JPH04359127A - Preparation of magnetic film of magnetostrictive torque sensor - Google Patents

Preparation of magnetic film of magnetostrictive torque sensor

Info

Publication number
JPH04359127A
JPH04359127A JP16101191A JP16101191A JPH04359127A JP H04359127 A JPH04359127 A JP H04359127A JP 16101191 A JP16101191 A JP 16101191A JP 16101191 A JP16101191 A JP 16101191A JP H04359127 A JPH04359127 A JP H04359127A
Authority
JP
Japan
Prior art keywords
magnetic film
rotating shaft
magnetostrictive
magnetic
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16101191A
Other languages
Japanese (ja)
Inventor
Koji Kamimura
浩司 上村
Mitsuaki Ikeda
満昭 池田
Iwao Sasaki
巌 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP16101191A priority Critical patent/JPH04359127A/en
Publication of JPH04359127A publication Critical patent/JPH04359127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the detection sensitivity by forming a magnetic film in the state where the surface stress in the compression (pulling) direction is applied for the longitudinal direction of a magnetic film pattern, in case of the magnetic film having a positive (negative) magnetostrictive constant. CONSTITUTION:Ni-Fe allay having a positive magnetostrictive constant is used as cylindrical target 2. A torsional torque in the compression direction is applied in the direction of arrow A through a catching device 8 on a rotary shaft 6 inserted into the target 2, and a surface stress B in the compression direction for the longitudinal direction of a pattern is applied on a magnetic film formation part. After a vacuum tank 1 in which the above-described devices are accommodated is exhausted, argon gas is introduced to a prescribed value, and a voltage is applied on an electrode 3, and sputtering is carried out from the target 2. On a magnetic film 7 thus obtained, the inductive magnetic anisotropy due to a magnet device 5 and the anisotropy due to the surface stress are generated, and a large torque output value is obtained as torque sensor. When the magnetic film has a negative magnetostrictive constant, the torsional torque is applied in the pulling direction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、回転軸に加わるトルク
を、非接触で検出する磁歪式トルクセンサに用いられる
磁性膜の作製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magnetic film used in a magnetostrictive torque sensor that detects torque applied to a rotating shaft in a non-contact manner.

【0002】0002

【従来の技術】回転駆動系を有するロボットやマニピュ
レータおよび工作機械の制御などにおいて、非接触で、
かつ小形のトルクセンサが要求されている。このような
トルクセンサとして、回転軸の外周表面に磁歪効果を有
する磁性膜を形成し、回転軸に加わるトルクによる磁気
歪み効果を利用するものがあり、その概略構造は図6に
示すように、回転軸21表面の所定位置範囲に、回転軸
の軸方向に対して30〜60度の方向に磁気異方性(磁
化容易軸)Kをもたせた磁気歪み効果を有する磁性膜2
2を設け、この磁性膜の外周に一定のギャップを保って
励磁コイル23と検出コイル24を設けている。この回
転軸21にねじりトルクTが加わると、磁性膜22の磁
気歪み効果によって透磁率が変化するため、検出するコ
イル24に発生する誘導起電力が変化し、この起電力の
変化を検出してねじりトルクTの値を検出するようにし
ている。
[Prior Art] Non-contact control is used to control robots, manipulators, and machine tools that have rotational drive systems.
In addition, a small torque sensor is required. As such a torque sensor, there is one that forms a magnetic film having a magnetostrictive effect on the outer peripheral surface of the rotating shaft and utilizes the magnetostrictive effect due to the torque applied to the rotating shaft.The schematic structure of this sensor is as shown in FIG. A magnetic film 2 having a magnetostrictive effect with magnetic anisotropy (axis of easy magnetization) K in a direction of 30 to 60 degrees with respect to the axial direction of the rotating shaft in a predetermined position range on the surface of the rotating shaft 21.
2 is provided, and an excitation coil 23 and a detection coil 24 are provided on the outer periphery of this magnetic film with a constant gap maintained therebetween. When torsional torque T is applied to this rotating shaft 21, the magnetic permeability changes due to the magnetostrictive effect of the magnetic film 22, so the induced electromotive force generated in the detection coil 24 changes, and this change in electromotive force is detected. The value of torsional torque T is detected.

【0003】このように、異方性を有し、回転軸との密
着性が良く、厚さの均一性に優れた磁性膜を得る方法と
して、特開平1ー209773号のように高エネルギー
密度ビームの照射によって回転軸表面の加熱、急冷却処
理を施すようにしたものや、特開平1ー279755号
に示されているように、真空槽内に磁歪効果を有する円
筒状ターゲットを設け、この円筒状ターゲットの外周に
、磁極面内周を軸心に対して30〜60度の適当な角度
で傾斜させた永久磁石を配置し、円筒状ターゲット内側
に挿入した回転軸に、傾斜した磁界を加えた状態でスパ
ッタを行わせるようにしたものが提案されている。また
、特開平2ー98639号には、少なくとも表層がニッ
ケル含有合金鋼からなる回転軸の、前記表層に浸炭処理
を施した後、焼き入れ処理としてオーステンパ処理、マ
ルテンパ処理、または連続冷却焼き入れ処理とサブゼロ
処理もしくは焼き戻し処理を施すものがある。
As described above, as a method of obtaining a magnetic film having anisotropy, good adhesion to the rotating shaft, and excellent thickness uniformity, high energy density In some cases, the rotating shaft surface is heated and rapidly cooled by beam irradiation, and in others, a cylindrical target with a magnetostrictive effect is installed in a vacuum chamber, as shown in Japanese Patent Application Laid-Open No. 1-279755. A permanent magnet with the inner periphery of the magnetic pole surface inclined at an appropriate angle of 30 to 60 degrees with respect to the axis is placed around the outer periphery of the cylindrical target, and an inclined magnetic field is applied to the rotating shaft inserted inside the cylindrical target. A method has been proposed in which sputtering is performed in a state in which the metal is added. In addition, JP-A-2-98639 discloses that after carburizing the surface layer of a rotating shaft whose surface layer is made of alloy steel containing nickel, austempering treatment, martempering treatment, or continuous cooling quenching treatment is performed as quenching treatment. There are also those that undergo sub-zero treatment or tempering treatment.

【0004】0004

【発明が解決しようとする課題】しかし、これらの方法
では、磁性膜と回転軸との密着性や、膜厚の均一性は得
られるが、誘導磁気異方性を正確に保持させることがで
きず、異方性の効果が十分に得られないため、ノイズに
対する出力変動が大きく、高感度のトルク出力信号を得
ることができなかった。
[Problems to be Solved by the Invention] However, although these methods can achieve good adhesion between the magnetic film and the rotating shaft and uniform film thickness, they cannot accurately maintain the induced magnetic anisotropy. First, since the effect of anisotropy cannot be sufficiently obtained, output fluctuations due to noise are large, making it impossible to obtain a highly sensitive torque output signal.

【0005】[0005]

【課題を解決するための手段】このため本発明は、スパ
ッタ法、イオンプレーティング法、湿式メッキ法などに
よって磁性膜を形成し、正の磁歪定数をもつ磁性膜の場
合は、磁性膜パターンの長手方向に対して圧縮方向の表
面応力を加え、負の磁歪定数をもつ磁性膜の場合は、磁
性膜パターンの長手方向に対して引っ張り方向の表面応
力を加えた状態で、前記磁性膜の形成を行い、あるいは
磁性膜部分の熱処理を行わせるようにしている。また、
回転軸にあらかじめ所要のパターンで磁性膜を形成し、
磁性膜に圧縮方向や引っ張り方向の表面応力を加えない
で、あるいは加えた状態で高周波誘導加熱によって回転
軸表面の磁性膜部分だけが350〜600℃になるよう
に加熱して熱処理を行わせる。
[Means for Solving the Problems] Therefore, in the present invention, a magnetic film is formed by a sputtering method, an ion plating method, a wet plating method, etc., and in the case of a magnetic film having a positive magnetostriction constant, the magnetic film pattern is The magnetic film is formed by applying a surface stress in a compressive direction to the longitudinal direction, and in the case of a magnetic film having a negative magnetostriction constant, applying a surface stress in a tensile direction to the longitudinal direction of the magnetic film pattern. or heat treatment of the magnetic film portion. Also,
A magnetic film is formed in the desired pattern on the rotating shaft in advance,
Heat treatment is performed by heating only the magnetic film portion on the surface of the rotating shaft to 350 to 600° C. by high-frequency induction heating without or with surface stress in the compressive or tensile direction applied to the magnetic film.

【0006】[0006]

【作用】したがって、磁性膜の形成あるいは熱処理を行
ったのちに、回転軸に加えた表面応力を除くと、磁性膜
にパターンの長手方向の応力が喚起されて応力異方性を
強く発生させる。また、高周波誘導加熱により回転軸は
表面部分だけが加熱されて、回転軸の温度上昇による熱
膨張を防ぎ、回転軸と磁性膜との収縮差を大きくして冷
却時に生じる磁気異方性を強め、トルクセンサとして使
用したときの検出感度を向上させる作用が得られる。
[Operation] Therefore, when the surface stress applied to the rotating shaft is removed after the magnetic film is formed or heat treated, stress in the longitudinal direction of the pattern is induced in the magnetic film, causing strong stress anisotropy. In addition, high-frequency induction heating heats only the surface of the rotating shaft, preventing thermal expansion due to temperature rise of the rotating shaft, increasing the contraction difference between the rotating shaft and the magnetic film, and strengthening the magnetic anisotropy that occurs during cooling. , an effect of improving detection sensitivity when used as a torque sensor can be obtained.

【0007】[0007]

【実施例】図1は外部磁界により磁気異方性を与えてス
パッタ法により磁性膜を形成する場合の実施例を示すも
ので、1は真空槽、2は前記真空槽内に配置した円筒状
ターゲット、3は電極、4は前記円筒状ターゲットの外
側を囲むシールド、5は円筒状ターゲット2を30〜6
0度の角度で囲むように配置した磁石装置で、磁石51
、52とヨーク53で構成している。6は円筒状ターゲ
ット2内に挿入した回転軸、7は回転軸に形成された磁
性膜、8は回転軸6を保持するつかみ装置、Kは磁気異
方性の方向を示すものである。
[Example] Fig. 1 shows an example in which a magnetic film is formed by sputtering by imparting magnetic anisotropy using an external magnetic field. A target, 3 is an electrode, 4 is a shield surrounding the outside of the cylindrical target, 5 is a cylindrical target 2, and 30 to 6
A magnet device arranged so as to surround the magnet 51 at an angle of 0 degrees.
, 52 and a yoke 53. 6 is a rotating shaft inserted into the cylindrical target 2, 7 is a magnetic film formed on the rotating shaft, 8 is a gripping device for holding the rotating shaft 6, and K is a direction of magnetic anisotropy.

【0008】この実施例においては、円筒状ターゲット
2として60重量%のNiを含む内径60mmの正の磁
歪定数をもったNi−Fe合金を用い、この円筒状ター
ゲット内に挿入した直径40mmの回転軸6に、つかみ
装置8を介して−1kgfm〜−3kgfmのねじりト
ルク(圧縮方向の力をマイナスで示す)を矢印Aの方向
に加え、磁性膜形成部にパターンの長手方向に対し圧縮
する方向の表面応力Bを与えている。これらの装置を収
納した真空槽1内を1×10−6Torrに排気した後
、アルゴンガスを5×10−3Torr入れて電極3に
−500Vの電圧を印加し、ターゲット2からのスパッ
タを行った。なお、回転軸6の磁性膜を形成しない部分
には、あらかじめマスクを施してある。
In this embodiment, a Ni--Fe alloy containing 60% by weight of Ni and having an inner diameter of 60 mm and a positive magnetostriction constant is used as the cylindrical target 2, and a rotating target with a diameter of 40 mm inserted into this cylindrical target is used. A torsion torque of -1 kgfm to -3 kgfm (force in the compressive direction is indicated by a minus sign) is applied to the shaft 6 via the gripping device 8 in the direction of arrow A, and the magnetic film forming portion is compressed in the direction of the longitudinal direction of the pattern. gives a surface stress B of . After evacuating the vacuum chamber 1 containing these devices to 1 x 10-6 Torr, argon gas was introduced at 5 x 10-3 Torr, a voltage of -500 V was applied to the electrode 3, and sputtering from the target 2 was performed. . Note that the portion of the rotating shaft 6 where the magnetic film is not formed is masked in advance.

【0009】このようにして得られた磁性膜7には、磁
石装置5による誘導磁気異方性と、表面応力による応力
異方性が発生しており、この磁性膜をそなえたトルクセ
ンサのトルク出力特性は、図2に示すように、ねじりト
ルクによる表面応力を加えない場合に比して、−1kg
fmのねじりトルクを与えた場合は1.2倍、−3kg
fmのねじりトルクを与えた場合は約1.4倍の出力値
が得られた。なお、磁性膜が負の磁歪定数をもっている
場合は、ねじりトルクの方向を引っ張り方向(プラスで
示す)に加えることにより、ほぼ同様の効果が得られた
In the magnetic film 7 thus obtained, induced magnetic anisotropy due to the magnet device 5 and stress anisotropy due to surface stress occur, and the torque of a torque sensor equipped with this magnetic film is generated. As shown in Figure 2, the output characteristics are -1 kg compared to the case where no surface stress due to torsional torque is applied.
When applying a torsion torque of fm, it is 1.2 times, -3 kg.
When a torsional torque of fm was applied, an output value of approximately 1.4 times was obtained. Note that when the magnetic film had a negative magnetostriction constant, almost the same effect was obtained by applying the torsional torque in the tensile direction (indicated by a plus sign).

【0010】図3は、熱処理によって異方性を有する磁
性膜の形成を行うようにした実施例を示すもので、回転
軸6にあらかじめスパッタ法、イオンプレーティング法
、湿式メッキ法などを用いて付着させた磁性膜7を設け
、この磁性膜7が正の磁歪定数をもっている場合は、回
転軸6に矢印Aで示すように、磁性膜パターンの長手方
向に対して圧縮方向のねじりトルクによる表面応力を加
えるとともに、磁石装置5により30〜60度の方向に
外部磁界を印加した状態で、ヒータ9により熱処理を行
うようにしている。
FIG. 3 shows an embodiment in which a magnetic film having anisotropy is formed by heat treatment. When the attached magnetic film 7 is provided and the magnetic film 7 has a positive magnetostriction constant, the surface of the rotating shaft 6 is caused by torsional torque in the compressive direction with respect to the longitudinal direction of the magnetic film pattern, as shown by arrow A. Heat treatment is performed using a heater 9 while applying stress and applying an external magnetic field in a direction of 30 to 60 degrees using a magnet device 5.

【0011】このような装置で、磁性膜7に磁石装置5
により45度の方向に外部磁界を加えるとともに、回転
軸6に−2kgfmおよび−4kgfmのねじりトルク
Aを加えた状態で、250℃から650℃まで50℃ご
とにそれぞれ熱処理温度を変えて異方性を有する磁性膜
形成を行い、この磁性膜で構成したトルクセンサのトル
ク出力特性を、外部応力を加えないで同様に処理した磁
性膜で構成したトルクセンサの出力と比較した結果、表
1に示すように250℃では表面応力の効果が認めらな
かったが、300〜600℃ではいずれも表面応力を加
えることによって、ねじりトルクを加えない磁気異方性
だけの場合に比して1.2〜1.8倍の大きな出力特性
が得られた。なお、650℃では磁性膜の劣化を生じて
いる。
In such a device, the magnet device 5 is attached to the magnetic film 7.
While applying an external magnetic field in the direction of 45 degrees, and applying torsion torques A of -2 kgfm and -4 kgfm to the rotating shaft 6, the anisotropy was performed by changing the heat treatment temperature in steps of 50°C from 250°C to 650°C. The torque output characteristics of a torque sensor made of this magnetic film were compared with the output of a torque sensor made of a magnetic film treated in the same way without applying external stress, and the results are shown in Table 1. As shown, no effect of surface stress was observed at 250°C, but at 300 to 600°C, by applying surface stress, the effect of magnetic anisotropy was 1.2 to 1.2% compared to the case of only magnetic anisotropy without applying torsional torque. A 1.8 times larger output characteristic was obtained. Note that the magnetic film deteriorates at 650°C.

【0012】0012

【表1】[Table 1]

【0013】磁性膜7が負の磁歪定数を有する場合は、
ねじりトルクを磁性膜パターンの方向に対して引っ張り
方向に加えることによって、同様の出力特性が得られる
。また、回転軸に双方向の磁性パターンをそなえたシェ
ブロン状磁性膜をそなえている場合は、それぞれの磁性
膜パターンに対して正の磁歪効果をもつ磁性膜には圧縮
方向の表面応力を加え、負の磁歪効果をもった磁性膜に
は引っ張り方向の表面応力を加えればよく、たとえば図
4のように、いずれも正の磁性膜7を異なるパターン方
向で設けている場合は、それぞれの磁性膜に各別のねじ
りトルクを加えた状態で熱処理を行うようにするが、回
転軸6の両端をつかみ治具10でつかみ、磁性膜相互間
の磁性膜のない部分にたとえばアーム11をクランプさ
せ、このアーム11にウエイト12を加えることにより
圧縮方向のねじりトルクAを与えて熱処理を行うように
することができる。なお、ねじりトルクは、磁性膜の材
料や回転軸径および測定トルク容量などを考慮して、磁
性膜の耐力以下で適当な大きさに選べばよい。
When the magnetic film 7 has a negative magnetostriction constant,
Similar output characteristics can be obtained by applying torsional torque in the tensile direction relative to the direction of the magnetic film pattern. In addition, if the rotating shaft is equipped with a chevron-shaped magnetic film with bidirectional magnetic patterns, surface stress in the compressive direction is applied to the magnetic film that has a positive magnetostrictive effect on each magnetic film pattern. It is sufficient to apply a surface stress in the tensile direction to a magnetic film having a negative magnetostrictive effect. For example, when positive magnetic films 7 are provided in different pattern directions as shown in FIG. The heat treatment is performed with different torsional torques applied to the rotating shaft 6. Both ends of the rotating shaft 6 are gripped with a gripping jig 10, and an arm 11, for example, is clamped to the portion where there is no magnetic film between the magnetic films. By adding a weight 12 to this arm 11, a torsion torque A in the compression direction can be applied to perform heat treatment. Note that the torsion torque may be selected to be an appropriate value that is less than or equal to the proof stress of the magnetic film, taking into account the material of the magnetic film, the diameter of the rotating shaft, the measuring torque capacity, and the like.

【0014】図5は、回転軸にあらかじめ磁性膜を形成
し、この磁性膜に異方性を与える場合に高周波誘導加熱
を用いるようにした実施例を示すもので、この実施例で
は回転軸6として直径30mmのS45C、Ti合金、
SUS304を用い、あらかじめ所定のパターンでスパ
ッタ法、イオンプレーティング法あるいは湿式メッキ法
などにより、50Ni−Fe、87Fe−Al合金から
なる磁性膜7を厚さ7μmで形成しており、この磁性膜
部分を囲んで高周波誘導加熱コイル13を設けている。 したがって、高周波誘導加熱コイル13により磁性膜7
が加熱されるとともに、コイルの磁界が磁性膜パターン
の長手方向にかかって誘導磁気異方性を発生させる。し
かるに、回転軸6は表面付近だけが加熱されるため、熱
処理後の冷却により磁性膜7が収縮しても回転軸6はほ
とんど収縮を生じることがなく、回転軸の収縮応力によ
って磁性膜に発生する磁気異方性を大きくすることがで
きる。
FIG. 5 shows an embodiment in which a magnetic film is formed on the rotating shaft in advance and high-frequency induction heating is used to impart anisotropy to the magnetic film. S45C with a diameter of 30 mm, Ti alloy,
A magnetic film 7 made of 50Ni-Fe, 87Fe-Al alloy is formed with a thickness of 7 μm using SUS304 in a predetermined pattern by sputtering, ion plating, or wet plating. A high frequency induction heating coil 13 is provided surrounding the. Therefore, the magnetic film 7 is heated by the high frequency induction heating coil 13.
is heated, and the magnetic field of the coil is applied in the longitudinal direction of the magnetic film pattern to generate induced magnetic anisotropy. However, since only the vicinity of the surface of the rotating shaft 6 is heated, even if the magnetic film 7 shrinks due to cooling after heat treatment, the rotating shaft 6 hardly shrinks, and the shrinkage stress of the rotating shaft generates shrinkage in the magnetic film. The magnetic anisotropy can be increased.

【0015】この実施例により、周波数を350KHZ
 として300〜600℃の温度で、100℃ごとに試
料を作製し、この試料を用いたトルクセンサの出力特性
を測定した結果と、回転軸に形成した磁性膜を従来と同
様に回転軸とともに加熱して熱処理した場合の試料を用
いたトルクセンサの測定値との出力比を表2に示してお
り、10〜80%のトルク出力特性の向上が認められる
[0015] According to this embodiment, the frequency can be increased to 350 KHz.
Samples were prepared at a temperature of 300 to 600 degrees Celsius at every 100 degrees Celsius, and the output characteristics of a torque sensor using these samples were measured. Table 2 shows the output ratio with the measured value of the torque sensor using the sample heat-treated as shown in Table 2, and it is observed that the torque output characteristics are improved by 10 to 80%.

【0016】[0016]

【表2】[Table 2]

【0017】なお、高周波誘導加熱を行う場合に、回転
軸に前記のねじりトルクを加え、異方性を大きくするこ
とができる。
[0017] When performing high-frequency induction heating, the above-mentioned torsion torque can be applied to the rotating shaft to increase the anisotropy.

【0018】[0018]

【発明の効果】上述のように本発明は、回転軸外周表面
の所定位置に磁気歪み効果を有する磁性膜を形成し、回
転軸に加わるトルクに応じて磁性膜の透磁率を変化させ
、この変化によって前記トルクを検出する磁歪式トルク
センサにおいて、磁性膜が正の磁歪定数をもっている場
合は、磁性膜パターンの長手方向に対して圧縮方向の表
面応力を加え、負の磁歪定数をもっている場合は、磁性
膜パターンの長手方向に対し引っ張り方向の表面応力を
加えた状態で磁化させ、あるいは熱処理することによっ
て磁歪膜を形成させるようにしており、また、回転軸に
形成した磁性膜の熱処理を高周波誘導加熱によって、回
転軸の加熱を少なくして磁性膜部分の加熱を行わせ、磁
性膜の冷却時に回転軸との収縮差を大きくしている。 このため、磁性膜の作製が容易で、磁気異方性が大きく
なり、トルク検出時の出力の再現性が向上し、ノイズの
影響が少なく高感度のトルクセンサを得られるなどの効
果がある。
Effects of the Invention As described above, the present invention forms a magnetic film having a magnetostrictive effect at a predetermined position on the outer peripheral surface of a rotating shaft, changes the permeability of the magnetic film in accordance with the torque applied to the rotating shaft, and In a magnetostrictive torque sensor that detects the torque based on a change in torque, if the magnetic film has a positive magnetostrictive constant, a surface stress is applied in a compressive direction to the longitudinal direction of the magnetic film pattern, and if the magnetic film has a negative magnetostrictive constant, The magnetostrictive film is formed by magnetizing the magnetic film pattern while applying surface stress in the tensile direction to the longitudinal direction of the magnetic film pattern, or by heat treatment. By induction heating, the heating of the rotating shaft is reduced and the magnetic film portion is heated, and the shrinkage difference between the magnetic film and the rotating shaft is increased when the magnetic film is cooled. Therefore, the magnetic film is easily produced, the magnetic anisotropy is increased, the reproducibility of the output during torque detection is improved, and a highly sensitive torque sensor with less influence of noise can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明をスパッタ法に実施した例を示す側断面
図である。
FIG. 1 is a side sectional view showing an example in which the present invention is applied to a sputtering method.

【図2】図1により作成した磁性膜で構成したトルクセ
ンサの出力を示す特性曲線図である。
FIG. 2 is a characteristic curve diagram showing the output of the torque sensor made of the magnetic film produced according to FIG. 1;

【図3】本発明により熱処理を行う場合の実施例を示す
概略側断面図である。
FIG. 3 is a schematic side sectional view showing an example in which heat treatment is performed according to the present invention.

【図4】本発明により熱処理を行う場合の他の実施例を
示す概略側断面図である。
FIG. 4 is a schematic side sectional view showing another embodiment in which heat treatment is performed according to the present invention.

【図5】本発明の他の方法を示す概略側断面図である。FIG. 5 is a schematic side sectional view showing another method of the present invention.

【符号の説明】[Explanation of symbols]

1  真空槽 2  円筒状ターゲット 3  電極 4  シールド 5  磁石装置 6  回転軸 7  磁性膜 8  つかみ装置 9  ヒータ 10  つかみ治具 11  アーム 12  ウェイト 13  高周波誘導加熱コイル 1 Vacuum chamber 2 Cylindrical target 3 Electrode 4. Shield 5 Magnet device 6 Rotation axis 7 Magnetic film 8 Grasping device 9 Heater 10 Grasping jig 11 Arm 12 Weight 13 High frequency induction heating coil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  回転軸の所定位置外周表面に磁気歪み
効果を有する磁性膜を形成し、回転軸に加わるトルクに
応じて前記磁性膜の透磁率が変化することを利用してト
ルクを検出する磁歪式トルクセンサにおいて、前記磁性
膜を形成するときに、正の磁歪定数をもつ磁性膜の場合
は、磁性膜パターンの長手方向に対して圧縮方向の表面
応力を加え、負の磁歪定数をもつ磁性膜の場合は、磁性
膜パターンの長手方向に対して引っ張り方向の表面応力
を加えた状態で磁性膜を形成することを特徴とする磁歪
式トルクセンサの磁性膜作製方法。
1. A magnetic film having a magnetostrictive effect is formed on the outer peripheral surface of a rotating shaft at a predetermined position, and torque is detected by utilizing the change in magnetic permeability of the magnetic film in accordance with the torque applied to the rotating shaft. In the magnetostrictive torque sensor, when forming the magnetic film, if the magnetic film has a positive magnetostrictive constant, a surface stress is applied in a compressive direction to the longitudinal direction of the magnetic film pattern to form a negative magnetostrictive constant. In the case of a magnetic film, a method for producing a magnetic film for a magnetostrictive torque sensor, characterized in that the magnetic film is formed while applying surface stress in a tensile direction to the longitudinal direction of a magnetic film pattern.
【請求項2】  回転軸の所定位置外周表面に磁気歪み
効果を有する磁性膜を形成し、回転軸に加わるトルクに
応じて前記磁性膜の透磁率が変化することを利用してト
ルクを検出する磁歪式トルクセンサにおいて、前記磁性
膜を形成するときに、真空槽内で回転軸を囲む円筒状タ
ーゲットと、円筒状ターゲットの外側に所定の角度で配
置した磁石装置をそなえ、前記円筒状ターゲットが、正
の磁歪定数をもつ磁性膜の場合は、磁性膜パターンの長
手方向に対して圧縮方向の表面応力を加え、負の磁歪定
数をもつ磁性膜の場合は、磁性膜パターンの長手方向に
対して引っ張り方向の表面応力を加えた状態で、スパッ
タ法によって磁性膜を形成することを特徴とする磁歪式
トルクセンサの磁性膜作製方法。
2. A magnetic film having a magnetostrictive effect is formed on the outer peripheral surface of the rotating shaft at a predetermined position, and torque is detected by utilizing the fact that the magnetic permeability of the magnetic film changes in accordance with the torque applied to the rotating shaft. In the magnetostrictive torque sensor, when forming the magnetic film, a cylindrical target surrounding a rotating shaft in a vacuum chamber and a magnet device arranged at a predetermined angle on the outside of the cylindrical target are provided, and the cylindrical target is In the case of a magnetic film with a positive magnetostriction constant, a compressive surface stress is applied in the longitudinal direction of the magnetic film pattern, and in the case of a magnetic film with a negative magnetostriction constant, a surface stress is applied in the longitudinal direction of the magnetic film pattern. A method for producing a magnetic film for a magnetostrictive torque sensor, characterized in that the magnetic film is formed by sputtering while applying surface stress in the tensile direction.
【請求項3】  回転軸の所定位置外周表面に磁気歪み
効果を有する磁性膜を形成し、回転軸に加わるトルクに
応じて前記磁性膜の透磁率が変化することを利用してト
ルクを検出する磁歪式トルクセンサにおいて、前記回転
軸にあらかじめ形成した磁性膜が、正の磁歪定数をもつ
磁性膜の場合は、磁性膜パターンの長手方向に対して圧
縮方向の表面応力を加え、負の磁歪定数をもつ磁性膜の
場合は、磁性膜パターンの長手方向に対して引っ張り方
向の表面応力を加えた状態で、磁性膜部分にパターン長
手方向の外部磁界を印加するとともに300〜600℃
にて熱処理を行うことを特徴とする磁歪式トルクセンサ
の磁性膜作製方法。
3. A magnetic film having a magnetostrictive effect is formed on the outer peripheral surface of the rotating shaft at a predetermined position, and torque is detected by utilizing the change in magnetic permeability of the magnetic film in accordance with the torque applied to the rotating shaft. In a magnetostrictive torque sensor, if the magnetic film previously formed on the rotating shaft is a magnetic film with a positive magnetostrictive constant, a surface stress in a compressive direction is applied to the longitudinal direction of the magnetic film pattern to create a negative magnetostrictive constant. In the case of magnetic films with
1. A method for producing a magnetic film for a magnetostrictive torque sensor, the method comprising heat-treating the sensor.
【請求項4】  回転軸の所定位置外周表面に磁気歪み
効果を有する磁性膜を形成し、回転軸に加わるトルクに
応じて前記磁性膜の透磁率が変化することを利用してト
ルクを検出する磁歪式トルクセンサにおいて、前記回転
軸に所要のパターンで磁性膜を形成し、この磁性膜を高
周波誘導加熱により、300〜600℃で熱処理を行う
ことを特徴とする磁歪式トルクセンサの磁性膜作製方法
4. A magnetic film having a magnetostrictive effect is formed on the outer peripheral surface of the rotating shaft at a predetermined position, and torque is detected by utilizing the change in magnetic permeability of the magnetic film in accordance with the torque applied to the rotating shaft. Preparation of a magnetic film for a magnetostrictive torque sensor, characterized in that a magnetic film is formed in a desired pattern on the rotating shaft, and the magnetic film is heat-treated at 300 to 600°C by high-frequency induction heating. Method.
【請求項5】  前記磁性膜が、スパッタ法、イオンプ
レーティング法、湿式メッキ法により形成されたことを
特徴とする請求項1または請求項3または請求項4記載
の磁歪式トルクセンサの磁性膜作製方法。
5. The magnetic film of the magnetostrictive torque sensor according to claim 1, wherein the magnetic film is formed by a sputtering method, an ion plating method, or a wet plating method. Fabrication method.
JP16101191A 1991-06-04 1991-06-04 Preparation of magnetic film of magnetostrictive torque sensor Pending JPH04359127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16101191A JPH04359127A (en) 1991-06-04 1991-06-04 Preparation of magnetic film of magnetostrictive torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16101191A JPH04359127A (en) 1991-06-04 1991-06-04 Preparation of magnetic film of magnetostrictive torque sensor

Publications (1)

Publication Number Publication Date
JPH04359127A true JPH04359127A (en) 1992-12-11

Family

ID=15726885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16101191A Pending JPH04359127A (en) 1991-06-04 1991-06-04 Preparation of magnetic film of magnetostrictive torque sensor

Country Status (1)

Country Link
JP (1) JPH04359127A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491369A (en) * 1992-08-24 1996-02-13 Kubota Corporation Magnetostrictive torque sensor shaft
JP2006322952A (en) * 2006-08-29 2006-11-30 Honda Motor Co Ltd Manufacturing method for magnetostrictive torque sensor, and motor-driven power steering device mounted with magnetostrictive torque sensor
JP2007114062A (en) * 2005-10-20 2007-05-10 Honda Motor Co Ltd Induction heating coil and its manufacturing method, and high-frequency heating device
JP2007225347A (en) * 2006-02-21 2007-09-06 Honda Motor Co Ltd Magnetostrictive type dynamic quantity sensor, and method of manufacturing magnetostrictive type dynamic quantity sensor
JP2007255916A (en) * 2006-03-20 2007-10-04 Honda Motor Co Ltd Magnetostrictive torque sensor, and electric power steering device
JP2007333704A (en) * 2006-06-19 2007-12-27 Honda Motor Co Ltd Method of manufacturing magnetostrictive torque sensor, and electric power steering device
JP2008096220A (en) * 2006-10-10 2008-04-24 Honda Motor Co Ltd Manufacturing method of rotating shaft for magnetostrictive torque sensor, and twisting device of rotating shaft for magnetostrictive torque sensor
JP2008170450A (en) * 2008-02-12 2008-07-24 Honda Motor Co Ltd Torque sensor
JP2008224678A (en) * 2008-04-21 2008-09-25 Honda Motor Co Ltd Anisotropy imparting method of magnetostrictive torque sensor
JP2008232904A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Method of manufacturing magnetostrictive film in magnetostrictive type torque sensor, and magnetostrictive type torque sensor
JP2008256480A (en) * 2007-04-03 2008-10-23 Honda Motor Co Ltd Manufacturement method of magnetostrictive torque sensor
JP2009115762A (en) * 2007-11-09 2009-05-28 Honda Motor Co Ltd Method of manufacturing magnetostrictive torque sensor
US7621368B2 (en) 2003-05-12 2009-11-24 Honda Motor Co., Ltd. Magnetostrictive coat forming method, magnetostrictive torque sensor manufacturing method, and electric power steering apparatus employing the sensor
JP2010048820A (en) * 2009-11-30 2010-03-04 Honda Motor Co Ltd Manufacturing method of magnetostrictive torque sensor
JP2010249733A (en) * 2009-04-17 2010-11-04 Honda Motor Co Ltd Magnetostrictive torque sensor and method for manufacturing the same
JP2014227600A (en) * 2013-05-23 2014-12-08 日本電子工業株式会社 Strengthening surface coating layer by heat treatment
US10551256B2 (en) 2016-09-23 2020-02-04 Honda Motor Co., Ltd. Magnetostrictive torque sensor and method of manufacturing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5491369A (en) * 1992-08-24 1996-02-13 Kubota Corporation Magnetostrictive torque sensor shaft
US7621368B2 (en) 2003-05-12 2009-11-24 Honda Motor Co., Ltd. Magnetostrictive coat forming method, magnetostrictive torque sensor manufacturing method, and electric power steering apparatus employing the sensor
JP2007114062A (en) * 2005-10-20 2007-05-10 Honda Motor Co Ltd Induction heating coil and its manufacturing method, and high-frequency heating device
JP2007225347A (en) * 2006-02-21 2007-09-06 Honda Motor Co Ltd Magnetostrictive type dynamic quantity sensor, and method of manufacturing magnetostrictive type dynamic quantity sensor
JP2007255916A (en) * 2006-03-20 2007-10-04 Honda Motor Co Ltd Magnetostrictive torque sensor, and electric power steering device
JP2007333704A (en) * 2006-06-19 2007-12-27 Honda Motor Co Ltd Method of manufacturing magnetostrictive torque sensor, and electric power steering device
JP4668870B2 (en) * 2006-08-29 2011-04-13 本田技研工業株式会社 Manufacturing method of magnetostrictive torque sensor, and electric power steering apparatus equipped with magnetostrictive torque sensor
JP2006322952A (en) * 2006-08-29 2006-11-30 Honda Motor Co Ltd Manufacturing method for magnetostrictive torque sensor, and motor-driven power steering device mounted with magnetostrictive torque sensor
JP2008096220A (en) * 2006-10-10 2008-04-24 Honda Motor Co Ltd Manufacturing method of rotating shaft for magnetostrictive torque sensor, and twisting device of rotating shaft for magnetostrictive torque sensor
JP2008232904A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Method of manufacturing magnetostrictive film in magnetostrictive type torque sensor, and magnetostrictive type torque sensor
JP2008256480A (en) * 2007-04-03 2008-10-23 Honda Motor Co Ltd Manufacturement method of magnetostrictive torque sensor
JP2009115762A (en) * 2007-11-09 2009-05-28 Honda Motor Co Ltd Method of manufacturing magnetostrictive torque sensor
JP2008170450A (en) * 2008-02-12 2008-07-24 Honda Motor Co Ltd Torque sensor
JP2008224678A (en) * 2008-04-21 2008-09-25 Honda Motor Co Ltd Anisotropy imparting method of magnetostrictive torque sensor
JP2010249733A (en) * 2009-04-17 2010-11-04 Honda Motor Co Ltd Magnetostrictive torque sensor and method for manufacturing the same
JP2010048820A (en) * 2009-11-30 2010-03-04 Honda Motor Co Ltd Manufacturing method of magnetostrictive torque sensor
JP2014227600A (en) * 2013-05-23 2014-12-08 日本電子工業株式会社 Strengthening surface coating layer by heat treatment
US10551256B2 (en) 2016-09-23 2020-02-04 Honda Motor Co., Ltd. Magnetostrictive torque sensor and method of manufacturing same

Similar Documents

Publication Publication Date Title
JPH04359127A (en) Preparation of magnetic film of magnetostrictive torque sensor
JP3377519B2 (en) Torque sensor and method of manufacturing the same
JPH05231967A (en) Magnetostrictive torque sensor
JPS5961732A (en) Manufacture of torque sensor
JPH09166506A (en) Magnetostrictive distortion sensor
JPH0424530A (en) Magnetostriction torque sensor
JPS63317734A (en) Magnetostriction type torque sensor
JP2006300902A (en) Stress detection method and device
JPH01123487A (en) Torque sensor
JPH03282338A (en) Manufacture of torque sensor
JPS6115942A (en) Torque sensor
JP2002107240A (en) Torque transmission shaft and torque sensor using it
JPH05172662A (en) Torque sensor
JP2002228526A (en) Torque sensor
JPH03160337A (en) Torque sensor and method for controlling magnetic anisotropy
JP7151972B2 (en) Method for manufacturing magnetostrictive torque sensor and magnetostrictive torque sensor
JPH0452633B2 (en)
JPS58213860A (en) Heat treatment of amorphous magnetic film
JP2739574B2 (en) Heat treatment method for amorphous soft magnetic material
JPH07116565B2 (en) Magnetostrictive layer forming method and torque sensor using the magnetostrictive layer
JPH01209773A (en) Rotary shaft with integrated torque sensor
JP3018812B2 (en) Method of manufacturing shaft having magnetostrictive torque detector
JPS61204318A (en) Manufacture of magnet material
JPS63235448A (en) Composite magnetic wire rod
JP2795728B2 (en) Torque detector