JP2008096220A - Manufacturing method of rotating shaft for magnetostrictive torque sensor, and twisting device of rotating shaft for magnetostrictive torque sensor - Google Patents

Manufacturing method of rotating shaft for magnetostrictive torque sensor, and twisting device of rotating shaft for magnetostrictive torque sensor Download PDF

Info

Publication number
JP2008096220A
JP2008096220A JP2006276902A JP2006276902A JP2008096220A JP 2008096220 A JP2008096220 A JP 2008096220A JP 2006276902 A JP2006276902 A JP 2006276902A JP 2006276902 A JP2006276902 A JP 2006276902A JP 2008096220 A JP2008096220 A JP 2008096220A
Authority
JP
Japan
Prior art keywords
rotating shaft
torque
magnetostrictive
torque sensor
torsion bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006276902A
Other languages
Japanese (ja)
Other versions
JP4801559B2 (en
Inventor
Yuichi Fukuda
祐一 福田
Mizuho Doi
瑞穂 土肥
Hitoshi Harada
仁 原田
Yukiya Kashimura
之哉 樫村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006276902A priority Critical patent/JP4801559B2/en
Publication of JP2008096220A publication Critical patent/JP2008096220A/en
Application granted granted Critical
Publication of JP4801559B2 publication Critical patent/JP4801559B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a twisting device of a rotating shaft for a magnetostrictive torque sensor capable of suppressing torque fluctuation even when heat is applied to the rotating shaft. <P>SOLUTION: In this twisting device 10 of the rotating shaft for the magnetostrictive torque sensor for twisting the rotating shaft 11 on which a magnetostrictive film 17 is formed with a prescribed torque by a torque generation means 16, a torsion bar 14 is interposed between the rotating shaft 11 and the torque generation means 16. A rotation angle of the torque generation means becomes a total of an angle of torsion of the rotating shaft and an angle of torsion of the torsion bar by interposing the torsion bar. If the rotation angle is large, an influence of an angle change caused by irregularities becomes small, and resultantly the torque fluctuation is mitigated and the torque fluctuation can be suppressed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁歪式トルクセンサの製造技術の改良に関する。   The present invention relates to an improvement in manufacturing technology of a magnetostrictive torque sensor.

一般に、自動車等に装備される電動パワーステアリング装置では、ドライバーの操舵操作によって操舵軸から回転軸に加えられるトルクをトルクセンサで検出する。そして、このトルクセンサからの検出信号に応じてモータを駆動制御して動力を付加し、ドライバーの操舵力を軽減して快適な操舵フィーリングを与える。   In general, in an electric power steering apparatus installed in an automobile or the like, torque applied from a steering shaft to a rotating shaft by a steering operation of a driver is detected by a torque sensor. And according to the detection signal from this torque sensor, a motor is drive-controlled and power is added, a driver's steering force is reduced and a comfortable steering feeling is given.

上記トルクセンサは、各種のものが知られており、その一つは、磁歪式トルクセンサである。
磁歪式トルクセンサは、回転軸の表面に磁気異方性をもった磁歪膜を被着することを基本構成とする。回転軸に外部からトルクが作用したときに回転軸のねじれに応じて磁歪膜の磁気特性が変化する。この磁気特性の変化を検出し、トルクに換算することで、加えられたトルクを出力することを基本原理とする。
Various types of torque sensors are known, one of which is a magnetostrictive torque sensor.
A magnetostrictive torque sensor has a basic configuration in which a magnetostrictive film having magnetic anisotropy is deposited on the surface of a rotating shaft. When torque is applied to the rotation shaft from the outside, the magnetic characteristics of the magnetostrictive film change according to the twist of the rotation shaft. The basic principle is to output the applied torque by detecting this change in magnetic characteristics and converting it to torque.

