JPH01123487A - Torque sensor - Google Patents

Torque sensor

Info

Publication number
JPH01123487A
JPH01123487A JP62281768A JP28176887A JPH01123487A JP H01123487 A JPH01123487 A JP H01123487A JP 62281768 A JP62281768 A JP 62281768A JP 28176887 A JP28176887 A JP 28176887A JP H01123487 A JPH01123487 A JP H01123487A
Authority
JP
Japan
Prior art keywords
rotary shaft
magnetic field
shaft
rotating shaft
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281768A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP62281768A priority Critical patent/JPH01123487A/en
Publication of JPH01123487A publication Critical patent/JPH01123487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent magnetic field generated by a rotary shaft from entering a film, and improve output characteristics, by obtaining induction magnetic anisotropy, by using temperature together with magnetic field at the time of forming a magnetostriction film, and demagnetizing the rotary shaft. CONSTITUTION:A rotary shaft 3 is kept at a temperature of 280-500 deg.C, and magnetic field is applied to the outer periphery of the rotary shaft 3, in the direction of 30-60 deg. with respect to the axial center direction of the rotary shaft 3. In this state, an alloy 2 composed of 35wt.% Ni and residual Fe is stuck by sputtering method or ion planting method. In the case where the rotary shaft 3 is made of magnetic material, the rotary shaft 3 is demagnetized. Thereby preventing the magnetic field generated by the rotary shaft from entering a film, and improving output properties.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、サーボモータ等の回転軸のトルクを非接触で
測定するための磁歪膜を固着させたトルクセンサに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a torque sensor to which a magnetostrictive film is fixed for non-contact measurement of the torque of a rotating shaft of a servo motor or the like.

(従来の技術) 磁歪式トルクセンサの従来例を第3図に示す。(Conventional technology) A conventional example of a magnetostrictive torque sensor is shown in FIG.

このトルクセンサはシャフト3の表面に磁気歪効果を有
する磁性体7をシャフトの軸心方向に°対し30〜60
°方向に貼着して配置し、磁性体7を囲んで一定ギャッ
プを保って励磁コイル8と検出コイル9を設けた構造を
なしている。このような構造の磁歪式トルクセンサにお
いてシャフトにねじりトルクが加えられると磁性体の磁
気歪効果によって透磁率が変化するため検出コイルに発
生する誘導起電力も変化しこの起電力の変化を検出する
ことにより、上記ねじりトルクの値を知ることができる
This torque sensor has a magnetic material 7 having a magnetostrictive effect on the surface of a shaft 3 at an angle of 30 to 60 degrees in the axial direction of the shaft.
It has a structure in which the excitation coil 8 and the detection coil 9 are attached and arranged in the .degree. direction, surrounding the magnetic body 7 and maintaining a constant gap. In a magnetostrictive torque sensor with such a structure, when torsional torque is applied to the shaft, the magnetic permeability changes due to the magnetostrictive effect of the magnetic material, so the induced electromotive force generated in the detection coil also changes, and this change in electromotive force is detected. By this, the value of the above-mentioned torsion torque can be known.

磁性体の配置がシャフトの軸心方向に対し角度をつけて
いるのは、ねじりトルクの方向を検出するためで、検出
感度が向上するように磁性体はスリットにより不連続で
矢印の方向に形状異方性をつけている。
The reason why the magnetic material is arranged at an angle to the axis of the shaft is to detect the direction of torsional torque.To improve detection sensitivity, the magnetic material is discontinuously shaped with slits in the direction of the arrow. It has anisotropy.

このような磁歪式トルクセンサに使用する磁性体の形成
法に要求される条件としては、シャフトへの密着力、厚
さの均一性、磁性体をシャフトにつけるときに500℃
以上に昇温する必要がないことなどがあげられるが、前
述のように磁性体を貼着するものでは密着力が得られな
い。このため前記条件を満足する方法としてスパッタ法
などの気相成長法を利用する方法が発明された。これは
The conditions required for the method of forming the magnetic material used in such magnetostrictive torque sensors are adhesion to the shaft, uniformity of thickness, and temperature at 500°C when attaching the magnetic material to the shaft.
One example is that there is no need to raise the temperature to a higher level, but as mentioned above, adhesion cannot be obtained with a magnetic material attached. For this reason, a method using a vapor phase growth method such as a sputtering method has been invented as a method that satisfies the above conditions. this is.

