLC) 23 and a supplementary capacitor (CS) 2.
2 are provided in parallel. In addition, gate bus wiring 2
4 and the source bus wiring 25 are connected to the gate electrode and source electrode of the TFT 21, respectively. Also, T.F.
A pixel capacitor 23 and an additional capacitor 2 are connected to the drain electrode of T21.
2 are connected.

【0003】このような表示装置に用いられるアクティ
ブマトリクス基板は従来図5に示す製造工程で作製され
ていた。図5(a)に示すように、まず、透明ガラス等
からなる絶縁性基板1の上に、減圧CVD法によって後
に半導体層2となるシリコン層を100nmの厚さに堆
積する。次いで、このシリコン層をホトリソグラフィ法
及びドライエッチング法によってパターンニングし、こ
れにより半導体層2を形成する。
An active matrix substrate used in such a display device has conventionally been manufactured by a manufacturing process shown in FIG. As shown in FIG. 5A, first, a silicon layer that will later become the semiconductor layer 2 is deposited to a thickness of 100 nm on an insulating substrate 1 made of transparent glass or the like by low pressure CVD. Next, this silicon layer is patterned by photolithography and dry etching, thereby forming the semiconductor layer 2.

【0004】次に、図5(b)に示すように、例えばC
VD法によって絶縁性基板1上の全面に半導体層2を覆
うようにしてシリコン酸化物からなる絶縁膜3を100
nmの厚さに堆積する。その後、絶縁膜3上の全面にレ
ジスト膜4を形成し、次いで該レジスト膜4の半導体層
2の一部である第1容量電極2b上の部分を除去する。 そして、このレジスト膜4をマスクとして用い、イオン
注入法によって第1容量電極2bとなる部分に、例えば
リンPを不純物として、100KeV、5×1015c
m−2の条件下でドーピングする。尚、リンPのドーピ
ング工程は絶縁膜3を形成する前に行ってもよい。
Next, as shown in FIG. 5(b), for example, C
A 100% insulating film 3 made of silicon oxide is deposited on the entire surface of the insulating substrate 1 by the VD method so as to cover the semiconductor layer 2.
Deposited to a thickness of nm. Thereafter, a resist film 4 is formed on the entire surface of the insulating film 3, and then a portion of the resist film 4 on the first capacitor electrode 2b, which is a part of the semiconductor layer 2, is removed. Then, using this resist film 4 as a mask, the portion that will become the first capacitor electrode 2b is doped with, for example, phosphorus P as an impurity by ion implantation at 100 KeV and 5×10 15 c.
Doping is carried out under conditions of m-2. Note that the phosphorus P doping step may be performed before forming the insulating film 3.

【0005】次に、図5(c)に示すように、レジスト
膜4を除去し、半導体層2上に絶縁膜3を挟んでゲート
電極6及び第2容量電極6aをパターン形成する。ゲー
ト電極6は前述のゲートバス配線24に接続されている
。また、第1容量電極2b、絶縁膜3及び第2容量電極
6bにより、前述の付加容量22が形成される。従って
、このアクティブマトリクス基板では、絶縁膜3が付加
容量の付加容量絶縁膜として用いられている。
Next, as shown in FIG. 5C, the resist film 4 is removed, and a gate electrode 6 and a second capacitor electrode 6a are patterned on the semiconductor layer 2 with the insulating film 3 interposed therebetween. The gate electrode 6 is connected to the aforementioned gate bus wiring 24. Further, the above-mentioned additional capacitor 22 is formed by the first capacitor electrode 2b, the insulating film 3, and the second capacitor electrode 6b. Therefore, in this active matrix substrate, the insulating film 3 is used as an additional capacitance insulating film for additional capacitance.