磁気異方性を付与するために、回転軸にトルクを加えて応力が生じた状態のままで、加熱処理する技術が提案されている(例えば、特許文献1参照。)。
特開2002−82000公報(図3)
In order to impart magnetic anisotropy, a technique has been proposed in which heat treatment is performed in a state where stress is generated by applying torque to the rotating shaft (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2002-82000 (FIG. 3)

特許文献1を次図に基づいて説明する。
図4は従来の磁歪式トルクセンサの要部の構成図であり、回転軸101に磁歪膜106を成膜する。そして、一端の×印箇所を固定し、他端をねじることで、回転軸101に所定のトルクを加える。この状態のままで、加熱処理する。以上の工程により、磁歪膜106に磁気異方性を付加するというものである。
Patent document 1 is demonstrated based on the following figure.
FIG. 4 is a configuration diagram of the main part of a conventional magnetostrictive torque sensor, in which a magnetostrictive film 106 is formed on the rotating shaft 101. And the predetermined | prescribed torque is applied to the rotating shaft 101 by fixing the X mark location of one end and twisting the other end. Heat treatment is performed in this state. Through the above process, magnetic anisotropy is added to the magnetostrictive film 106.

本発明者らは、特許文献1を実施するため、次図に示す装置を作製した。
図5は従来の回転軸のねじり装置の原理図であり、回転軸のねじり装置100は、車両のステアリング系に配置される回転軸101を所定のトルクでねじる装置であり、装置フレーム102と、この装置フレーム102に設けられ、回転軸101の一端(上端)を支える支持部103と、この支持部103で支えられた回転軸101の他端(下端)に連結したトルク計104と、このトルク計104に連結すると共に装置フレーム102に固定されているサーボモータ105と、装置フレーム102に設けられ回転軸101に成膜されている磁歪膜106を加熱する誘導加熱コイル107と、トルク計104で検出したトルク信号と入力装置108で予め記憶させた目標値との差がゼロになるようにモータドライバー109を制御する制御部110とからなる。
In order to implement Patent Document 1, the present inventors produced an apparatus shown in the following figure.
FIG. 5 is a principle diagram of a conventional rotating shaft twisting device. A rotating shaft twisting device 100 is a device for twisting a rotating shaft 101 arranged in a steering system of a vehicle with a predetermined torque. A support portion 103 provided on the apparatus frame 102 and supporting one end (upper end) of the rotating shaft 101, a torque meter 104 connected to the other end (lower end) of the rotating shaft 101 supported by the supporting portion 103, and the torque A servo motor 105 connected to the meter 104 and fixed to the device frame 102, an induction heating coil 107 for heating the magnetostrictive film 106 provided on the device frame 102 and formed on the rotating shaft 101, and a torque meter 104 A control unit that controls the motor driver 109 so that the difference between the detected torque signal and the target value stored in advance by the input device 108 becomes zero. Consisting of 10.

磁歪膜106を数百℃まで加熱すると、回転軸101は不可避的に熱膨張する。回転軸101は支持部103を起点として、図面下方へ伸びる。   When the magnetostrictive film 106 is heated to several hundred degrees Celsius, the rotating shaft 101 inevitably undergoes thermal expansion. The rotating shaft 101 extends downward from the drawing starting from the support portion 103.

図5の作用を次図で詳しく説明する。
図6は図5の作用説明図であり、(a)に示される予定曲線で回転軸をねじり、トルクが安定した領域で、(b)に示される曲線で加熱し、冷却する要領で図5のねじり装置100を運転した。ところが、トルク計(図5、符号104)で測定したトルクは、(c)のようになった。すなわち、熱処理範囲でトルクが大きく変動した。
The operation of FIG. 5 will be described in detail with reference to the next figure.
FIG. 6 is an explanatory diagram of the operation of FIG. 5, in which the rotating shaft is twisted with the predetermined curve shown in FIG. 5A and the torque is stabilized, and the heating and cooling are performed with the curve shown in FIG. The torsion device 100 was operated. However, the torque measured with the torque meter (Fig. 5, reference numeral 104) was as shown in (c). That is, the torque fluctuated greatly in the heat treatment range.