たとえば、特開昭60−42628号に示されている。For example, it is shown in Japanese Patent Application Laid-Open No. 60-42628.

(発明が解決しようとする問題点) 上記の方法ではアモルファス磁性合金を用いた場合につ
いて述べており、Ni−Fe合金(パーマロイ)等の磁
性体を用いることができると記載されているが′、それ
ぞれについての具体的な条件は記載されておらず、実施
例に示された条件でパーマロイの膜を形成しても異方性
を得ることができなかった。
(Problems to be Solved by the Invention) The above method describes the case where an amorphous magnetic alloy is used, and it is stated that a magnetic material such as Ni-Fe alloy (permalloy) can be used. Specific conditions for each are not described, and even if a permalloy film was formed under the conditions shown in the examples, anisotropy could not be obtained.

また1回転軸が磁性材料(マルエージング鋼。In addition, the one-rotation shaft is made of magnetic material (maraging steel).

シャフト鋼)の場合、誘導磁気異方性をつけるための磁
界により、軸が磁化されてトルクセンサとして使用でき
なかった。
In the case of (shaft steel), the shaft was magnetized by the magnetic field used to create induced magnetic anisotropy, making it impossible to use it as a torque sensor.

(問題点を解決するための手段) 本発明はスパッタ法又はイオンプレーティング法によっ
て磁歪膜を形成するときのシャフトの温度に着目し、シ
ャフトを280〜500℃に保持させ、その表面にそっ
て異方性をつけたい方向に磁界を印加することにより誘
導磁気異方性をつけ。
(Means for Solving the Problems) The present invention focuses on the temperature of the shaft when forming a magnetostrictive film by sputtering or ion plating, and maintains the shaft at 280 to 500°C, and Induced magnetic anisotropy is created by applying a magnetic field in the direction in which you want to create anisotropy.

回転軸が磁性材料のときは膜形成後に消磁を行うように
している。
When the rotating shaft is made of a magnetic material, demagnetization is performed after film formation.

(作用) 磁歪膜形成時に温度と磁界を併用することにより誘導磁
気異方性が得られ9回転軸を消磁することにより回転軸
からの磁界が膜に入ることがなくなり、出力特性の向上
が得られるようになる。
(Function) Induced magnetic anisotropy is obtained by using both temperature and magnetic field during magnetostrictive film formation, and by demagnetizing the 9 rotating shafts, the magnetic field from the rotating shafts no longer enters the film, resulting in improved output characteristics. You will be able to do it.

(実施例) 以下1本発明の一実施例を図面に基づいて説明する。(Example) An embodiment of the present invention will be described below based on the drawings.

第1図に本発明の実施に用いた・スパッタ装置の構成を
示す。真空槽1内にはNiを35〜65%含むNi−F
e合金ターゲット2.シャフト3゜シャフト回転治具4
.シャフト加熱ヒータ5.磁界印加用の磁石6が配置さ
れている。磁界印加の詳細を第2図に示す。
FIG. 1 shows the configuration of a sputtering apparatus used in carrying out the present invention. The vacuum chamber 1 contains Ni-F containing 35 to 65% Ni.
e-alloy target 2. Shaft 3° Shaft rotation jig 4
.. Shaft heater 5. A magnet 6 for applying a magnetic field is arranged. Details of magnetic field application are shown in FIG.

真空槽内を1×10−%Torr以下に排気したあとア
ルゴンガスを5X10−’Torr導入し。
After evacuating the inside of the vacuum chamber to below 1 x 10-% Torr, argon gas was introduced at 5 x 10-' Torr.

ターゲットに一500v印加し、シャフトの回りにNi
−Fe膜を形成した。スパッタ中は、シャフトを1回転
/分で回転させ、磁界の方向はシャフト外周面上でシャ
フトの軸心方向に対し。
Apply 500V to the target and apply Ni around the shaft.
-A Fe film was formed. During sputtering, the shaft is rotated at 1 revolution/min, and the direction of the magnetic field is on the shaft's outer peripheral surface relative to the axis of the shaft.