【0006】次に、ゲート電極6及び第2容量電極6a
をマスクとして用い、イオン注入法によって、例えばリ
ンを不純物として、100KeV、5×1015cm−
2の条件下でドーピングする。この不純物のイオン注入
により、半導体層2のゲート電極6及び第2容量電極6
aの下方以外の部分にソース領域5a及びドレイン領域
5bが形成され、半導体層2のゲート電極6の下方の部
分にチャネル領域2aが形成される。絶縁膜3はゲート
絶縁膜として機能する。以上の工程によりTFT21が
作製される。
Next, the gate electrode 6 and the second capacitor electrode 6a
was used as a mask, and by ion implantation method, for example, with phosphorus as an impurity, 100 KeV, 5 x 1015 cm-
Doping is carried out under the following conditions. By this ion implantation of impurities, the gate electrode 6 and the second capacitor electrode 6 of the semiconductor layer 2 are
A source region 5a and a drain region 5b are formed in a portion other than below a, and a channel region 2a is formed in a portion of the semiconductor layer 2 below the gate electrode 6. The insulating film 3 functions as a gate insulating film. The TFT 21 is manufactured through the above steps.

【0007】次に、図5(d)に示すように、絶縁性基
板1上の全面にCVD法によってシリコン酸化物からな
る層間絶縁膜7を形成する。そして、ドーピングした不
純物を活性化させるために、該絶縁性基板1を、例えば
窒素中で950℃で30分間熱処理する。その後、層間
絶縁膜7のソース領域5a上及びドレイン領域5b上の
部分にコンタクトホール9a、9bが形成され、該ソー
ス領域5a上のコンタクトホール9a上にソースバス配
線25が形成される。一方、ドレイン領域5b上のコン
タクトホール9b上及び層間絶縁膜7上には、絵素電極
8が形成され、これによりアクティブマトリクス基板が
作製される。
Next, as shown in FIG. 5(d), an interlayer insulating film 7 made of silicon oxide is formed on the entire surface of the insulating substrate 1 by CVD. Then, in order to activate the doped impurities, the insulating substrate 1 is heat-treated at 950° C. for 30 minutes in nitrogen, for example. Thereafter, contact holes 9a and 9b are formed in the portions of interlayer insulating film 7 above source region 5a and drain region 5b, and source bus wiring 25 is formed above contact hole 9a above source region 5a. On the other hand, a picture element electrode 8 is formed over the contact hole 9b above the drain region 5b and on the interlayer insulating film 7, thereby producing an active matrix substrate.

【0008】その後、該アクティブマトリクス基板は対
向電極が形成された対向基板と貼り合わされ、両者間に
液晶等の表示媒体が封入され、これでアクティブマトリ
クス表示装置の一例としての液晶ディスプレイが作製さ
れる。
[0008] Thereafter, the active matrix substrate is bonded to a counter substrate on which a counter electrode is formed, and a display medium such as a liquid crystal is sealed between the two, thereby producing a liquid crystal display as an example of an active matrix display device. .

【0009】[0009]

【発明が解決しようとする課題】ところで、液晶ディス
プレイの高精細化、高画質化、即ち絵素サイズの縮小及
び開口率を向上するためには、該液晶ディスプレイの構
成要素であるTFTと付加容量の面積の縮小化を図る必
要がある。
[Problems to be Solved by the Invention] Incidentally, in order to improve the definition and image quality of a liquid crystal display, that is, to reduce the pixel size and improve the aperture ratio, it is necessary to improve the TFT and additional capacitance, which are the constituent elements of the liquid crystal display. It is necessary to reduce the area of

【0010】しかるに、以下に示す理由によりTFTの
縮小化を図るには困難がある。
However, it is difficult to reduce the size of the TFT for the following reasons.

【0011】すなわち、ゲート長を縮小してTFTの縮
小化を図らんとすれば、しきい値電圧Vthの低下やリ
ーク電流の増加等を伴う短チャネル効果が発生するため
、結果的にTFTを縮小するには限界があるからである
[0011] In other words, if the TFT is not made smaller by reducing the gate length, a short channel effect will occur with a decrease in the threshold voltage Vth and an increase in leakage current, and as a result, the TFT will become smaller. This is because there is a limit to how much it can be reduced.

【0012】また、以下に示す理由により付加容量の縮
小化を図るには困難がある。
Furthermore, it is difficult to reduce the additional capacitance for the following reasons.