このような変動には、バラツキがあり、磁歪膜(図5、符号106)の品質に悪影響を及ぼす。そこで、本発明者らはトルクの変動を解消する作業の一環として、トルクの変動のメカニズムを次のように推定した。
図7は図5の7−7線断面図であり、回転軸側の角軸112は、トルク計側のボス113に設けられている角穴114に嵌合される。
図8は角穴と角軸との関係を示す断面図であり、角軸112が、熱膨張により下がってきても良いように、角穴114の底は十分に深くなっている。
Such fluctuations vary and adversely affect the quality of the magnetostrictive film (FIG. 5, reference numeral 106). Therefore, the present inventors estimated the torque fluctuation mechanism as follows as part of the work to eliminate the torque fluctuation.
FIG. 7 is a cross-sectional view taken along the line 7-7 in FIG. 5, and the angular shaft 112 on the rotating shaft side is fitted into a square hole 114 provided on the boss 113 on the torque meter side.
FIG. 8 is a cross-sectional view showing the relationship between the square hole and the square axis. The bottom of the square hole 114 is sufficiently deep so that the square axis 112 may be lowered by thermal expansion.

図9は図8の9部の拡大図(理解を促すために極端に拡大した図)である。
(a)は、例えば熱膨張前の角軸112とボス113との関係を示し、角軸112にポイント(目印)P1を付し、ボス113にポイントP2を付したとする。
角軸112の表面は機械加工などの影響で極めて微細な凹凸が不可避的に発生する。ボス113の表面も同様に極めて微細な凹凸が不可避的に発生する。
今、ポイントP1とポイントP2との水平距離がL1であったとする。
FIG. 9 is an enlarged view of part 9 in FIG. 8 (an extremely enlarged view for promoting understanding).
(A) shows the relationship between the angular axis 112 before thermal expansion and the boss 113, for example, and it is assumed that a point (mark) P1 is attached to the angular axis 112 and a point P2 is attached to the boss 113.
The surface of the square axis 112 inevitably generates extremely fine irregularities due to the influence of machining or the like. Similarly, extremely fine irregularities are inevitably generated on the surface of the boss 113.
Assume that the horizontal distance between the point P1 and the point P2 is L1.

(b)は、例えば熱膨張途中の状態を示し、ボス113に対して角軸112が下方へ移動した。この移動により、角軸112側の凸がボス113側の凹に嵌合した。この結果、ポイントP1とポイントP2との水平距離L2はL1より小さくなった。   (B) shows the state in the middle of thermal expansion, for example, and the square axis 112 has moved downward relative to the boss 113. By this movement, the convex on the angular axis 112 side is fitted into the concave on the boss 113 side. As a result, the horizontal distance L2 between the point P1 and the point P2 is smaller than L1.

(c)は、例えば熱膨張後の状態を示し、ボス113に対して角軸112が更に下方へ移動した。この移動により、角軸112側の凸がボス113側の凸に対向した。この結果、ポイントP1とポイントP2との水平距離L3はL2及びL1より大きくなった。   (C) shows a state after thermal expansion, for example, and the angular axis 112 has moved further downward with respect to the boss 113. By this movement, the convex on the angular axis 112 side is opposed to the convex on the boss 113 side. As a result, the horizontal distance L3 between the point P1 and the point P2 is larger than L2 and L1.

図10は凹凸の影響を説明する図であり、想像線で示した角軸112が、上記水平距離の変化(L1→L2又はL1→L3)によって、実線で示す角軸112のように回転することが考えられる。図は誇張して記載したが、角度θは0.04°程度である。 FIG. 10 is a diagram for explaining the influence of unevenness, and the angular axis 112 indicated by an imaginary line rotates like the angular axis 112 indicated by a solid line by the change in the horizontal distance (L1 → L2 or L1 → L3). It is possible. Although the figure is exaggerated, the angle θ is about 0.04 °.

ところで、図6(c)に示したトルク変動は、磁歪膜の品質に悪影響を及ぼす虞があって、容認できない。
そこで、図9〜図10の推論を踏まえて、トルクの変動を抑えることができる技術が望まれる。
Incidentally, the torque fluctuation shown in FIG. 6C is unacceptable because it may adversely affect the quality of the magnetostrictive film.
Therefore, a technique capable of suppressing torque fluctuations is desired based on the inferences shown in FIGS.

本発明は、トルクの変動を抑えることができる磁歪式トルクセンサ用回転軸の製造方法及び磁歪式トルクセンサ用回転軸のねじり装置を提供することを課題とする。   It is an object of the present invention to provide a method for manufacturing a rotating shaft for a magnetostrictive torque sensor and a twisting device for the rotating shaft for a magnetostrictive torque sensor that can suppress fluctuations in torque.

