JPH04365109A - Error amplifying circuit - Google Patents

Error amplifying circuit

Info

Publication number
JPH04365109A
JPH04365109A JP14161191A JP14161191A JPH04365109A JP H04365109 A JPH04365109 A JP H04365109A JP 14161191 A JP14161191 A JP 14161191A JP 14161191 A JP14161191 A JP 14161191A JP H04365109 A JPH04365109 A JP H04365109A
Authority
JP
Japan
Prior art keywords
voltage
output
current source
resistor
operational amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14161191A
Other languages
Japanese (ja)
Other versions
JP3118870B2 (en
Inventor
Kazunori Yamate
万典 山手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03141611A priority Critical patent/JP3118870B2/en
Publication of JPH04365109A publication Critical patent/JPH04365109A/en
Application granted granted Critical
Publication of JP3118870B2 publication Critical patent/JP3118870B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To satisfactorily use the dynamic range of a DAC and to protect a load circuit just after application of an input supply voltage by providing a voltage controlled current source to digitally control the output voltage of a DC-DC converter. CONSTITUTION:A voltage controlled current source 17 is connected to the intersection between output voltage setting resistances 6 and 7 of a DC-DC converter 5, and the voltage output of the DAC is connected to the control voltage input of the voltage controlled current source 17, thereby digitally controlling the DC-DC converter output voltage. As the result, the control input and the output have linear relations, and further, destruction of the load of a constant voltage generating circuit is prevented because the constant voltage generating circuit generates a minimum voltage in the control voltage range as the output voltage at the time of application of the input voltage. Further, an error amplifying circuit consisting of a smaller number of parts is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は定電圧発生回路(DC−
DCコンバータ)において、電圧制御をディジタル制御
で行う為の定電圧発生回路の誤差増幅回路に関するもの
である。
[Industrial Application Field] The present invention relates to a constant voltage generation circuit (DC-
This invention relates to an error amplification circuit of a constant voltage generation circuit for digitally controlling voltage in a DC converter.

【0002】0002

【従来の技術】近年、直流電圧制御を行う技術として電
力損失の少ないDC−DCコンバータの導入が図られて
おり、その電圧設定としてボリュームが使用されてきた
が最近では工場調整の自動化を図るためにディジタル制
御方式が導入されてきている。
[Prior Art] In recent years, attempts have been made to introduce DC-DC converters with low power loss as a technology for controlling DC voltage, and volume has been used to set the voltage, but recently, in order to automate factory adjustments, Digital control methods have been introduced in

【0003】以下に、従来の定電圧発生回路の制御につ
いて説明する。図2は従来の定電圧発生回路のブロック
を示すものである。  図2において、1は電流源(も
しくは抵抗)、2は基準電圧、3は演算増幅器、4は出
力回路  5は1,2,3,4で構成されるDC−DC
コンバータ、6,7,8,10,12,は抵抗、9,1
0はトランジスター,13はボリューム,14は直流電
源発生器である。  まず、ボリューム13でトランジ
スター11のベースにDC電圧が与えられていないとき
トランジスター11は動作を行わないのでトランジスタ
ター1のコレクター電流は流れない。  よって抵抗1
0の両端に電圧が発生しないためトタンジスター9は動
作を行わず(カットオフ状態)、抵抗6に抵抗8とトタ
ンジスター9は並列に接続されていない状態と等価であ
る。ここでDC−DCコンバータ5は抵抗6,7の抵抗
値の比率で出力端16の出力電圧は決定されている。 
 次にトランジスター11のベースにボリューム13か
ら電圧を与えるとトランジスター11は動作をはじめコ
レクター電流が流れはじめ抵抗10の両端に電圧が発生
する。
[0003] Control of a conventional constant voltage generating circuit will be explained below. FIG. 2 shows a block diagram of a conventional constant voltage generation circuit. In FIG. 2, 1 is a current source (or resistor), 2 is a reference voltage, 3 is an operational amplifier, 4 is an output circuit, and 5 is a DC-DC circuit consisting of 1, 2, 3, and 4.
Converter, 6, 7, 8, 10, 12, are resistors, 9, 1
0 is a transistor, 13 is a volume, and 14 is a DC power generator. First, when a DC voltage is not applied to the base of the transistor 11 by the volume 13, the transistor 11 does not operate, so the collector current of the transistor 1 does not flow. Therefore, resistance 1
Since no voltage is generated across the resistor 9, the resistor 9 does not operate (cutoff state), which is equivalent to a state in which the resistor 6, the resistor 8, and the resistor 9 are not connected in parallel. Here, the output voltage of the output terminal 16 of the DC-DC converter 5 is determined by the ratio of the resistance values of the resistors 6 and 7.
Next, when a voltage is applied to the base of the transistor 11 from the volume 13, the transistor 11 starts operating, a collector current starts flowing, and a voltage is generated across the resistor 10.

【0004】よってトタンジスター9が動作を開始する
ために抵抗8とトタンジスター9が抵抗6に並列に接続
されたと等価になり抵抗6,7の抵抗比率が下がったこ
ととなり出力端16の出力電圧は下がる。ここでまた、
トランジスター11のベース電圧を増加させればトラン
ジスター11のコレクター電流が増加し抵抗10の両端
電圧が増加しトタンジスター9のエミッター−コレクタ
ー間の抵抗値が下がり出力端16の出力電圧が下がる。   以上によりDC−DCコンバータの電圧制御が行わ
れる。
Therefore, in order for the transistor 9 to start operating, it becomes equivalent to connecting the resistor 8 and the resistor 9 in parallel with the resistor 6, and the resistance ratio of the resistors 6 and 7 decreases, and the output voltage at the output terminal 16 decreases. . Here again,
When the base voltage of the transistor 11 is increased, the collector current of the transistor 11 increases, the voltage across the resistor 10 increases, the resistance value between the emitter and the collector of the transistor 9 decreases, and the output voltage at the output terminal 16 decreases. As described above, voltage control of the DC-DC converter is performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、トランジスター11が動作を始めるとこ
ろではVbe−Ic特性を利用するので制御用入力電圧
と出力電圧の関係がリニアーにはならず、また入力電圧
印加時トランジスター11はオフ状態で動作を始めるた
め定電圧発生回路の出力電圧は制御電圧範囲の最高電圧
を発生させ定電圧発生回路の負荷を破壊するという問題
を有していた。
[Problems to be Solved by the Invention] However, in the conventional configuration described above, since the Vbe-Ic characteristic is used when the transistor 11 starts operating, the relationship between the control input voltage and the output voltage is not linear. When the input voltage is applied, the transistor 11 starts operating in an off state, so that the output voltage of the constant voltage generating circuit generates the highest voltage in the control voltage range, which causes the problem of destroying the load of the constant voltage generating circuit.

【0006】本発明は上記従来の問題点を解決するもの
で、制御用入力電圧と出力電圧の関係をリニアーにし、
さらに入力電圧印加時に定電圧発生回路の出力電圧は制
御電圧範囲の最低電圧を発生し定電圧発生回路の負荷を
破壊せず、さらに部品点数が少ないと言う誤差増幅回路
を提供する事を目的とする。
The present invention solves the above conventional problems by making the relationship between the control input voltage and the output voltage linear,
Furthermore, when an input voltage is applied, the output voltage of the constant voltage generation circuit generates the lowest voltage in the control voltage range, and the purpose is to provide an error amplification circuit that does not destroy the load of the constant voltage generation circuit and has a small number of components. do.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に本発明の誤差増幅回路は、電源電圧が第1の電流源の
一方に接続され、第1の電流源の他方は基準電圧発生源
に接続され、基準電圧発生のもう一方は接地されている
。基準電圧発生源の基準電圧出力は、演算増幅器の正転
端子に接続され(電源電圧が正の時)演算増幅器の出力
は出力回路に接続され出力回路の出力が第1の抵抗を通
して演算増幅器の反転端子に入力され、次に第2の抵抗
が演算増幅器の反転端子と接地間に接続され  、さら
に演算増幅器の反転端子と接地間に電圧制御型電流源が
接続され、電圧制御型電流源の電圧入力にはDAC(デ
ィジタルアナログ変換器)が接続されているという構成
を有している。
[Means for Solving the Problems] In order to achieve this object, the error amplification circuit of the present invention has a power supply voltage connected to one of the first current sources, and the other of the first current sources is a reference voltage generation source. The other end of the reference voltage generator is connected to ground. The reference voltage output of the reference voltage source is connected to the normal terminal of the operational amplifier (when the power supply voltage is positive), and the output of the operational amplifier is connected to the output circuit, and the output of the output circuit is connected to the operational amplifier through the first resistor. A second resistor is connected between the inverting terminal of the operational amplifier and ground, and a voltage-controlled current source is connected between the inverting terminal of the operational amplifier and ground. It has a configuration in which a DAC (digital to analog converter) is connected to the voltage input.

【0008】[0008]

【作用】この構成によって、電圧制御型電流源が動作し
ていない状態では、第1の抵抗と第2の抵抗により出力
回路の出力は決定されており制御範囲の最低電圧値にな
っている。  ここで電圧制御型電流源として制御入力
電圧と出力電流との関係がリニアーなものを用いると電
圧制御型電流源に流れ込む電流は第1の抵抗を流れる電
流の一部であるため出力回路の出力は制御範囲の最低電
圧値をスタートとして(電圧制御型電流源に流れ込む電
流)と(第1の抵抗値)の積に応じた電圧可変を行うこ
とができる。
[Operation] With this configuration, when the voltage-controlled current source is not operating, the output of the output circuit is determined by the first resistor and the second resistor, and is the lowest voltage value in the control range. Here, if a voltage-controlled current source with a linear relationship between the control input voltage and output current is used, the current flowing into the voltage-controlled current source is a part of the current flowing through the first resistor, so the output of the output circuit Starting from the lowest voltage value in the control range, the voltage can be varied according to the product of (current flowing into the voltage-controlled current source) and (first resistance value).

【0009】[0009]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。図1において、1は電流源  (も
しくは抵抗)、2は基準電圧発生源、3は演算増幅器、
4は出力回路  5は1,2,3,4で構成されるDC
−DCコンバータ、6,7は抵抗、17は電圧制御型電
流源、18はDACである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. In Figure 1, 1 is a current source (or resistor), 2 is a reference voltage source, 3 is an operational amplifier,
4 is an output circuit 5 is a DC composed of 1, 2, 3, and 4
-DC converter, 6 and 7 are resistors, 17 is a voltage controlled current source, and 18 is a DAC.

【0010】以上のように構成された誤差増幅器につい
て、図1を用いてその動作を説明する。まず、DAC1
8と電圧制御型電流源17が動作していない状態(入力
電源電圧が印加された直後の状態では、DAC18は通
常リセット状態のため電圧がゼロの状態であり電圧制御
型電流源17も電流を引っぱっていない)のために出力
回路4の電圧は抵抗6,7で決定される電圧になってい
る。  この時出力回路4の電圧は、(基準電圧発生源
2の基準電圧)/(抵抗7の抵抗値)による電流が抵抗
6に流れて抵抗6に発生する電圧と基準電圧発生源2の
基準電圧の加算された電圧になる。
The operation of the error amplifier configured as described above will be explained with reference to FIG. First, DAC1
8 and the voltage-controlled current source 17 are not operating (immediately after the input power supply voltage is applied, the DAC 18 is normally in the reset state, so the voltage is zero, and the voltage-controlled current source 17 also does not output current. (not pulled), the voltage of the output circuit 4 is determined by the resistors 6 and 7. At this time, the voltage of the output circuit 4 is the voltage generated in the resistor 6 when the current flows through the resistor 6 due to (reference voltage of the reference voltage source 2)/(resistance value of the resistor 7), and the reference voltage of the reference voltage source 2. It becomes the added voltage of .

【0011】ここで、DAC18にデータを与えて電圧
を発生させるとその電圧に応じて電圧制御型電流源17
は電流を引っぱり始める。  この電圧制御型電流源1
7が引っぱる電流は抵抗6を通して供給されるので抵抗
6の両端に発生する電圧は増加する。  よって、出力
回路4の電圧は、抵抗6の両端に発生する電圧と基準電
圧発生源2の基準電圧の加算により与えられるので増加
する。
Here, when data is given to the DAC 18 to generate a voltage, the voltage controlled current source 17
begins to draw current. This voltage controlled current source 1
Since the current drawn by 7 is supplied through resistor 6, the voltage developed across resistor 6 increases. Therefore, the voltage of the output circuit 4 increases because it is given by the addition of the voltage generated across the resistor 6 and the reference voltage of the reference voltage generation source 2.

【0012】次に、電圧制御型電流源17について、図
3を用いて説明する。図3において19はトランジスタ
ー、20は抵抗、21は演算増幅器であり、この演算増
幅器21の正転入力端子に与えられた電圧値と演算増幅
器21の反転入力端子に与えられた電圧値が等しくなる
ように演算増幅器21は動作するためにトランジスター
19のエミッタ電圧は演算増幅器21の正転入力端子に
与えられた電圧値に等しくなる。  よってトランジス
ター19のエミッタ電流は(演算増幅器21の正転入力
端子に与えられた電圧値)/(抵抗20の抵抗値)とな
る。そして、ここでトランジスター19の順方向電流増
幅度を無限大と仮定すればトランジスター19のエミッ
タ電流とコレクタ電流は等しくなる。  だから演算増
幅器21の正転入力端子に与えられた電圧値とトランジ
スター19のコレクタ電流はリニアーな関係となる。
Next, the voltage-controlled current source 17 will be explained using FIG. 3. In FIG. 3, 19 is a transistor, 20 is a resistor, and 21 is an operational amplifier, and the voltage value applied to the non-inverting input terminal of the operational amplifier 21 and the voltage value applied to the inverting input terminal of the operational amplifier 21 are equal. Since the operational amplifier 21 operates in this manner, the emitter voltage of the transistor 19 becomes equal to the voltage value applied to the non-inverting input terminal of the operational amplifier 21. Therefore, the emitter current of the transistor 19 is (voltage value applied to the non-inverting input terminal of the operational amplifier 21)/(resistance value of the resistor 20). If the forward current amplification degree of the transistor 19 is assumed to be infinite, the emitter current and the collector current of the transistor 19 will be equal. Therefore, the voltage value applied to the normal input terminal of the operational amplifier 21 and the collector current of the transistor 19 have a linear relationship.

【0013】以上により、抵抗6の両端に発生する電圧
はDAC18の出力電圧とリニアーな関係を持つので出
力回路4の出力電圧はDAC18の出力電圧とリニアー
な関係を持つ。
As described above, since the voltage generated across the resistor 6 has a linear relationship with the output voltage of the DAC 18, the output voltage of the output circuit 4 has a linear relationship with the output voltage of the DAC 18.

【0014】[0014]

【発明の効果】以上のように本発明は、電圧制御型電流
源とDACを設けることにより、DC−DCコンバータ
の出力電圧をディジタル制御で制御することが可能にな
り、DACのダイナミックレンジをフル活用でき、さら
に入力電源電圧印加時直後においてDC−DCコンバー
タの制御電圧範囲の最小電圧からスタートするためにD
C−DCコンバータの出力に接続される負荷回路の保護
機能も合わせ持つことができ、さらに部品点数が少ない
のでコストダウンができる優れた誤差増幅回路を実現で
きるものである。
As described above, the present invention makes it possible to control the output voltage of a DC-DC converter by digital control by providing a voltage-controlled current source and a DAC, and the dynamic range of the DAC can be fully extended. Furthermore, in order to start from the minimum voltage in the control voltage range of the DC-DC converter immediately after applying the input power supply voltage, D
It can also have a protection function for the load circuit connected to the output of the C-DC converter, and furthermore, since the number of parts is small, it is possible to realize an excellent error amplification circuit that can reduce costs.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例における誤差増幅回路の構成
FIG. 1 is a configuration diagram of an error amplification circuit in an embodiment of the present invention.

【図2】従来の誤差増幅回路の構成図[Figure 2] Configuration diagram of a conventional error amplification circuit

【図3】本発明の実施例における電圧制御型電流源の構
成図
FIG. 3 is a configuration diagram of a voltage-controlled current source in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  電流源 2  基準電圧発生源 3  演算増幅器 4  出力回路 5  DC−DCコンバータ 6  抵抗 7  抵抗 15  入力電源電圧 16  出力電圧 17  電圧制御型電流源 18  DAC 19  トランジスター 20  抵抗 21  演算増幅器 1 Current source 2 Reference voltage source 3 Operational amplifier 4 Output circuit 5 DC-DC converter 6 Resistance 7 Resistance 15 Input power supply voltage 16 Output voltage 17 Voltage controlled current source 18 DAC 19 Transistor 20 Resistance 21 Operational amplifier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電源電圧が第1の電流源または第1の
抵抗の一方に接続され、第1の電流源または第1の抵抗
の他方は基準電圧発生源に接続され、基準電圧発生源の
もう一方は接地され、基準電圧発生済の基準電圧出力端
は演算増幅器の正転端子に接続され、演算増幅器の出力
端は出力回路に接続され、出力回路の出力が第2の抵抗
を通して演算増幅器の反転端子に入力され、次に第3の
抵抗が演算増幅器の反転端子と接地間に接続され、さら
に演算増幅器の反転端子と接地間に電圧制御型電流源が
接続され、電圧制御型電流源の電圧入力にはディジタル
アナログ変換器が接続されている誤差増幅回路。
Claim: 1. A power supply voltage is connected to one of a first current source or a first resistor, the other of the first current source or the first resistor is connected to a reference voltage generation source, and the first current source or the first resistance is connected to a reference voltage generation source. The other end is grounded, the reference voltage output terminal from which the reference voltage has been generated is connected to the normal rotation terminal of the operational amplifier, the output terminal of the operational amplifier is connected to the output circuit, and the output of the output circuit is passed through the second resistor to the operational amplifier. A third resistor is connected between the inverting terminal of the operational amplifier and ground, and a voltage-controlled current source is connected between the inverting terminal of the operational amplifier and ground. The error amplifier circuit has a digital-to-analog converter connected to its voltage input.
JP03141611A 1991-06-13 1991-06-13 Error amplification circuit Expired - Fee Related JP3118870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03141611A JP3118870B2 (en) 1991-06-13 1991-06-13 Error amplification circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03141611A JP3118870B2 (en) 1991-06-13 1991-06-13 Error amplification circuit

Publications (2)

Publication Number Publication Date
JPH04365109A true JPH04365109A (en) 1992-12-17
JP3118870B2 JP3118870B2 (en) 2000-12-18

Family

ID=15296053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03141611A Expired - Fee Related JP3118870B2 (en) 1991-06-13 1991-06-13 Error amplification circuit

Country Status (1)

Country Link
JP (1) JP3118870B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252441A (en) * 2009-04-13 2010-11-04 Powerchip Technology Corp Control circuit for boosting circuits
CN111679709A (en) * 2020-06-16 2020-09-18 武汉光迅科技股份有限公司 Voltage generating circuit and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252441A (en) * 2009-04-13 2010-11-04 Powerchip Technology Corp Control circuit for boosting circuits
CN111679709A (en) * 2020-06-16 2020-09-18 武汉光迅科技股份有限公司 Voltage generating circuit and method
CN111679709B (en) * 2020-06-16 2022-03-11 武汉光迅科技股份有限公司 Voltage generating circuit and method

Also Published As

Publication number Publication date
JP3118870B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
JP3340250B2 (en) Buffer circuit
JPH04365109A (en) Error amplifying circuit
JPH1070424A (en) Gain controlled amplifier and camera using the amplifier
JP2002252528A (en) Improved ab class high speed input stage wherein high speed settling time is compensated by base current
JP2000013161A (en) Variable gain amplifier
JP3043044B2 (en) D / A conversion circuit
JPH0124443B2 (en)
JP2539977Y2 (en) Standard power supply
KR950004048Y1 (en) Power control circuit for volume control of micom
JPS59171204A (en) Bias circuit
JPH0532872Y2 (en)
JPH0677745A (en) Voltage/current converting circuit
JPH0419881Y2 (en)
JPH0477063A (en) Clip circuit
JPH0282708A (en) Variable impedance circuit
JPS6117365B2 (en)
JPH0575368A (en) Nonlinear amplifier
JPH0772939A (en) Current source circuit
JPH01234868A (en) Laser driving device
JPH0615113U (en) Constant current circuit
JPS6343408A (en) Bias voltage generation circuit
JPH0792204A (en) Comparator circuit
JPH07231255A (en) A/d converter
JPH0478204B2 (en)
JPH085670A (en) Trigger circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees