JPH04359545A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04359545A
JPH04359545A JP13471091A JP13471091A JPH04359545A JP H04359545 A JPH04359545 A JP H04359545A JP 13471091 A JP13471091 A JP 13471091A JP 13471091 A JP13471091 A JP 13471091A JP H04359545 A JPH04359545 A JP H04359545A
Authority
JP
Japan
Prior art keywords
insulating film
film thickness
film
interlayer insulating
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13471091A
Other languages
Japanese (ja)
Inventor
Teruhiko Okada
岡田 輝彦
Kojiro Yuzuriha
杠 幸二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13471091A priority Critical patent/JPH04359545A/en
Publication of JPH04359545A publication Critical patent/JPH04359545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To expand the substantial electrical contact area of the title device by a method wherein the film thickness of an interlayer insulating film is set in such a way that the film thickness in the vertical direction with reference to a substrate is larger than the film thickness in the horizontal direction. CONSTITUTION:A prescribed treatment is executed to a silicon substrate 1; a gate oxide film 2, a gate electrode 3 and an n-type impurity diffusion layer 4 are formed. Then, an interlayer insulating film 5 in which its film thickness F in the vertical direction with reference to the silicon substrate 1 is larger than its film thickness G in the horizontal direction (F>=G) is deposited on the silicon substrate 1. After the interlayer insulating film 5 has been formed in this manner, a patterning operation is executed so that the gate electrode 3 and the n-type impurity diffusion layer 4 can be connected electrically. Then, an anisotropically reactive ion etching operation is executed; the width I of an insulating-film residue 6 in the n-type impurity diffusion layer 4 is reduced. Thereby, the substantial electrical contact area of the title device can be expanded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置の製造方法
に関し、特に段差の大きい2つの導電層においても良好
な電気的接続を可能にした半導体装置の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device that enables good electrical connection even between two conductive layers with a large step difference.

【0002】0002

【従来の技術】従来、LSIなどの半導体装置では段差
状態となっている2つの導電層を接続するとき、それら
の上に導電性の薄膜を堆積して配線していた。図3は従
来の半導体装置の製造方法によって接続した2つの導電
層の電気的接続部を示す平面パターン図であり、特に図
3(a)はその電気的接続部の平面図、図3(b)は図
3(a)におけるA1−A2断面を示す図である。同図
において、1はp形シリコン基板、2はゲート酸化膜、
3はゲート電極、4はn形不純物拡散層、5は層間絶縁
膜、6は絶縁物残渣、7はゲート電極3とn形不純物拡
散層4とを同時に電気的に接続する多結晶シリコン配線
、8はレジストである。
2. Description of the Related Art Conventionally, in semiconductor devices such as LSIs, when connecting two conductive layers that are in a stepped state, a conductive thin film is deposited on top of them for wiring. FIG. 3 is a plan view showing an electrical connection between two conductive layers connected by a conventional semiconductor device manufacturing method. In particular, FIG. 3A is a plan view of the electrical connection, and FIG. ) is a diagram showing the A1-A2 cross section in FIG. 3(a). In the figure, 1 is a p-type silicon substrate, 2 is a gate oxide film,
3 is a gate electrode, 4 is an n-type impurity diffusion layer, 5 is an interlayer insulating film, 6 is an insulator residue, 7 is a polycrystalline silicon wiring that electrically connects the gate electrode 3 and the n-type impurity diffusion layer 4 at the same time, 8 is a resist.

【0003】次に、上記構成による半導体装置の製造方
法について図4(a)〜図4(d)を参照して説明する
。まず、図4(a)に示すように、予めシリコン基板1
に電界効果型トランジスタ形成処理を施すことにより、
例えば200オングストロームのゲート酸化膜2、2,
000オングストロームのゲート電極3およびn形の不
純物拡散層4を形成する。次に、図4(b)に示すよう
に、段差被覆性の良好な層間絶縁膜5をCVD法により
例えば2,000オングストロームに堆積する。このと
き、この層間絶縁膜5はシリコン基板1に対して垂直方
向の膜厚Bと水平方向の膜厚Cとが等しく(B=C)に
なるように形成する。次に、図4(c)に示すようにゲ
ート電極3とn形不純物拡散層4とを同時に多結晶シリ
コン配線7(図3(b)参照)で電気的に接続できるよ
うに、レジスト8でパターニングしたのち、異方性の反
応性エッチングにて層間絶縁膜5をエッチングする。こ
のとき、図4(c)に示すように、段差部分での層間絶
縁膜厚Dが平坦部分での層間絶縁膜厚Bよりほぼ2,2
00オングストロームだけ厚いため、図4(d)に示す
ようにn形不純物拡散層4上に2,000オングストロ
ーム程度の幅Eをもつ絶縁物残渣6ができる。そして、
導電性の多結晶シリコン配線7を形成して段差状態にな
っている2つの導体層を電気的に接続し配線することが
できる。
Next, a method of manufacturing a semiconductor device having the above structure will be explained with reference to FIGS. 4(a) to 4(d). First, as shown in FIG. 4(a), a silicon substrate 1 is prepared in advance.
By applying a field effect transistor formation process to
For example, a 200 angstrom gate oxide film 2, 2,
A gate electrode 3 with a thickness of 0.000 angstroms and an n-type impurity diffusion layer 4 are formed. Next, as shown in FIG. 4B, an interlayer insulating film 5 having good step coverage is deposited to a thickness of, for example, 2,000 angstroms by CVD. At this time, the interlayer insulating film 5 is formed so that the film thickness B in the vertical direction and the film thickness C in the horizontal direction relative to the silicon substrate 1 are equal (B=C). Next, as shown in FIG. 4(c), a resist 8 is used so that the gate electrode 3 and the n-type impurity diffusion layer 4 can be electrically connected at the same time by a polycrystalline silicon wiring 7 (see FIG. 3(b)). After patterning, the interlayer insulating film 5 is etched by anisotropic reactive etching. At this time, as shown in FIG. 4(c), the interlayer insulation film thickness D at the stepped portion is approximately 2.2 times larger than the interlayer insulation film thickness B at the flat portion.
Since the thickness is 0.00 angstroms, an insulating residue 6 having a width E of about 2,000 angstroms is formed on the n-type impurity diffusion layer 4 as shown in FIG. 4(d). and,
By forming conductive polycrystalline silicon wiring 7, two stepped conductor layers can be electrically connected and wired.

【0004】図5は従来の半導体装置の製造方法によっ
て2つの導電層を接続した段差部分の電気的接続部を示
す断面図である。同図において、9は第1層間絶縁膜、
10は第1層配線、11は第2層間絶縁膜、12は絶縁
膜残渣、13は第2層配線である。次に、上記構成によ
る半導体装置の製造方法については、図4(a)〜図4
(d)に示す製造方法と同様に電気的接続部の段差部に
絶縁膜の残渣12が発生する。この従来の例について更
に説明すると、電界効果型トランジスタの形成処理を施
したのち、段差被覆性の良い第1層間絶縁膜9を形成す
る。そして、多結晶シリコンの第1層配線10を堆積し
て低抵抗にしたのち、フォトリソグラフィ技術によりパ
ターニングする。そして、第2層間絶縁膜11を堆積し
たのち、所望の孔をあけるためにパターニングして、異
方性エッチングを施す。このとき、段差部では絶縁膜残
渣12が発生する。そして、第2層配線13で第1層配
線10と結線する。
FIG. 5 is a cross-sectional view showing an electrical connection at a stepped portion where two conductive layers are connected by a conventional semiconductor device manufacturing method. In the figure, 9 is a first interlayer insulating film;
10 is a first layer wiring, 11 is a second interlayer insulating film, 12 is an insulating film residue, and 13 is a second layer wiring. Next, a method for manufacturing a semiconductor device having the above configuration will be described in FIGS.
Similar to the manufacturing method shown in (d), insulating film residue 12 is generated at the stepped portion of the electrical connection portion. To further explain this conventional example, after performing a process for forming a field effect transistor, a first interlayer insulating film 9 having good step coverage is formed. After a first layer wiring 10 of polycrystalline silicon is deposited to have a low resistance, patterning is performed using photolithography. After depositing the second interlayer insulating film 11, it is patterned and anisotropically etched to form desired holes. At this time, insulating film residue 12 is generated at the step portion. Then, the second layer wiring 13 is connected to the first layer wiring 10.

【0005】[0005]

【発明が解決しようとする課題】従来の半導体装置の製
造方法では以上のように、電気的接触面が段差があり、
その部分で電気的接続を行う場合、異方性の反応性イオ
ンエッチングを施したのちも、図6(a)に示すように
、フォトリソグラフィ工程で正常なパターニングができ
た場合でも層間絶縁膜厚に相当する絶縁膜が残り、その
部分では接続が行われず、実質的な電気的接触面積が小
さくなる。また、フォトリソグラフィ工程でのパターニ
ングのずれが生じた場合、図6(b)に示すように良好
な電気的接続が行えない。しかも、今後微細化がより進
むので、この絶縁膜残渣が無視できないという問題点が
あった。
[Problems to be Solved by the Invention] As described above, in the conventional manufacturing method of semiconductor devices, the electrical contact surface has a step difference.
When electrical connections are made in that area, even after anisotropic reactive ion etching, even if normal patterning is achieved in the photolithography process, the thickness of the interlayer insulating film remains An insulating film corresponding to the area remains, and no connection is made in that part, reducing the actual electrical contact area. Further, if patterning misalignment occurs in the photolithography process, good electrical connection cannot be achieved as shown in FIG. 6(b). Moreover, since miniaturization will progress further in the future, there is a problem that this insulating film residue cannot be ignored.

【0006】この発明は上記のような問題点を解決する
ためになされたもので、電気的接触面が段差状態となっ
ている場合にも、その実質的な接触面積を広げることを
目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to widen the substantial contact area even when the electrical contact surface is stepped. .

【0007】[0007]

【課題を解決するための手段】この発明に係る半導体装
置の製造方法は、層間絶縁膜の膜厚を、基板に対して垂
直方向の膜厚Fが水平方向の膜厚Gよりも大きく(F≧
G)なるようにしたものである。
[Means for Solving the Problems] In the method of manufacturing a semiconductor device according to the present invention, the film thickness of the interlayer insulating film is such that the film thickness F in the direction perpendicular to the substrate is larger than the film thickness G in the horizontal direction (F ≧
G) It was made so that it would become.

【0008】[0008]

【作用】この発明によれば、層間絶縁膜の異方性イオン
エッチングを施した際、段差のために生じる絶縁膜の残
渣が小さくなり、実質的な電気的接触面積を広げること
ができる。
According to the present invention, when the interlayer insulating film is subjected to anisotropic ion etching, the residue of the insulating film caused by the step difference is reduced, and the substantial electrical contact area can be expanded.

【0009】[0009]

【実施例】図1はこの発明に係る半導体装置の製造方法
の一実施例を示す断面図であり、その製造工程を図1(
a)〜図1(d)を参照して説明する。まず、図1(a
)に示すように、シリコン基板1に所定処理を施して、
膜厚200オングストロームのゲート酸化膜2、膜厚2
,000オングストロームのゲート電極3およびn形の
不純物拡散層4を形成する。次に、図1(b)に示すよ
うに、このシリコン基板1上に下記の処理条件Aあるい
はBにより、シリコン基板に対して垂直方向の膜厚(以
下単に基板上膜厚と言う)Fが水平方向の膜厚(以下単
に側壁膜厚と言う)Gよりも大きく(F≧G)なる層間
絶縁膜5をCVD法で堆積する。なお、処理条件Aにつ
いて、堆積温度を500度C以下にして層間絶縁膜を形
成する。堆積温度が500度Cでは膜厚G/膜厚F=0
.8であるので、基板上膜厚Fが2,000オングスト
ロームである場合、側壁膜厚Gは1,600オングスト
ロームとなる。そして、堆積温度が400度Cでは膜厚
G/膜厚F=0.6であるので、基板上膜厚Fが2,0
00オングストロームである場合、側壁膜厚Gは1,2
00オングストロームとなる。処理条件Bについて、層
間絶縁膜に不純物としてリンを2%〜7%程度含ませる
。関係は膜厚G/膜厚F=0.5であるので、基板上膜
厚Fが2,000オングストロームである場合、側壁膜
厚Gは1、000オングストロームになる。また、不純
物としてはヒ素を使用しても同様であることはもちろん
である。
[Embodiment] FIG. 1 is a sectional view showing an embodiment of the method for manufacturing a semiconductor device according to the present invention, and the manufacturing process is illustrated in FIG.
This will be explained with reference to a) to FIG. 1(d). First, Figure 1 (a
), the silicon substrate 1 is subjected to a predetermined treatment,
Gate oxide film 2 with a film thickness of 200 angstroms, film thickness 2
,000 angstroms of gate electrode 3 and n-type impurity diffusion layer 4 are formed. Next, as shown in FIG. 1(b), a film thickness F in a direction perpendicular to the silicon substrate (hereinafter simply referred to as on-substrate film thickness) is formed on this silicon substrate 1 under the following processing conditions A or B. An interlayer insulating film 5 whose thickness in the horizontal direction (hereinafter simply referred to as sidewall thickness) is larger than G (F≧G) is deposited by CVD. Note that, regarding processing condition A, the interlayer insulating film is formed at a deposition temperature of 500 degrees Celsius or less. When the deposition temperature is 500 degrees C, film thickness G/film thickness F = 0
.. 8, so when the film thickness F on the substrate is 2,000 angstroms, the sidewall film thickness G is 1,600 angstroms. When the deposition temperature is 400 degrees Celsius, the film thickness G/film thickness F=0.6, so the film thickness F on the substrate is 2.0
00 angstroms, the sidewall thickness G is 1,2
00 angstroms. Regarding processing condition B, the interlayer insulating film contains about 2% to 7% of phosphorus as an impurity. The relationship is film thickness G/film thickness F=0.5, so if the film thickness F on the substrate is 2,000 angstroms, the sidewall film thickness G will be 1,000 angstroms. Furthermore, it goes without saying that the same effect can be obtained even if arsenic is used as the impurity.

【0010】以上のような処理条件で層間絶縁膜5を形
成したのち、図1(c)に示すように、ゲート電極3と
n形の不純物拡散層4の両方に電気的接続が行えるよう
なパターニングを施す。次に、図1(d)に示すように
、異方性の反応性イオンエッチングを施して、n形の不
純物拡散層4上の絶縁膜残渣6の幅Iが軽減できる。 この絶縁膜残渣6の幅Iはオーバーエッチの量に依存す
るが、層間絶縁膜を処理条件Aで形成した場合、堆積温
度が500オングストロームであれば、絶縁膜残渣6の
幅Iは1、600オングストローム程度、堆積温度が4
00度Cであれば絶縁膜残渣6の幅Iは1、200オン
グストローム程度となる。また、層間絶縁膜を処理条件
Bで形成した場合、不純物として2%〜7%のリンを含
ませると、絶縁膜残渣の幅Iは1,000オングストロ
ーム程度となる。また、図2は2つの導電層を接続した
段差部分において、電気的接続を行った場合の断面図で
あり、層間絶縁膜に図1に示した処理条件で絶縁膜を堆
積してもよいことはもちろんである。このような処理後
、導電性薄膜を形成すれば実効的な開孔面積が大きくな
るので、良好な電気的接続を得ることができる。
After forming the interlayer insulating film 5 under the above-mentioned processing conditions, as shown in FIG. Apply patterning. Next, as shown in FIG. 1D, by performing anisotropic reactive ion etching, the width I of the insulating film residue 6 on the n-type impurity diffusion layer 4 can be reduced. The width I of the insulating film residue 6 depends on the amount of overetching, but when the interlayer insulating film is formed under processing conditions A and the deposition temperature is 500 angstroms, the width I of the insulating film residue 6 is 1,600 angstroms. about angstrom, deposition temperature 4
If the temperature is 00 degrees Celsius, the width I of the insulating film residue 6 will be about 1,200 angstroms. Further, when the interlayer insulating film is formed under processing condition B, and 2% to 7% of phosphorus is included as an impurity, the width I of the insulating film residue becomes about 1,000 angstroms. In addition, FIG. 2 is a cross-sectional view when an electrical connection is made at a step portion where two conductive layers are connected, and an insulating film may be deposited on the interlayer insulating film under the processing conditions shown in FIG. Of course. If a conductive thin film is formed after such treatment, the effective area of the pores will increase, so that a good electrical connection can be obtained.

【0011】[0011]

【発明の効果】以上のように、この発明によれば、層間
絶縁膜が基板と垂直方向の厚さに対し基板と水平方向の
厚さが小さくなるように形成したので、この層間絶縁膜
を異方性の反応性イオンエッチングを施したときに、段
差のために生じる絶縁膜の残渣を小さくすることができ
、実質的な電気的接触面積を広げる効果がある。
As described above, according to the present invention, the interlayer insulating film is formed so that the thickness in the horizontal direction to the substrate is smaller than the thickness in the vertical direction to the substrate. When anisotropic reactive ion etching is performed, it is possible to reduce the amount of insulating film residue that is generated due to the step difference, which has the effect of expanding the substantial electrical contact area.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明に係る半導体装置の製造方法の一実施
例を示す図である。
FIG. 1 is a diagram showing an embodiment of a method for manufacturing a semiconductor device according to the present invention.

【図2】図1に示す半導体装置の製造方法により処理し
た段差部分の断面図である。
FIG. 2 is a cross-sectional view of a stepped portion processed by the method for manufacturing the semiconductor device shown in FIG. 1;

【図3】従来の半導体装置の製造方法を示す図である。FIG. 3 is a diagram showing a conventional method for manufacturing a semiconductor device.

【図4】従来の半導体装置の製造方法を製造工程毎に示
した断面図である。
FIG. 4 is a cross-sectional view showing each manufacturing process of a conventional semiconductor device manufacturing method.

【図5】従来の半導体装置の製造方法により処理した段
差部分の断面図である。
FIG. 5 is a cross-sectional view of a stepped portion processed by a conventional semiconductor device manufacturing method.

【図6】従来の半導体装置の製造方法を説明するための
半導体装置の断面図である。
FIG. 6 is a cross-sectional view of a semiconductor device for explaining a conventional semiconductor device manufacturing method.

【符号の説明】[Explanation of symbols]

1  p形シリコン基板 2  ゲート酸化膜 3  ゲート電極 4  n形不純物拡散層 5  層間絶縁膜 6  絶縁膜残渣 8  レジスト I  絶縁膜残渣の幅 F  基板に対して垂直方向の膜厚 G  基板に対して水平方向の膜厚 1 P-type silicon substrate 2 Gate oxide film 3 Gate electrode 4 N-type impurity diffusion layer 5 Interlayer insulation film 6 Insulating film residue 8 Resist I Width of insulating film residue F Film thickness perpendicular to the substrate G Film thickness in the horizontal direction to the substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電気的接触面が段差状態となっている
半導体装置において、層間絶縁膜の基板に対して垂直方
向の膜厚Fが水平方向の膜厚Gよりも厚く(F≧G)堆
積する工程と、段差状態にある部分の層間絶縁膜に異方
性の反応性イオンエッチングして電気的接続孔を形成す
る工程と、この電気的接続孔に導電性薄膜を堆積して段
差状態にある2つの導電層を電気的に接続する工程とを
有することを特徴とする半導体装置の製造方法。
Claim 1: In a semiconductor device in which the electrical contact surface is stepped, an interlayer insulating film is deposited where the film thickness F in the vertical direction with respect to the substrate is thicker than the film thickness G in the horizontal direction (F≧G). a step of forming an electrical connection hole by anisotropic reactive ion etching on the interlayer insulating film in the stepped portion, and a step of depositing a conductive thin film in the electrical connection hole to form the step condition. 1. A method for manufacturing a semiconductor device, comprising the step of electrically connecting two certain conductive layers.
JP13471091A 1991-06-06 1991-06-06 Manufacture of semiconductor device Pending JPH04359545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13471091A JPH04359545A (en) 1991-06-06 1991-06-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13471091A JPH04359545A (en) 1991-06-06 1991-06-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04359545A true JPH04359545A (en) 1992-12-11

Family

ID=15134791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13471091A Pending JPH04359545A (en) 1991-06-06 1991-06-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04359545A (en)

Similar Documents

Publication Publication Date Title
JP3860672B2 (en) Transistor manufacturing method and transistor manufactured by the manufacturing method
KR100187870B1 (en) Gate stack structure of a field effect transistor
JPH0391930A (en) Method of manufacturing semiconductor device
US6344388B1 (en) Method of manufacturing semiconductor device
JPS63313837A (en) Device for interconnecting between buried multiple levels
KR100277377B1 (en) Formation method of contact/through hole
JPH04280456A (en) Semiconductor device and its manufacture
KR100243280B1 (en) Gate pattern of semiconductor device &fabrication method thereof
JPH04359545A (en) Manufacture of semiconductor device
JPH10233451A (en) Manufacturing method of semiconductor device
JPS62224077A (en) Semiconductor integrated circuit device
JP2822795B2 (en) Method for manufacturing semiconductor device
US5817570A (en) Semiconductor structure for an MOS transistor and method for fabricating the semiconductor structure
JP2855981B2 (en) Method for manufacturing semiconductor device
KR100328829B1 (en) Manufacturing method for contact in semiconductor device
KR20000027911A (en) Method of forming contact of semiconductor device
KR970005729B1 (en) Semiconductor device & method for forming the same
JPH11145305A (en) Manufacture of semiconductor device
JP2828089B2 (en) Method for manufacturing semiconductor device
JP2755226B2 (en) Method for manufacturing semiconductor device
JPH05166941A (en) Semiconductor self-alignment contact structure and manufacture thereof
JPH10256396A (en) Semiconductor device and manufacture thereof
JPH08340106A (en) Manufacture of semiconductor device
JPH05235029A (en) Manufacturing method of semiconductor device
JPH11204639A (en) Semiconductor device and manufacture thereof