請求項1に係る発明は、回転軸に磁歪膜を成膜する成膜工程と、前記回転軸に所定のトルクを加える工程と、前記回転軸に所定のトルクを加えた状態で前記磁歪膜に熱処理を施す熱処理工程と、前記トルクを解消する工程とからなる磁歪式トルクセンサ用回転軸の製造方法において、前記回転軸に所定のトルクを加える工程では、トルク発生手段と前記回転軸とをトーションバーで連結し、このトーションバーを介してトルク発生手段で回転軸をねじるようにしたことを特徴とする。   The invention according to claim 1 is a film forming step of forming a magnetostrictive film on the rotating shaft, a step of applying a predetermined torque to the rotating shaft, and a state in which the predetermined torque is applied to the rotating shaft. In a method of manufacturing a rotary shaft for a magnetostrictive torque sensor comprising a heat treatment step for performing heat treatment and a step for eliminating the torque, in the step of applying a predetermined torque to the rotary shaft, the torque generating means and the rotary shaft are torsioned. It is characterized in that it is connected by a bar and the rotating shaft is twisted by torque generating means through this torsion bar.

請求項2に係る発明は、磁歪膜が成膜されている回転軸を、トルク発生手段により所定のトルクでねじる磁歪式トルクセンサ用回転軸のねじり装置において、
前記回転軸と前記トルク発生手段との間に、トーションバーを介在させたことを特徴とする。
According to a second aspect of the present invention, there is provided a twisting device for a rotational shaft for a magnetostrictive torque sensor in which a rotational shaft on which a magnetostrictive film is formed is twisted with a predetermined torque by a torque generating means.
A torsion bar is interposed between the rotating shaft and the torque generating means.

請求項1に係る発明では、トーションバーを介してトルク発生手段で回転軸をねじるようにした。回転軸とトルク発生手段との間には機械的な連結部が存在する。この連結部には、機械加工などにより不可避的な凹凸が存在する。回転軸が熱膨張すると、連結部における凹凸の位置が相対的に移動し、その影響がトルク発生手段での回転角度に表れる。
トーションバーを介在させると、トルク発生手段の回転角度は、回転軸のねじれ角とトーションバーのねじれ角の合計になる。トルク発生手段の回転角度が大きいと、凹凸に起因する角度変化の影響は小さくなり、結果として、この結果、トルクの変動が緩和され、トルクの変動を抑えることができる。
In the invention according to claim 1, the rotating shaft is twisted by the torque generating means via the torsion bar. There is a mechanical connection between the rotating shaft and the torque generating means. This connecting portion has inevitable irregularities due to machining or the like. When the rotation shaft is thermally expanded, the position of the unevenness in the connecting portion is relatively moved, and the influence thereof appears in the rotation angle in the torque generating means.
When the torsion bar is interposed, the rotation angle of the torque generating means is the sum of the twist angle of the rotating shaft and the twist angle of the torsion bar. When the rotation angle of the torque generating means is large, the influence of the angle change due to the unevenness is reduced, and as a result, the torque fluctuation is mitigated and the torque fluctuation can be suppressed.

請求項2に係る発明でも、トーションバーを介在させると、トルク発生手段の回転角度は、回転軸のねじれ角とトーションバーのねじれ角の合計になる。トルク発生手段の回転角度が大きいと、凹凸に起因する角度変化の影響は小さくなり、結果として、この結果、トルクの変動が緩和され、トルクの変動を抑えることができる。   In the invention according to claim 2, when the torsion bar is interposed, the rotation angle of the torque generating means is the sum of the torsion angle of the rotating shaft and the torsion angle of the torsion bar. When the rotation angle of the torque generating means is large, the influence of the angle change due to the unevenness is reduced, and as a result, the torque fluctuation is mitigated and the torque fluctuation can be suppressed.

加えて、従来のねじり装置にトーションバーを加入することで、装置の改良を図ることができる。すなわち、安価なねじり装置を安価な改造費用で改造することで、本発明のねじり装置を得ることができるため、生産性を維持しつつ、トルクの変動を抑えることができるため、精密でかつ均質の磁気異方性を付加できる磁歪式トルクセンサ用回転軸のねじり装置の普及を促すことができる。   In addition, by adding a torsion bar to a conventional twisting device, the device can be improved. In other words, by remodeling an inexpensive torsion device at an inexpensive remodeling cost, the torsion device of the present invention can be obtained, so that fluctuations in torque can be suppressed while maintaining productivity. It is possible to promote the popularization of a twisting device for a rotating shaft for a magnetostrictive torque sensor that can add the magnetic anisotropy.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る磁歪式トルクセンサ用回転軸の製造方法を説明する図であり、(a)に工程が示され、(b)にトルクを付加する時期が示され、(c)に熱処理を施す時期が示されている。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a diagram for explaining a method of manufacturing a rotating shaft for a magnetostrictive torque sensor according to the present invention, wherein (a) shows a process, (b) shows a timing for applying torque, and (c) shows a process. The time for heat treatment is shown.

(a)の工程を詳細に説明する。
(a−1)に示されるように、軸部材11に酸エッチング法などを用いて面を粗らすことを内容とする前処理を施す。粗面にすると、磁歪膜の接着強度を高めることができるからである。この前処理を済ませた軸部材12に、(a−2)に示されるように、電気メッキ法により磁歪膜13を成膜する。
The step (a) will be described in detail.
As shown in (a-1), the shaft member 11 is subjected to a pretreatment that includes roughening the surface using an acid etching method or the like. This is because the rough surface can increase the adhesive strength of the magnetostrictive film. As shown in (a-2), a magnetostrictive film 13 is formed on the shaft member 12 that has been subjected to this pretreatment by electroplating.

(a−3)に示されるように、磁歪膜13が付いた軸部材14を所定のトルクでねじる。
(a−4)に示されるように、トルクを付加した状態で、数百℃まで急速加熱し、後にゆっくり冷却する。この加熱処理と冷却処理は合わせて熱処理と呼ばれる。ねじりながら熱処理を施すことにより磁気異方性を付与することができる。 次に、トルクの付加を解除する(a−5)。
好ましくは、(a−6)に示されるように焼なまし(アニーリング)処理を施す。
As shown in (a-3), the shaft member 14 with the magnetostrictive film 13 is twisted with a predetermined torque.
As shown in (a-4), in a state where torque is applied, it is rapidly heated to several hundred degrees Celsius and then slowly cooled. This heat treatment and cooling treatment are collectively called heat treatment. Magnetic anisotropy can be imparted by performing heat treatment while twisting. Next, torque addition is canceled (a-5).
Preferably, an annealing treatment is performed as shown in (a-6).

以上に説明した工程のうちで、(a−3)の工程(トルク付加工程)〜(a−4)の工程(ねじりながら熱処理を施す工程)に好適な回転軸のねじり装置を以下に説明する。
図2は本発明に係る回転軸のねじり装置の原理図であり、回転軸のねじり装置10は、車両のステアリング系に配置される回転軸11を所定のトルクでねじる装置であり、装置フレーム12と、この装置フレーム12に設けられ、回転軸11の一端(上端)を支える支持部材13と、この支持部材13で支えられた回転軸11の他端(下端)に連結したトーションバー14と、このトーションバー14の他端(下端)に連結したトルク計15と、このトルク計15に連結すると共に装置フレーム12に固定されている、トルク発生手段としてのサーボモータ16と、装置フレーム12に設けられ回転軸11に成膜されている磁歪膜17を加熱する誘導加熱コイル18と、トルク計15で検出したトルク信号と入力装置19で予め記憶させた目標値との差がゼロになるようにモータドライバー21を制御する制御部22とからなる。
Among the steps described above, a rotating shaft twisting apparatus suitable for the steps (a-3) (torque applying step) to (a-4) (step of performing heat treatment while twisting) will be described below. .
FIG. 2 is a principle diagram of a rotating shaft twisting device according to the present invention. The rotating shaft twisting device 10 is a device for twisting a rotating shaft 11 arranged in a steering system of a vehicle with a predetermined torque. A support member 13 that is provided on the apparatus frame 12 and supports one end (upper end) of the rotary shaft 11, and a torsion bar 14 connected to the other end (lower end) of the rotary shaft 11 supported by the support member 13. A torque meter 15 connected to the other end (lower end) of the torsion bar 14, a servo motor 16 connected to the torque meter 15 and fixed to the device frame 12, as torque generating means, and provided on the device frame 12 The induction heating coil 18 for heating the magnetostrictive film 17 formed on the rotary shaft 11, the torque signal detected by the torque meter 15, and the eyes stored in advance by the input device 19 And a control unit 22 for the difference between the value controls the motor driver 21 to be zero.

上記装置10で、回転軸11に100Nmのトルクを付加した。この結果、回転軸11は0.40°ねじれた。また、トーションバー14は2.30°ねじれた。
トーションバー14の上端をP11、下端をP12と呼ぶ。そして、P11及びP12におけるねじれ角を測定した。比較のために、同条件で従来装置でも測定した。測定の結果を次表に示す。
With the apparatus 10, a torque of 100 Nm was applied to the rotating shaft 11. As a result, the rotating shaft 11 was twisted by 0.40 °. The torsion bar 14 was twisted 2.30 °.
The upper end of the torsion bar 14 is called P11, and the lower end is called P12. And the twist angle in P11 and P12 was measured. For comparison, measurement was also performed with a conventional apparatus under the same conditions. The measurement results are shown in the following table.

Figure 2008096220
Figure 2008096220

比較例は、図5に示すねじり装置を使用し、サーボモータで100Nmのトルクを回転軸に付加した。回転軸のねじれ角は0.40°であり、サーボモータの回転角は同様の0.40°であった。P1での角度変化は、図10で説明したように角度変化は0.04°であった。
変化の影響は、(角度変化/サーボモータの回転角)と定義すると、0.04/0.40=0.10の計算により、10%となった。
In the comparative example, the twisting device shown in FIG. 5 was used, and a torque of 100 Nm was applied to the rotating shaft with a servo motor. The twist angle of the rotating shaft was 0.40 °, and the rotation angle of the servo motor was 0.40 °. As described with reference to FIG. 10, the angle change at P1 was 0.04 °.
When the influence of the change is defined as (angle change / rotation angle of the servo motor), it is 10% by the calculation of 0.04 / 0.40 = 0.10.

実施例は、図2に示すねじり装置を使用し、サーボモータで100Nmのトルクを回転軸に付加した。回転軸のねじれ角は0.40°でありトーションバーのねじれ角は2.30°あった。サーボモータの回転角は回転軸のねじれ角とトーションバーのねじれ角の合計となり、2.70°であった。P1(図2参照)での角度変化は0.04°、P2での角度変化は0.04°であった。
変化の影響は、(角度変化/サーボモータの回転角)と定義すると、(0.04+0.04)/2.70=0.03の計算により、3%となった。
実施例は、比較例に対して変化の影響が1/3以下になった。
In the embodiment, the twisting device shown in FIG. 2 was used, and a torque of 100 Nm was applied to the rotating shaft by a servo motor. The twist angle of the rotating shaft was 0.40 °, and the twist angle of the torsion bar was 2.30 °. The rotation angle of the servo motor was the sum of the twist angle of the rotating shaft and the twist angle of the torsion bar, and was 2.70 °. The angle change at P1 (see FIG. 2) was 0.04 °, and the angle change at P2 was 0.04 °.
When the influence of the change is defined as (angle change / rotation angle of the servo motor), it is 3% by calculation of (0.04 + 0.04) /2.70=0.03.
In the example, the influence of the change was 1/3 or less compared to the comparative example.

図3は本発明におけるトルク曲線を示すグラフであり、点P3で一旦トルクが減少するものの直ぐに復帰し、結果として、図6(c)で示されるようなトルクの大きな変動を、大幅に改善することができた。   FIG. 3 is a graph showing a torque curve according to the present invention. Although the torque once decreases at the point P3, it returns immediately, and as a result, the large fluctuation in torque as shown in FIG. 6C is greatly improved. I was able to.

尚、回転軸のねじり装置10は、原理的な構造を示しただけであり、適宜構成を変更することは差し支えない。特に、トルク計15の位置は任意であり、支持部材13と回転軸11との間に設けることもできる。また、サーボモータ16にトルク計の機能が内蔵されていれば、見かけ上、トルク計15を省くことができる。   Note that the twisting device 10 of the rotating shaft only shows the basic structure, and the configuration can be changed as appropriate. In particular, the position of the torque meter 15 is arbitrary, and can be provided between the support member 13 and the rotating shaft 11. If the servo motor 16 has a built-in torque meter function, the torque meter 15 can be omitted apparently.

本発明は、車両のステアリング系統に使用する磁歪式トルクセンサ用回転軸のねじり装置に好適である。   The present invention is suitable for a twisting device for a rotating shaft for a magnetostrictive torque sensor used in a vehicle steering system.

本発明に係る磁歪式トルクセンサ用回転軸の製造方法を説明する図である。It is a figure explaining the manufacturing method of the rotating shaft for magnetostrictive torque sensors concerning the present invention. 本発明に係る回転軸のねじり装置の原理図である。It is a principle figure of the twist apparatus of the rotating shaft which concerns on this invention. 本発明におけるトルク曲線を示すグラフである。It is a graph which shows the torque curve in this invention. 従来の磁歪式トルクセンサの要部の構成図である。It is a block diagram of the principal part of the conventional magnetostrictive torque sensor. 従来の回転軸のねじり装置の原理図である。It is a principle diagram of a conventional rotating shaft twisting device. 図5の作用説明図である。FIG. 6 is an operation explanatory diagram of FIG. 5. 図5の7−7線断面図である。FIG. 7 is a cross-sectional view taken along line 7-7 in FIG. 5. 角穴と角軸との関係を示す断面図である。It is sectional drawing which shows the relationship between a square hole and a square axis. 図8の9部の拡大図(理解を促すために極端に拡大した図)である。FIG. 9 is an enlarged view of part 9 of FIG. 8 (an extremely enlarged view for promoting understanding). 凹凸の影響を説明する図である。It is a figure explaining the influence of unevenness.

符号の説明Explanation of symbols

10…回転軸のねじり装置、11…回転軸、14…トーションバー、16…トルク発生手段(サーボモータ)。   DESCRIPTION OF SYMBOLS 10 ... Twist apparatus of a rotating shaft, 11 ... Rotating shaft, 14 ... Torsion bar, 16 ... Torque generation means (servo motor).

Claims (2)

回転軸に磁歪膜を成膜する成膜工程と、前記回転軸に所定のトルクを加える工程と、前記回転軸に所定のトルクを加えた状態で前記磁歪膜に熱処理を施す熱処理工程と、前記トルクを解消する工程とからなる磁歪式トルクセンサ用回転軸の製造方法において、前記回転軸に所定のトルクを加える工程では、トルク発生手段と前記回転軸とをトーションバーで連結し、このトーションバーを介してトルク発生手段で回転軸をねじるようにしたことを特徴とする磁歪式トルクセンサ用回転軸の製造方法。   A film forming step of forming a magnetostrictive film on a rotating shaft, a step of applying a predetermined torque to the rotating shaft, a heat treatment step of applying a heat treatment to the magnetostrictive film in a state where a predetermined torque is applied to the rotating shaft, In the method of manufacturing a rotating shaft for a magnetostrictive torque sensor comprising the step of eliminating torque, in the step of applying a predetermined torque to the rotating shaft, the torque generating means and the rotating shaft are connected by a torsion bar. A method of manufacturing a rotating shaft for a magnetostrictive torque sensor, wherein the rotating shaft is twisted by a torque generating means via 磁歪膜が成膜されている回転軸を、トルク発生手段により所定のトルクでねじる磁歪式トルクセンサ用回転軸のねじり装置において、
前記回転軸と前記トルク発生手段との間に、トーションバーを介在させたことを特徴とする磁歪式トルクセンサ用回転軸のねじり装置。
In a twisting device for a rotational shaft for a magnetostrictive torque sensor in which a rotational shaft on which a magnetostrictive film is formed is twisted with a predetermined torque by torque generating means
A torsion device for a rotating shaft for a magnetostrictive torque sensor, wherein a torsion bar is interposed between the rotating shaft and the torque generating means.
JP2006276902A 2006-10-10 2006-10-10 Magnetostrictive torque sensor rotating shaft manufacturing method and magnetostrictive torque sensor rotating shaft twisting device Expired - Fee Related JP4801559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006276902A JP4801559B2 (en) 2006-10-10 2006-10-10 Magnetostrictive torque sensor rotating shaft manufacturing method and magnetostrictive torque sensor rotating shaft twisting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006276902A JP4801559B2 (en) 2006-10-10 2006-10-10 Magnetostrictive torque sensor rotating shaft manufacturing method and magnetostrictive torque sensor rotating shaft twisting device

Publications (2)

Publication Number Publication Date
JP2008096220A true JP2008096220A (en) 2008-04-24
JP4801559B2 JP4801559B2 (en) 2011-10-26

Family

ID=39379219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006276902A Expired - Fee Related JP4801559B2 (en) 2006-10-10 2006-10-10 Magnetostrictive torque sensor rotating shaft manufacturing method and magnetostrictive torque sensor rotating shaft twisting device

Country Status (1)

Country Link
JP (1) JP4801559B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109299A (en) * 1977-03-04 1978-09-22 Hitachi Koki Kk Clamping tool with torque relieving mechanism
JPS63317734A (en) * 1987-06-22 1988-12-26 Kubota Ltd Magnetostriction type torque sensor
JPH04359127A (en) * 1991-06-04 1992-12-11 Yaskawa Electric Corp Preparation of magnetic film of magnetostrictive torque sensor
JPH0743227A (en) * 1993-08-02 1995-02-14 Toyota Motor Corp Method for calibrating torque sensor
JP2000155058A (en) * 1998-11-19 2000-06-06 Mitsubishi Heavy Ind Ltd Method and device for torque loading test
JP2003075315A (en) * 2001-09-05 2003-03-12 Tatsuo Sakai Fatigue tester and multiple fatigue tester system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53109299A (en) * 1977-03-04 1978-09-22 Hitachi Koki Kk Clamping tool with torque relieving mechanism
JPS63317734A (en) * 1987-06-22 1988-12-26 Kubota Ltd Magnetostriction type torque sensor
JPH04359127A (en) * 1991-06-04 1992-12-11 Yaskawa Electric Corp Preparation of magnetic film of magnetostrictive torque sensor
JPH0743227A (en) * 1993-08-02 1995-02-14 Toyota Motor Corp Method for calibrating torque sensor
JP2000155058A (en) * 1998-11-19 2000-06-06 Mitsubishi Heavy Ind Ltd Method and device for torque loading test
JP2003075315A (en) * 2001-09-05 2003-03-12 Tatsuo Sakai Fatigue tester and multiple fatigue tester system

Also Published As

Publication number Publication date
JP4801559B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4729934B2 (en) Vehicle steering system
JP3838101B2 (en) Electric power steering device
EP2915722A1 (en) Electric power steering device
WO2006051786A1 (en) Electric power steering device
CN104520167A (en) Device for controlling electrical power steering system and method for same
US10787197B2 (en) Steering control apparatus
CN103596832A (en) Electric power steering apparatus
CN101126667A (en) Magnetostrictive torque sensor and electric power steering apparatus
WO2009107751A1 (en) Magneto-strictive torque sensor, method for manufacturing the same, and electric power steering device
JP5174596B2 (en) Electric power steering device
CN107054450A (en) Electronic power steering apparatus and the method risen in its low temperature condition decline low torque
JP6001122B1 (en) Electric power steering device
JP2005082034A (en) Electric power steering system
JP4801559B2 (en) Magnetostrictive torque sensor rotating shaft manufacturing method and magnetostrictive torque sensor rotating shaft twisting device
JP6199426B2 (en) Steer-by-wire steering reaction force control device
JP4668870B2 (en) Manufacturing method of magnetostrictive torque sensor, and electric power steering apparatus equipped with magnetostrictive torque sensor
JP5022421B2 (en) Magnetostrictive torque sensor manufacturing method and electric power steering system
JP4752848B2 (en) Current detection device and current detection method
US20170313347A1 (en) Control apparatus for electric power steering
US10155535B2 (en) Control apparatus for electric power steering
JP2010048820A (en) Manufacturing method of magnetostrictive torque sensor
JP2009018808A (en) Electric power steering apparatus
JP5056176B2 (en) Motor control device and electric power steering device
JP2015113044A (en) Electric power steering device, calibration device and calibration method
JP6334973B2 (en) Induction quenching method and quenching apparatus for crankshaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees