JPH0436465B2 - - Google Patents

Info

Publication number
JPH0436465B2
JPH0436465B2 JP57193190A JP19319082A JPH0436465B2 JP H0436465 B2 JPH0436465 B2 JP H0436465B2 JP 57193190 A JP57193190 A JP 57193190A JP 19319082 A JP19319082 A JP 19319082A JP H0436465 B2 JPH0436465 B2 JP H0436465B2
Authority
JP
Japan
Prior art keywords
power supply
region
supply line
lines
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57193190A
Other languages
Japanese (ja)
Other versions
JPS5982762A (en
Inventor
Takeo Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57193190A priority Critical patent/JPS5982762A/en
Publication of JPS5982762A publication Critical patent/JPS5982762A/en
Publication of JPH0436465B2 publication Critical patent/JPH0436465B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は、半導体メモリ装置のレイアウトに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the layout of semiconductor memory devices.

一般に半導体メモリ装置は、第1図に示すよう
に、中央にメモリセルマトリクス、デコーダなど
のメモリセルアレイ部1、周辺にクロツク・ジエ
ネレータ、入出力回路2a,2bを配置するのが
普通である。第1図は、現在最も多く用いられて
いるレイアウト代表例で、複雑化する回路網を有
機的に配置するため、メモリセルアレイ部の上下
2辺方向に集中して周辺回路をレイアウトするこ
とが多く、一方、メモリセルアレイ部の左右2辺
方向は、ケースの横幅の制限等のため周辺回路は
配置せず、電源線、接地線とその他10本程度のク
ロツク配線を配置するのみにとどめていることが
多い。
Generally, as shown in FIG. 1, a semiconductor memory device generally has a memory cell array section 1 such as a memory cell matrix and decoder arranged in the center, and a clock generator and input/output circuits 2a and 2b arranged around the periphery. Figure 1 shows a typical example of the layout that is most commonly used today.In order to organically arrange increasingly complex circuit networks, peripheral circuits are often laid out in a concentrated manner on the upper and lower sides of the memory cell array. On the other hand, due to the width limitations of the case, peripheral circuits are not placed on the left and right sides of the memory cell array section, and only the power supply line, ground line, and about 10 other clock lines are placed. There are many.

メモリセルアレイ部、周辺部共にそれぞれ電源
主配線、接地主配線を配置する必要があり、その
多くは第2図、第3図に示されるように環状に配
置される。第2図、第3図は電源、接地両アルミ
主配線のみの構成を例示したもので、前者は破
線、後者は、実線で示され、24,25,34,
35はボンデイングパツドである。メモリセルア
レイ部用の内まわり接地線21,31、と、周辺
部用外まわり接地線22,32との間に、周辺部
用電源線23,33とクロツクなどの配線群が配
置される。(メモリセルアレイ用電源線は省略し
てある。) 従来、接地線の電位の浮き上がりは、デコーダ
のマルチセレクトなど誤動作の原因となることが
多いため配線抵抗を考え内まわりと外まわりの接
地線は、アルミ(A−A′,B−B′)で接続する
ことが常識であつた。
It is necessary to arrange power supply main wiring and ground main wiring in both the memory cell array part and the peripheral part, respectively, and most of them are arranged in a ring shape as shown in FIGS. 2 and 3. Figures 2 and 3 illustrate configurations with only aluminum main wiring for power and ground, the former being shown by broken lines and the latter by solid lines.
35 is a bonding pad. A group of wires such as peripheral power supply lines 23 and 33 and a clock are arranged between the inner ground lines 21 and 31 for the memory cell array section and the outer ground lines 22 and 32 for the peripheral section. (The power supply line for the memory cell array is omitted.) Conventionally, rising potential on the ground line often causes malfunctions such as decoder multi-select, so the inner and outer ground lines were connected in consideration of wiring resistance. It was common sense to connect with aluminum (A-A', B-B').

ここで問題となるのは、周辺用電源線がA−
A′,B−B′において切断され、環を形成できな
いことと、同様に、数本〜十数本のクロツク配線
が、A−A′,B−B′において巾30μm程度におよ
ぶ太い接地と交叉するため、その結果、細い不純
物拡散層や多結晶シリコン層で配線する必要が生
じ、数100Ωにおよぶ配線抵抗を有することとな
る2点である。
The problem here is that the peripheral power supply line is A-
Similarly, several to more than ten clock wires are cut at A', B-B' and cannot form a ring, and there is a thick grounding with a width of about 30 μm at A-A', B-B'. Since these two points intersect, it becomes necessary to conduct wiring using a thin impurity diffusion layer or a polycrystalline silicon layer, resulting in a wiring resistance of several hundreds of ohms.

半導体メモリ装置は、大記憶容量化、高速化が
急速に進み、各クロツクの負荷容量が増大する一
方、それを充電するトランジスタの電流能力も増
大させているため各クロツク配線や、電源、接地
線を流れる電流は、非常に大きく、特に、瞬時電
流に関しては、10nsecに数100mAにも及ぶ場合
もあり、前述の2つの問題点が、重大となつてき
ている。たとえば、ワード線ドライブクロツク
や、データ線プリチヤージクロツクなどメモリセ
ルアレイ部をドライブするクロツクに関しては、
数10pFにおよぶものが多く、配線抵抗が数100Ω
程度の場合、読み出し信号量の減少など、高速化
の障害となつたり、誤動作の原因となつたりす
る。
Semiconductor memory devices are rapidly becoming larger in storage capacity and faster in speed, increasing the load capacity of each clock and increasing the current capacity of the transistors that charge it. The current flowing through is very large, especially instantaneous current, which can reach several 100 mA in 10 nanoseconds, and the two problems mentioned above are becoming serious. For example, regarding clocks that drive the memory cell array, such as word line drive clocks and data line precharge clocks,
Many have a resistance of several tens of pF, and the wiring resistance is several hundred ohms.
If the amount of readout signals is reduced, it may become an obstacle to speeding up or cause malfunctions.

本発明の目的は、チツプサイズなど全体のレイ
アウトに大きな影響を与えずに、電源線やクロツ
ク配線の抵抗を減じ、高速な、大記憶容量の半導
体メモリ装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-speed, large-storage-capacity semiconductor memory device that reduces the resistance of power supply lines and clock lines without significantly affecting the overall layout such as chip size.

本発明は、一導電型半導体チツプ一主表面上中
央に、メモリセルマトリクス、デコーダなどを含
むアレイ領域を有し、その上下2辺方向チツプ周
辺に、周辺回路領域がほぼ偏在しており、前記ア
レイ領域に属する電源線あるいは、接地線を形成
する第1の金属主配線層と前記半導体チツプ周辺
領域に属する電源線、あるいは接地線を形成する
第2の金属主配線層とを有する半導体メモリ装置
において、前記アレイ領域に沿つて、前記アレイ
領域左右2辺方向チツプ周辺領域に延在する不純
物拡散領域あるいは、不純物を含有した多結晶シ
リコン層によつて前記第1と第2の金属主配線層
が接続されており、他の金属配線層では、接続さ
れていないことを特徴とする半導体メモリ装置で
ある。
According to the present invention, a semiconductor chip of one conductivity type has an array region including a memory cell matrix, a decoder, etc. at the center of the main surface, and peripheral circuit regions are almost unevenly distributed around the chip in two directions above and below. A semiconductor memory device having a first metal main wiring layer forming a power supply line or a ground line belonging to an array region and a second metal main wiring layer forming a power supply line or a ground line belonging to a peripheral region of the semiconductor chip. The first and second metal main wiring layers are formed along the array region by an impurity diffusion region extending to the chip peripheral region in the left and right directions of the array region or by a polycrystalline silicon layer containing impurities. This is a semiconductor memory device characterized in that the two metal wiring layers are connected to each other, but are not connected to other metal wiring layers.

次に本発明の実施例を第4図、第5図に示す。
第5図は、第4図点線内の構成を示したもので、
周辺回路を配置していないメモリセルアレイ部側
面全体にて(メモリセルアレイ部左側も右側と同
様に構成できる)内まわり接地線41,52、と
外まわり接地線42,53を不純物拡散層あるい
は、多結晶シリコン層51によつて接続してい
る。第5図Cの領域には、クロツク配線群が配置
されている。44,45は、ボンデイング用パツ
ド、54は、コンタクト開口部アレイである。
Next, an embodiment of the present invention is shown in FIGS. 4 and 5.
Figure 5 shows the configuration within the dotted line in Figure 4.
The inner ground lines 41 and 52 and the outer ground lines 42 and 53 are formed using impurity diffusion layers or polycrystalline wires on the entire side surface of the memory cell array section where peripheral circuits are not arranged (the left side of the memory cell array section can be constructed in the same way as the right side). They are connected by a silicon layer 51. In the area shown in FIG. 5C, a group of clock wiring lines is arranged. 44 and 45 are bonding pads, and 54 is a contact opening array.

たとえば、チツプ長辺方向6mm、接地線巾
30μm厚さ1.2μmのアルミニウム、不純物拡散層
51の層抵抗30Ω、C領域の巾100μmとすると、
ボンデイングパツドからメモリセルアレイ部接地
線遠端までの配線抵抗は、従来例第2図中のNa
で約4.5Ω、本発明の実施例第4図中Nbで約4.7Ω
であり、5%以下の増加であり充分小さいと言え
る。
For example, the chip length is 6mm, the ground wire width is 6mm.
Assuming that aluminum has a thickness of 30 μm and 1.2 μm, the layer resistance of the impurity diffusion layer 51 is 30 Ω, and the width of the C region is 100 μm.
The wiring resistance from the bonding pad to the far end of the memory cell array ground wire is Na in the conventional example in Figure 2.
About 4.5Ω for Nb, and about 4.7Ω for Nb in Fig. 4 of the embodiment of the present invention.
The increase is less than 5%, which can be said to be sufficiently small.

これに対して、第4図では、第2図、第3図に
A−A′,B−B′と示されるような配線部がない
ため、電源線43が環状となつており、同じ配線
巾を用いた場合でも従来例の1/2の抵抗に押え
られる。これは、前述のごとく、高速大記憶容量
半導体メモリ装置のように電流、特に瞬時電流が
大きい場合生ずる電流電位降下に対して非常に有
効である。また、前述のようなクロツク配線の抵
抗も小さく、誤動作を防止し、高速化も可能とな
る。
On the other hand, in FIG. 4, there is no wiring section shown as A-A', B-B' in FIGS. Even when the width is used, the resistance can be reduced to 1/2 that of the conventional example. As mentioned above, this is very effective against the current potential drop that occurs when the current, especially the instantaneous current, is large as in a high speed, large storage capacity semiconductor memory device. Furthermore, the resistance of the clock wiring as described above is small, preventing malfunctions and increasing speed.

また、メモリセルアレイ部の電流は、A−
A′部のように集中せず2本に分散されれ、アル
ミニウム、マイグレーシヨンに対しても有利と言
える。
Furthermore, the current in the memory cell array section is A-
It is not concentrated like in part A' but is dispersed into two, which can be said to be advantageous against aluminum and migration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は現在のブロツクレイアウトの代表例
で、1はメモリセルアレイ部、2a,2bは周辺
回路部を示す。第2図、第3図は従来の電源、接
地線レイアウトの例で、21,31は内まわり、
22,32は外まわり接地線、23,33は電源
線、24,25,34,35はボンデイングパツ
ドを示す。第4図、第5図は本発明の実施例であ
り、41,52は内まわり接地線、42,53は
外まわり接地線、43は電源線、44,45はボ
ンデイングパツド、51は不純物拡散層あるい
は、多結晶シリコン層、54はコンタクト開口部
を示す。なお、第5図は第4図点線内の構成図を
示す。
FIG. 1 shows a typical example of the current block layout, with reference numeral 1 indicating a memory cell array section and 2a and 2b indicating peripheral circuit sections. Figures 2 and 3 are examples of conventional power supply and ground line layouts, with 21 and 31 being inner lines,
22 and 32 are outer grounding wires, 23 and 33 are power supply lines, and 24, 25, 34, and 35 are bonding pads. 4 and 5 show examples of the present invention, 41 and 52 are inner grounding wires, 42 and 53 are outer grounding wires, 43 is a power supply line, 44 and 45 are bonding pads, and 51 is an impurity diffusion wire. The layer or polycrystalline silicon layer 54 represents the contact opening. Incidentally, FIG. 5 shows the configuration diagram within the dotted line in FIG. 4.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体チツプの一主表面上中央にメ
モリセルマトリクス、デコーダなどを含むアレイ
領域と、その上下2辺方向のチツプ周辺にレイア
ウトされた周辺回路領域とを有する半導体メモリ
装置において、前記アレイ領域に属する第1の電
源線と、前記周辺回路領域に属し該第1の電源線
の外側に位置する第2の電源線が共に第一の金属
配線層で形成され、前記第1および第2の電源線
の間に前記第一の金属配線層で形成された第3の
電源線が連続した環状に設けられ、前記第1およ
び第2の電源線は電源電位および接地電位の一方
が供給され、前記第3の電源線には電源電位およ
び接地電位の他方が与えられ、前記アレイ領域に
沿つて、前記アレイ領域左右2辺方向チツプ周辺
領域に延在する不純物拡散領域、あるいは、不純
物を含有した多結晶シリコン層によつて前記第1
と第2の電源線が接続されていることを特徴とす
る半導体メモリ装置。
1. A semiconductor memory device having an array region including a memory cell matrix, a decoder, etc. in the center on one main surface of a semiconductor chip of one conductivity type, and peripheral circuit regions laid out around the chip in two directions above and below the array region. A first power supply line belonging to the region and a second power supply line belonging to the peripheral circuit region and located outside the first power supply line are both formed of a first metal wiring layer, and the first and second power supply lines A third power line formed of the first metal wiring layer is provided in a continuous ring between the power lines, and the first and second power lines are supplied with one of a power supply potential and a ground potential. , the third power supply line is supplied with the other of a power supply potential and a ground potential, and an impurity diffusion region or an impurity-containing region extending along the array region in the chip peripheral region in the left and right sides of the array region. The first polycrystalline silicon layer
and a second power supply line are connected to each other.
JP57193190A 1982-11-02 1982-11-02 Semiconductor memory device Granted JPS5982762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57193190A JPS5982762A (en) 1982-11-02 1982-11-02 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57193190A JPS5982762A (en) 1982-11-02 1982-11-02 Semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS5982762A JPS5982762A (en) 1984-05-12
JPH0436465B2 true JPH0436465B2 (en) 1992-06-16

Family

ID=16303796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57193190A Granted JPS5982762A (en) 1982-11-02 1982-11-02 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS5982762A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2752059B2 (en) * 1987-01-09 1998-05-18 株式会社東芝 Semiconductor integrated circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499576U (en) * 1977-12-26 1979-07-13

Also Published As

Publication number Publication date
JPS5982762A (en) 1984-05-12

Similar Documents

Publication Publication Date Title
JPS60192359A (en) Semiconductor memory
JP3179800B2 (en) Semiconductor integrated circuit device
US4660174A (en) Semiconductor memory device having divided regular circuits
KR20060004930A (en) Integrated circuit die i/o cells
US5986294A (en) Semiconductor integrated circuit
US6306744B1 (en) Filter capacitor construction
US4947233A (en) Semi-custom LSI having input/output cells
JPH0434309B2 (en)
US4439841A (en) Semiconductor memory devices
JPH0576174B2 (en)
JPH05243482A (en) Semiconductor integrated circuit
JPH0436465B2 (en)
JPH07118507B2 (en) Semiconductor integrated circuit using bump mounting
JP2676801B2 (en) Semiconductor integrated circuit device having output buffer circuit
JPH0763066B2 (en) Semiconductor device
JPS594158A (en) Semiconductor memory device
JPH04318392A (en) Semiconductor integrated circuit device
JPH0231454A (en) Semiconductor device
JPH0236563A (en) Semiconductor integrated circuit device
JPH0329182B2 (en)
JP2752262B2 (en) Manufacturing method of one-chip LSI
JPH05166932A (en) Semiconductor integrated circuit device
JP2653444B2 (en) Semiconductor integrated circuit device
JP2621442B2 (en) Semiconductor storage device
JPH0645566A (en) Semiconductor integrated circuit device