30°、45°、60°の3種類の方向に印加した。シ
ャフトにはTi合金、545C,マルエージング鋼を用
いNi−Fe膜形成時のシャフトの温度は200〜50
0℃の範囲で変化させた。
The force was applied in three directions: 30°, 45°, and 60°. The shaft is made of Ti alloy, 545C, and maraging steel, and the temperature of the shaft during formation of the Ni-Fe film is 200 to 50.
The temperature was varied within a range of 0°C.

シャフトの周囲に膜を形成後、トルク−出力特性を測定
した。このときマルエージング鋼については消磁を行っ
た後、測定した。測定結果は表に示すように45°方向
に磁界を印加することにより280〜500℃の温度で
形成した磁歪膜を使ったトルクセンサだけに出力が得ら
れた。
After forming the film around the shaft, the torque-output characteristics were measured. At this time, the maraging steel was demagnetized and then measured. As shown in the table, the measurement results showed that by applying a magnetic field in a 45° direction, an output was obtained only from the torque sensor using a magnetostrictive film formed at a temperature of 280 to 500°C.

二の傾向は磁界の方向が30°、60°の場合も同じで
あった。
The second tendency was the same when the direction of the magnetic field was 30° and 60°.

次にイオンプレーティング法でスパッタ法と同様の実験
を行ったが、同様の結果が得られた。
Next, an experiment similar to the sputtering method was conducted using the ion plating method, and similar results were obtained.

シャフトの温度が280〜500″Cで良い結果が得ら
れたのは、この条件で誘導磁気異方性による異方性があ
られれたためと考えられる。270℃以下では異方性が
つかないため出力が出ないものと考えられる。
The reason why good results were obtained when the shaft temperature was 280 to 500"C is thought to be that anisotropy due to induced magnetic anisotropy was created under these conditions. Anisotropy does not occur below 270"C. It is considered that no output is produced.

(発明の効果) 以上説明したように2本発明による磁歪膜形成法を使え
ば、異方性が大きくなるので、出力が増加し耐ノイズ性
が向上し、又、同じ出力であれば小型化することができ
る。さらに膜形成時にメタルマスクを必要とせず作業性
向上に役立つ効果がある。
(Effects of the Invention) As explained above, if the magnetostrictive film forming method according to the present invention is used, the anisotropy will increase, so the output will increase and the noise resistance will improve, and if the output is the same, the size will be reduced. can do. Furthermore, there is no need for a metal mask during film formation, which helps improve workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用したスパッタ装置。 第2図は磁界をシャフトに印加する方法、第3図は磁歪
式トルクセンサの構造を示す図である。 2はNi−Fe合金ターゲット 3はシャフト。 6は磁石である。
FIG. 1 shows a sputtering apparatus used to implement the present invention. FIG. 2 shows a method of applying a magnetic field to a shaft, and FIG. 3 shows a structure of a magnetostrictive torque sensor. 2 is a Ni-Fe alloy target and 3 is a shaft. 6 is a magnet.

Claims (1)

【特許請求の範囲】[Claims]  磁歪を有する磁性金属を、回転軸に固着し、回転軸に
加えられたトルクにより該磁性金属の磁気特性が変化す
ることを利用した非接触形のトルクセンサにおいて、回
転軸の温度を280〜500℃に保持し、該回転軸外周
面上に回転軸の軸心方向に対して30〜60゜の方向に
磁界を印加した状態で、Niが35〜65重量%、残部
がFeからなる合金をスパッタ法またはイオンプレーテ
ィング法によって固着させる第1の工程と該回転軸が磁
性材料の場合はこれを消磁する第2の工程で製造される
ことを特徴とするトルクセンサ。
In a non-contact torque sensor that utilizes the fact that a magnetic metal having magnetostriction is fixed to a rotating shaft and the magnetic properties of the magnetic metal change due to the torque applied to the rotating shaft, the temperature of the rotating shaft is set to 280 to 500. ℃, and a magnetic field is applied to the outer circumferential surface of the rotating shaft in a direction of 30 to 60 degrees with respect to the axial direction of the rotating shaft, an alloy consisting of 35 to 65% by weight of Ni and the balance of Fe is heated. A torque sensor characterized in that it is manufactured by a first step of fixing the rotating shaft by a sputtering method or an ion plating method, and a second step of demagnetizing the rotating shaft if it is made of a magnetic material.
JP62281768A 1987-11-06 1987-11-06 Torque sensor Pending JPH01123487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62281768A JPH01123487A (en) 1987-11-06 1987-11-06 Torque sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281768A JPH01123487A (en) 1987-11-06 1987-11-06 Torque sensor

Publications (1)

Publication Number Publication Date
JPH01123487A true JPH01123487A (en) 1989-05-16

Family

ID=17643702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281768A Pending JPH01123487A (en) 1987-11-06 1987-11-06 Torque sensor

Country Status (1)

Country Link
JP (1) JPH01123487A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044324A1 (en) * 1997-03-28 1998-10-08 Mannesmann Vdo Ag Method of making integral magnetoelastic transducer
WO1998058098A1 (en) * 1997-06-18 1998-12-23 Applied Materials, Inc. Magnetic parts and method for using same
JP2003529069A (en) * 2000-03-28 2003-09-30 ファースト テクノロジー アーゲー Magnetic base / force / torque sensor
EP1770383A2 (en) 2005-09-30 2007-04-04 HONDA MOTOR CO., Ltd. Method for manufacturing magnetostrictive torque sensor
JP2009512856A (en) * 2005-10-21 2009-03-26 ストーンリッジ・コントロール・デバイスィズ・インコーポレーテッド Sensor system including a magnetized shaft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042628A (en) * 1983-08-19 1985-03-06 Toshiba Corp Torque sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042628A (en) * 1983-08-19 1985-03-06 Toshiba Corp Torque sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998044324A1 (en) * 1997-03-28 1998-10-08 Mannesmann Vdo Ag Method of making integral magnetoelastic transducer
US6330833B1 (en) 1997-03-28 2001-12-18 Mannesmann Vdo Ag Magnetoelastic torque sensor
US6598491B2 (en) 1997-03-28 2003-07-29 John E. Opie Magnetoelastic torque sensor
WO1998058098A1 (en) * 1997-06-18 1998-12-23 Applied Materials, Inc. Magnetic parts and method for using same
JP2003529069A (en) * 2000-03-28 2003-09-30 ファースト テクノロジー アーゲー Magnetic base / force / torque sensor
JP4743741B2 (en) * 2000-03-28 2011-08-10 アバス,インコーポレイティド Magnetic base / force / torque sensor
EP1770383A2 (en) 2005-09-30 2007-04-04 HONDA MOTOR CO., Ltd. Method for manufacturing magnetostrictive torque sensor
EP1770383A3 (en) * 2005-09-30 2009-06-17 HONDA MOTOR CO., Ltd. Method for manufacturing magnetostrictive torque sensor
JP2009512856A (en) * 2005-10-21 2009-03-26 ストーンリッジ・コントロール・デバイスィズ・インコーポレーテッド Sensor system including a magnetized shaft

Similar Documents

Publication Publication Date Title
US4668914A (en) Circular, amorphous metal, Hall effect magnetic field sensor with circumferentially spaced electrodes
EP0525551B1 (en) Circularly magnetized non-contact torque sensor,method, and transducer ring
EP2972167B1 (en) System and method for reducing rotation noise in a magnetoelastic torque sensing device
JP2003507701A (en) Magnetic transducer for torque or force sensor
WO1998044324A1 (en) Method of making integral magnetoelastic transducer
JPH04359127A (en) Preparation of magnetic film of magnetostrictive torque sensor
JPH01123487A (en) Torque sensor
JPS6042628A (en) Torque sensor
JPH05231967A (en) Magnetostrictive torque sensor
JPH01187425A (en) Torque sensor for steering shaft
JPS63182535A (en) Torque sensor
JPS5961732A (en) Manufacture of torque sensor
JPH0610327B2 (en) Torque sensor
JP7151972B2 (en) Method for manufacturing magnetostrictive torque sensor and magnetostrictive torque sensor
JPH03282338A (en) Manufacture of torque sensor
JPH01318933A (en) Torque sensor
JP2002156296A (en) Torque converter
JPS60257334A (en) Torque detecting instrument
JPS6326541A (en) Torque sensor
JPH02118427A (en) Torque detecting device
JPH01279755A (en) Formation of magnetostrictive film and sputtering device for magnetostrictive film formation
JPH02154130A (en) Strain detector
JPH09166504A (en) Magnetostrictive distortion sensor
JPH09281127A (en) Detecting device of magnetism equipped with magnetoresistance element and manufacture thereof
JPS63284443A (en) Torque detector