【0013】すなわち、絵素サイズを縮小しても、付加
容量に蓄積すべき電荷を低減できないので、結局、付加
容量の縮小化を図るには限界があるからである。
That is, even if the picture element size is reduced, the charge to be stored in the additional capacitance cannot be reduced, so there is a limit to the reduction of the additional capacitance.

【0014】本発明は、このような従来技術の問題点を
解決するものであり、TFTと付加容量の面積を縮小す
ることなく、開口率を大きくでき、アクティブマトリク
ス基板に組み込んだ場合に、高画質化および高精細化が
図れるアクティブマトリクス基板の製造方法を提供する
ことを目的とする。
[0014] The present invention solves the problems of the prior art, and it is possible to increase the aperture ratio without reducing the area of the TFT and additional capacitance, and when it is incorporated into an active matrix substrate, it is possible to increase the aperture ratio. An object of the present invention is to provide a method for manufacturing an active matrix substrate that can improve image quality and high definition.

【0015】[0015]

【課題を解決するための手段】本発明のアクティブマト
リクス基板の製造方法は、絶縁性基板上に薄膜トランジ
スタを形成する工程と、該薄膜トランジスタの形成領域
を含む領域のほぼ直上に絶縁膜を介して付加容量を形成
する工程とを包含してなり、そのことにより上記目的が
達成される。
[Means for Solving the Problems] The method for manufacturing an active matrix substrate of the present invention includes the steps of forming a thin film transistor on an insulating substrate, and adding an insulating film almost directly above a region including a region where the thin film transistor is formed. The method includes a step of forming a capacitor, thereby achieving the above object.

【0016】[0016]

【作用】上記のように薄膜トランジスタの形成領域を含
む領域のほぼ直上(真上)に絶縁膜を介して付加容量を
形成すると、絵素の単位面積に対する有効表示面積の割
合である開口率を低減することなく、所定の付加容量を
確保できる。換言すれば、TFTと付加容量の面積を縮
小することなく、開口率を大きくできる。
[Function] When an additional capacitor is formed through an insulating film almost directly above the region including the thin film transistor formation region as described above, the aperture ratio, which is the ratio of the effective display area to the unit area of the picture element, is reduced. A predetermined additional capacity can be secured without having to do so. In other words, the aperture ratio can be increased without reducing the area of the TFT and additional capacitance.

【0017】[0017]

【実施例】以下に本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0018】図1は本発明方法により製造されるアクテ
ィブマトリクス基板の断面構造を示しており、該アクテ
ィブマトリクス基板は図2に示す工程で作製される。以
下にその詳細を説明する。
FIG. 1 shows a cross-sectional structure of an active matrix substrate manufactured by the method of the present invention, and the active matrix substrate is manufactured by the steps shown in FIG. The details will be explained below.

【0019】図2(a)に示すように、まず、石英やサ
ファイヤ等からなる絶縁性基板1上に、減圧CVD法で
後に半導体層2となるシリコン層を100nmの厚さに
堆積する。次いで、該シリコン層をフォトリソグラフィ
法およびドライエッチング法によってパターニングして
半導体層2を形成する。次いで、例えばCVD法を用い
て、絶縁性基板1上の全面に半導体層2を覆うようにし
てSiO2からなるゲート絶縁膜3を100nmの厚さ
に堆積する。
As shown in FIG. 2A, first, a silicon layer that will later become the semiconductor layer 2 is deposited to a thickness of 100 nm on an insulating substrate 1 made of quartz, sapphire, or the like by low pressure CVD. Next, the silicon layer is patterned by photolithography and dry etching to form semiconductor layer 2. Next, using, for example, the CVD method, a gate insulating film 3 made of SiO2 is deposited to a thickness of 100 nm over the entire surface of the insulating substrate 1 so as to cover the semiconductor layer 2.

【0020】その後、ゲート絶縁膜3の上にリンPをド
ーピングしたSiを300nmの厚さで堆積し、該Si
をパターニングしてゲート電極6を形成する。次いで、
該ゲート電極をマスクとして用い、イオン注入法により
リンを不純物として、100KeV、5×1015cm
−2の条件下でドーピングする。このドーピングにより
、半導体層2のゲート電極6の下方に相当する部分にチ
ャネル領域2aが形成され、該チャネル領域2aの側方
にソース領域5aおよびドレイン領域5bが形成される
。以上のようにしてTFT21が作製される。
Thereafter, Si doped with phosphorus P is deposited to a thickness of 300 nm on the gate insulating film 3, and the Si
A gate electrode 6 is formed by patterning. Then,
Using the gate electrode as a mask, phosphorus was added as an impurity by ion implantation at 100 KeV, 5 x 1015 cm.
- Doping under the condition of 2. By this doping, a channel region 2a is formed in a portion of the semiconductor layer 2 corresponding to the lower part of the gate electrode 6, and a source region 5a and a drain region 5b are formed on the sides of the channel region 2a. The TFT 21 is manufactured as described above.

【0021】次いで、図2(b)に示すように、CVD
法で膜厚600nmのSiO2膜をTFT21を覆うよ
うにして絶縁性基板1上の全面に堆積して第1層間絶縁
膜7aを形成する。その後、ドーピングした不純物Pを
活性化させるために、該絶縁性基板1を、例えば窒素中
で950℃で30分間熱処理する。そして、該熱処理が
終了すると、第1層間絶縁膜7aのTFT21のドレイ
ン領域5bに相当する部分にコンタクトホール9を開口
する。
Next, as shown in FIG. 2(b), CVD
A SiO2 film having a thickness of 600 nm is deposited on the entire surface of the insulating substrate 1 by a method to cover the TFT 21 to form a first interlayer insulating film 7a. Thereafter, in order to activate the doped impurity P, the insulating substrate 1 is heat-treated at 950° C. for 30 minutes in nitrogen, for example. When the heat treatment is completed, a contact hole 9 is opened in a portion of the first interlayer insulating film 7a corresponding to the drain region 5b of the TFT 21.

【0022】次いで、図2(c)に示すように、第1層
間絶縁膜7a上に付加容量22の下部電極となる第1容
量電極10を膜厚150nmで形成する。該第1容量電
極10の材質は、リンPをドーピングしたポリシリコン
からなる。第1容量電極10は、具体的にはゲート電極
6の上方部から前記コンタクトホール9の反対側にかけ
て形成され、その一部はコンタクトホール9を通してT
FT21のドレイン領域に接続される。次に、このよう
にして形成された第1容量電極10を覆うようにして、
絶縁性基板1上の全面に付加容量絶縁膜11を堆積する
。 具体的には、CVD法を用いて膜厚100nmのSiO
2膜を堆積して形成される。
Next, as shown in FIG. 2C, a first capacitor electrode 10 having a thickness of 150 nm is formed on the first interlayer insulating film 7a to serve as the lower electrode of the additional capacitor 22. The material of the first capacitor electrode 10 is made of polysilicon doped with phosphorus P. Specifically, the first capacitor electrode 10 is formed from the upper part of the gate electrode 6 to the opposite side of the contact hole 9, and a part of the first capacitor electrode 10 is formed through the contact hole 9 to extend from the upper part of the gate electrode 6 to the opposite side of the contact hole 9.
Connected to the drain region of FT21. Next, so as to cover the first capacitor electrode 10 formed in this way,
An additional capacitance insulating film 11 is deposited on the entire surface of the insulating substrate 1. Specifically, SiO with a thickness of 100 nm was formed using the CVD method.
It is formed by depositing two films.

【0023】次いで、図2(d)に示すように、付加容
量絶縁膜11上に付加容量22の上部電極となる第2容
量電極12を形成する。具体的には、リンPをドーピン
グした膜厚150nmのポリシリコン膜を堆積して形成
される。図に示すように、以上のようにして形成された
付加容量22は、絶縁性基板1上のTFT21形成領域
を含む領域のほぼ直上(真上)に形成される。従って、
このような構造によれば、TFT21と付加容量22が
離反した状態で組み込まれる図5に示す従来構造のアク
ティブマトリクス基板に比べて開口率を格段に向上でき
る。それ故、該アクティブマトリクス基板を表示装置に
組み込むと、表示装置の画質を向上でき、且つ高精細化
が図れる。
Next, as shown in FIG. 2(d), a second capacitor electrode 12, which becomes the upper electrode of the additional capacitor 22, is formed on the additional capacitor insulating film 11. Specifically, it is formed by depositing a 150 nm thick polysilicon film doped with phosphorus P. As shown in the figure, the additional capacitance 22 formed as described above is formed almost directly above (directly above) the region on the insulating substrate 1 that includes the TFT 21 formation region. Therefore,
According to such a structure, the aperture ratio can be significantly improved compared to the active matrix substrate of the conventional structure shown in FIG. 5, in which the TFT 21 and the additional capacitor 22 are installed in a separated state. Therefore, when the active matrix substrate is incorporated into a display device, the image quality of the display device can be improved and high definition can be achieved.

【0024】上記のようにして形成された第2容量電極
12の上には、図1に示すように、第2層間絶縁膜7b
が形成される。具体的には、CVD法で膜厚400nm
のSiO2膜を堆積して形成される。次いで、該第2層
間絶縁膜7bの前記ソース領域5aの上方に相当する部
分およびゲート電極6の上方に相当する部分にコンタク
トホール13a、13bをそれぞれ開口する。その後、
コンタクトホール13a開口部にソースバスライン25
を形成し、またコンタクトホール13b開口部に絵素電
極8を形成する。ソースバスライン25の一部はコンタ
クトホール13aを通してソース領域5aに接続される
。 また、絵素電極8の一部はコンタクトホール13bを通
して第2容量電極12に接続される。以上の工程により
、アクティブマトリクス基板が作製される。
As shown in FIG. 1, a second interlayer insulating film 7b is formed on the second capacitor electrode 12 formed as described above.
is formed. Specifically, the film thickness was 400 nm using the CVD method.
It is formed by depositing a SiO2 film of. Next, contact holes 13a and 13b are opened in a portion of the second interlayer insulating film 7b corresponding to above the source region 5a and a portion corresponding to above the gate electrode 6, respectively. after that,
A source bus line 25 is connected to the opening of the contact hole 13a.
Also, a picture element electrode 8 is formed at the opening of the contact hole 13b. A portion of source bus line 25 is connected to source region 5a through contact hole 13a. Further, a part of the picture element electrode 8 is connected to the second capacitor electrode 12 through the contact hole 13b. Through the above steps, an active matrix substrate is manufactured.

【0025】その後、該アクティブマトリクス基板には
対向面側に対向電極が形成された対向基板が貼り合わさ
れ、両基板間に表示媒体としての液晶が封入され、これ
でアクティブクトリクス表示装置が作製される。
[0025] Thereafter, a counter substrate having a counter electrode formed on the opposite surface side is bonded to the active matrix substrate, and a liquid crystal serving as a display medium is sealed between both substrates, thereby producing an active matrix display device. Ru.

【0026】上記アクティブマトリクス基板はTFT2
1のゲート電極6をチャネル層2aの上部に設ける構造
をとるが、本発明が対象とするアクティブマトリクス基
板はこのような構造のものに限定されるものではなく、
図3に示すようにTFT21のゲート電極6をチャネル
層2aの下方に設ける構造のアクティブマトリクス基板
についても同様に適用できる。このアクティブマトリク
ス基板の製造は、ゲート電極6とチヤネル領域2aを含
む部分の製造手順が異なる他は、上記実施例のものと同
様であるので、対応する部分について同一の番号を付し
、製造工程については省略する。
[0026] The active matrix substrate has TFT2
Although the active matrix substrate to which the present invention is directed is not limited to such a structure,
The present invention can be similarly applied to an active matrix substrate having a structure in which the gate electrode 6 of the TFT 21 is provided below the channel layer 2a as shown in FIG. The manufacturing of this active matrix substrate is the same as that of the above embodiment except that the manufacturing procedure of the portion including the gate electrode 6 and the channel region 2a is different. will be omitted.

【0027】[0027]

【発明の効果】以上の本発明アクティブマトリクス基板
の製造方法は、絶縁性基板上のTFT形成領域を含む領
域のほぼ直上に付加容量を形成する工程をとるので、該
工程により製造されるアクティブマトリクス基板によれ
ば、上記従来のアクテイブマトリクス基板に比べて開口
率を格段に向上できる。しかも、TFTと付加容量の面
積を低減することなく実現できる。従って、液晶ディス
プレイ等のアクティブマトリクス表示装置に組み込めば
、画質の優れた、高精細のアクティブマトリクス表示装
置を実現できる。
Effects of the Invention Since the method for manufacturing an active matrix substrate of the present invention described above takes the step of forming an additional capacitance almost directly above the region including the TFT formation region on the insulating substrate, the active matrix manufactured by this step According to the substrate, the aperture ratio can be significantly improved compared to the above-mentioned conventional active matrix substrate. Moreover, this can be realized without reducing the area of the TFT and additional capacitance. Therefore, by incorporating it into an active matrix display device such as a liquid crystal display, a high-definition active matrix display device with excellent image quality can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法により製造されるアクティブマトリ
クス基板を示す断面図である。
FIG. 1 is a sectional view showing an active matrix substrate manufactured by the method of the present invention.

【図2】本発明方法の製造工程を示す断面図である。FIG. 2 is a cross-sectional view showing the manufacturing process of the method of the present invention.

【図3】本発明方法により製造されるアクティブマトリ
クス基板の変形例を示す断面図である。
FIG. 3 is a sectional view showing a modified example of an active matrix substrate manufactured by the method of the present invention.

【図4】従来のアクティブマトリクス表示装置の等価回
路を示す図面である。
FIG. 4 is a drawing showing an equivalent circuit of a conventional active matrix display device.

【図5】従来のアクティブマトリクス基板の製造工程を
示す断面図である。
FIG. 5 is a cross-sectional view showing the manufacturing process of a conventional active matrix substrate.

【符号の説明】[Explanation of symbols]

1    絶縁性基板 2    半導体層 2a  チャネル層 3    ゲート絶縁膜 5a  ソース領域 5b  ドレイン領域 6    ゲート電極 7a  第1層間絶縁膜 7b  第2層間絶縁膜 8    絵素電極 9、13a、13b  コンタクトホール10  第1
容量電極 11  付加容量絶縁膜 12  第2容量電極 21  TFT 22  付加容量 25  ソースバスライン
1 Insulating substrate 2 Semiconductor layer 2a Channel layer 3 Gate insulating film 5a Source region 5b Drain region 6 Gate electrode 7a First interlayer insulating film 7b Second interlayer insulating film 8 Pixel electrodes 9, 13a, 13b Contact hole 10 First
Capacitor electrode 11 Additional capacitor insulating film 12 Second capacitor electrode 21 TFT 22 Additional capacitor 25 Source bus line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に薄膜トランジスタを形成す
る工程と、該薄膜トランジスタの形成領域を含む領域の
ほぼ直上に絶縁膜を介して付加容量を形成する工程とを
包含するアクティブマトリクス基板の製造方法。
1. A method for manufacturing an active matrix substrate, comprising the steps of forming a thin film transistor on an insulating substrate, and forming an additional capacitor via an insulating film almost directly above a region including the region where the thin film transistor is formed. .
JP14346491A 1991-06-14 1991-06-14 Active matrix substrate Expired - Lifetime JP2690067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14346491A JP2690067B2 (en) 1991-06-14 1991-06-14 Active matrix substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14346491A JP2690067B2 (en) 1991-06-14 1991-06-14 Active matrix substrate

Publications (2)

Publication Number Publication Date
JPH04366924A true JPH04366924A (en) 1992-12-18
JP2690067B2 JP2690067B2 (en) 1997-12-10

Family

ID=15339318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14346491A Expired - Lifetime JP2690067B2 (en) 1991-06-14 1991-06-14 Active matrix substrate

Country Status (1)

Country Link
JP (1) JP2690067B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997021249A3 (en) * 1995-12-06 1997-08-14 Siemens Ag Field effect transistor
US7057691B2 (en) 1995-10-16 2006-06-06 Sharp Kabushiki Kaisha Semiconductor device
US7948571B2 (en) 1997-03-28 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistor with particular drain electrode structure
EP2624299A1 (en) * 2012-02-01 2013-08-07 Samsung Display Co., Ltd. Semiconductor device and flat panel display including the same
JP2018200467A (en) * 1999-02-23 2018-12-20 株式会社半導体エネルギー研究所 Liquid crystal display device
WO2019167448A1 (en) * 2018-02-28 2019-09-06 株式会社ジャパンディスプレイ Optical sensor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6346730B1 (en) * 1999-04-06 2002-02-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device having a pixel TFT formed in a display region and a drive circuit formed in the periphery of the display region on the same substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0185819U (en) * 1987-11-30 1989-06-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0185819U (en) * 1987-11-30 1989-06-07

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057691B2 (en) 1995-10-16 2006-06-06 Sharp Kabushiki Kaisha Semiconductor device
US7190418B2 (en) 1995-10-16 2007-03-13 Sharp Kabushiki Kaisha Semiconductor device
WO1997021249A3 (en) * 1995-12-06 1997-08-14 Siemens Ag Field effect transistor
US7948571B2 (en) 1997-03-28 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having thin film transistor with particular drain electrode structure
US8248551B2 (en) 1997-03-28 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including capacitor line parallel to source line
US8531619B2 (en) 1997-03-28 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Active matrix liquid crystal display device with overlapping conductive film and pixel electrode
JP2018200467A (en) * 1999-02-23 2018-12-20 株式会社半導体エネルギー研究所 Liquid crystal display device
EP2624299A1 (en) * 2012-02-01 2013-08-07 Samsung Display Co., Ltd. Semiconductor device and flat panel display including the same
US9053986B2 (en) 2012-02-01 2015-06-09 Samsung Display Co., Ltd. Semiconductor device and flat panel display including the same
WO2019167448A1 (en) * 2018-02-28 2019-09-06 株式会社ジャパンディスプレイ Optical sensor device
US11581358B2 (en) 2018-02-28 2023-02-14 Japan Display Inc. Optical sensor device

Also Published As

Publication number Publication date
JP2690067B2 (en) 1997-12-10

Similar Documents

Publication Publication Date Title
KR100205388B1 (en) Liquid crystal display device and its manufacturing method
KR100205373B1 (en) Manufacturing method of liquid crystal display element
JP3420135B2 (en) Active matrix substrate manufacturing method
JPH05129608A (en) Semiconductor device
JP3941032B2 (en) Thin film transistor liquid crystal display element having vertical thin film transistor
JP3070062B2 (en) Liquid crystal display device and method of manufacturing the same
KR0141774B1 (en) Liquid crystal display device and its manufacturing method
JP2618534B2 (en) Method for manufacturing active matrix display device
US5767531A (en) Thin-film transistor, method of fabricating the same, and liquid-crystal display apparatus
JPH0534718A (en) Liquid crystal display device
JPH0682826A (en) Active matrix substrate and its production
JPH04333828A (en) Liquid crystal display device
JP3352191B2 (en) Method for manufacturing thin film transistor
JP2798537B2 (en) Active matrix substrate manufacturing method
JP2690067B2 (en) Active matrix substrate
JPH06167722A (en) Active matrix substrate and its production
JPH04279064A (en) Display device
JPH05142571A (en) Liquid crystal display device
JP3105408B2 (en) Liquid crystal display device
JP2653572B2 (en) Active matrix substrate manufacturing method
JPH06175154A (en) Production of liquid crystal display device
JPH0635004A (en) Liquid crystal display device
JPH0621455A (en) Thin-film transistor
JPH0682834A (en) Active matrix panel
JP2862737B2 (en) Thin film transistor and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070829

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080829

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090829

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100829

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 14