JPH04356903A - Manufacture of direct current flow quenching magnet - Google Patents
Manufacture of direct current flow quenching magnetInfo
- Publication number
- JPH04356903A JPH04356903A JP3130934A JP13093491A JPH04356903A JP H04356903 A JPH04356903 A JP H04356903A JP 3130934 A JP3130934 A JP 3130934A JP 13093491 A JP13093491 A JP 13093491A JP H04356903 A JPH04356903 A JP H04356903A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- quenched
- magnet material
- billet
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 7
- 238000010791 quenching Methods 0.000 title abstract description 22
- 230000000171 quenching effect Effects 0.000 title abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 64
- 229910000640 Fe alloy Inorganic materials 0.000 claims abstract description 4
- 239000002178 crystalline material Substances 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- 238000007906 compression Methods 0.000 abstract description 26
- 230000006835 compression Effects 0.000 abstract description 18
- 238000000034 method Methods 0.000 abstract description 17
- 229910045601 alloy Inorganic materials 0.000 abstract description 11
- 239000000956 alloy Substances 0.000 abstract description 11
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 5
- 238000002441 X-ray diffraction Methods 0.000 abstract description 4
- 229910052723 transition metal Inorganic materials 0.000 abstract description 3
- 150000002910 rare earth metals Chemical class 0.000 abstract 2
- 230000007423 decrease Effects 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 9
- 238000002425 crystallisation Methods 0.000 description 8
- 230000008025 crystallization Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 208000028659 discharge Diseases 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 238000001272 pressureless sintering Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000007783 splat quenching Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0576—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はR2TM14B化合物(
但しRは希土類元素、TMはFeとCoのうち少なくと
も1種以上の元素)を主相とする準安定状態を特定した
急冷磁石材料またはそのビレットを定荷重負荷による圧
縮と直接通電とで熱間圧縮する直接通電急冷磁石の製造
方法に関する。[Industrial Application Field] The present invention relates to R2TM14B compound (
However, R is a rare earth element, TM is at least one element selected from Fe and Co), and the quenched magnet material or its billet, which has a specified metastable state, is compressed under a constant load and directly energized. The present invention relates to a method for manufacturing a compressed directly energized quenched magnet.
【0002】これにより得た直接通電急冷磁石は磁気回
路空隙に強力な静磁界を安定して発生させることができ
、各種モータやアクチュエータなどに利用することがで
きる。The directly energized quenched magnet thus obtained can stably generate a strong static magnetic field in the magnetic circuit gap, and can be used in various motors, actuators, and the like.
【0003】0003
【従来の技術】急冷磁石材料の製造方法は、例えばエガ
ミ(Egami)による発表論文「非晶質合金の低磁場
特性」(“Low−Field Magnetic
Property of AmorphousA
lloys”Journal of The A
merican Ceramic Society
,vol.60,No.3 p128,1977)に
連続スプラット急冷法として開示されている。[Prior Art] A method for manufacturing quenched magnetic materials is described, for example, in a paper published by Egami entitled "Low-Field Magnetic Properties of Amorphous Alloys".
Property of AmorphousA
lloys”Journal of The A
merican Ceramic Society
, vol. 60, No. 3 p. 128, 1977) as a continuous splat quenching method.
【0004】希土類元素Rと代表的遷移金属元素Feと
Bとを2:14:1に近い割合で含む合金浴湯をメルト
スピニングと称する連続スプラット急冷すると、R2T
M14B化合物を主相とする準安定状態で磁気的に等方
性の急冷磁石材料が得られる(特開昭59−64739
号公報,特開昭60−9852号公報)。急冷磁石材料
は急冷の程度に応じて準安定状態が異なり、アンダーク
エンチ(UNDER−QUENCH),オプチマムクエ
ンチ(OPTIMUM−QUENCH),オーバークエ
ンチ(OVER−QUENCH)の状態に区分され、オ
プチマムクエンチ状態で磁石特性の最高値を示す。オプ
チマムクエンチ状態は有用で、例えば合金組成Nd13
.5Fe81.7B4.8の希土類−鉄系合金をメルト
スピニングしたオプチマムクエンチ状態の急冷磁石材料
の磁石特性は、固有保磁力HCJ=14kOe,残留磁
化4πIr=8kG,エネルギー積(BH)max=1
4MGOeであると、ジェー.エフ.ハーベスト(J.
F.Herbest)らの発表論文「希土類−鉄−ホウ
素材料」(“Rareearth−Iron−Boro
n Materials”A newera i
n permanentmagnets,Ann.R
ev.Sci.vol.16 p475,1984)
に報告されている。[0004] When an alloy bath containing a rare earth element R and typical transition metal elements Fe and B in a ratio close to 2:14:1 is rapidly cooled by a continuous splat process called melt spinning, R2T
A quenched magnet material that is magnetically isotropic in a metastable state and has an M14B compound as its main phase can be obtained (Japanese Patent Laid-Open No. 59-64739).
(Japanese Patent Application Laid-Open No. 60-9852). Quenched magnet materials have different metastable states depending on the degree of quenching, and are classified into underquench (UNDER-QUENCH), optimal quench (OPTIMUM-QUENCH), and overquench (OVER-QUENCH) states. Indicates the highest value of the characteristic. Optimum quench conditions are useful, for example alloy composition Nd13
.. The magnetic properties of the quenched magnet material in the optimal quench state, which is obtained by melt-spinning a rare earth-iron alloy of 5Fe81.7B4.8, are as follows: intrinsic coercive force HCJ = 14 kOe, residual magnetization 4πIr = 8 kG, energy product (BH) max = 1
4MGOe, J. F. Harvest (J.
F. Herbest et al. published a paper entitled “Rare Earth-Iron-Boro Materials”
n Materials”A new era i
n permanent magnets, Ann. R
ev. Sci. vol. 16 p475, 1984)
has been reported.
【0005】上記オプチマムクエンチ状態の急冷磁石材
料の磁石特性は20〜100nmのR2TM14B化合
物が非質晶Fe相に分散された微細構造に基づくもので
ある。アンダークエンチ状態ではR2TM14B化合物
の晶出が不十分でHCJが低い。オプチマムクエンチ状
態からオーバークエンチ状態に至る領域ではR2TM1
4B化合物の粗大化によりHCJと4πIrが低下する
。なおR2TM14B化合物の晶出や粗大化は急冷の程
度のみならず急冷磁石材料を結晶化温度(580℃程度
)以上に加熱しても起こる。The magnetic properties of the optimally quenched quenched magnet material are based on a fine structure in which a 20-100 nm R2TM14B compound is dispersed in an amorphous Fe phase. In the under-quenched state, the R2TM14B compound is insufficiently crystallized and the HCJ is low. In the region from optimal quench state to overquench state, R2TM1
HCJ and 4πIr decrease due to coarsening of the 4B compound. Note that crystallization and coarsening of the R2TM14B compound occur not only by the degree of rapid cooling but also by heating the rapidly cooled magnet material to a temperature higher than the crystallization temperature (approximately 580° C.).
【0006】上記急冷磁石材料の材料形態は薄帯域は薄
片など粉末状に限定される。従って一般のバルク状磁石
とするためには材料形態の変換、すなわち薄帯域は薄片
を何等かの方法で固定化する技術が必要となる。粉末治
金における基本的な固定化技術は常圧焼結であるが、急
冷磁石材料は準安定状態に基づくHCJの低下を防ぐ必
要があるので常圧焼結の適用は困難である。[0006] The material form of the above-mentioned quenched magnet material is limited to a powder form such as a thin band. Therefore, in order to make a general bulk magnet, it is necessary to change the material form, that is, to fix the thin band or thin piece by some method. The basic immobilization technology in powder metallurgy is pressureless sintering, but it is difficult to apply pressureless sintering to quenched magnet materials because it is necessary to prevent a decrease in HCJ due to the metastable state.
【0007】一般のバルク状磁石への材料形態変換方法
として急冷磁石材料を樹脂で固定化する方法がある。樹
脂は急冷磁石材料をその結晶化温度以下で固定化できる
ためHCJは基本的に不変である。従ってこの場合はオ
プチマムクエンチ状態の急冷磁石材料を使用する。しか
し樹脂結合急冷磁石では概ね6g/cm3以上の高密度
化が困難で4πIrは≦6.2kGに制約される。急冷
磁石材料の4πIr≒8kGに対し樹脂結合急冷磁石の
4πIr≦6.2kGは各種モータやアクチュエータな
どの磁気回路空隙に強力な静磁界を発生させる障害にな
る。[0007] As a general method of converting the material form into a bulk magnet, there is a method of fixing quenched magnet material with resin. Since the resin can fix the quenched magnet material below its crystallization temperature, the HCJ is basically unchanged. Therefore, in this case, quenched magnet material in an optimally quenched state is used. However, with resin bonded rapidly cooled magnets, it is difficult to increase the density to 6 g/cm3 or more, and 4πIr is limited to ≦6.2 kG. Compared to 4πIr≈8kG of the quenched magnet material, 4πIr≦6.2kG of the resin-bonded quenched magnet becomes an obstacle that generates a strong static magnetic field in the magnetic circuit gap of various motors and actuators.
【0008】一方急冷磁石材料を誘導加熱し結晶化温度
以上で熱間圧縮すると急冷磁石材料を直接固定化するこ
とができる。この固定化技術によればアンダークエンチ
状態の急冷磁石材料を使用することでHCJの水準をあ
る程度維持しながら真密度に近い状態まで高密度化する
ことができ、4πIr≦8.4kGの熱間圧縮急冷磁石
となる。On the other hand, if the quenched magnet material is induction heated and hot compressed at a temperature higher than the crystallization temperature, the quenched magnet material can be directly fixed. According to this fixation technology, by using quenched magnetic material in an underquenched state, it is possible to increase the density to a state close to true density while maintaining the HCJ level to some extent, and hot compression of 4πIr≦8.4kG. It becomes a quenching magnet.
【0009】上記熱間圧縮急冷磁石を更に誘導加熱して
結晶化温度以上で熱間圧縮すると塑性変形の程度に応じ
てR2TM14B化合物が特定方向へ回転して磁気異方
性を誘発し4πIrが向上すると、アール.ダブリュー
.リー(R.W.Lee)らの発表論文「ホットプレス
されたネオジウム−鉄−ホウ素磁石」(“Hot−pr
essed neodymium−iron−bor
on magnets”Applied Phys
ics Letters vol.46No.8,
p790,1985)に報告されている。この誘導加熱
による熱間圧縮急冷磁石は塑性変形の程度に応じて4π
Ir=8〜13kGとなるので各種モータやアクチュエ
ータなどの磁気回路空隙に強力な静磁界を発生させるこ
とが可能である。When the hot-compression quenched magnet is further induction-heated and hot-compressed above the crystallization temperature, the R2TM14B compound rotates in a specific direction depending on the degree of plastic deformation, inducing magnetic anisotropy and improving 4πIr. Then, Earl. Double. A paper published by R.W. Lee et al. “Hot-pressed neodymium-iron-boron magnet” (“Hot-pr
essed neodymium-iron-bor
on magnets”Applied Phys
ics Letters vol. 46 No. 8,
p790, 1985). This hot compression quenched magnet by induction heating is 4π depending on the degree of plastic deformation.
Since Ir=8 to 13 kG, it is possible to generate a strong static magnetic field in the magnetic circuit gap of various motors, actuators, etc.
【0010】0010
【発明が解決しようとする課題】しかし急冷磁石材料を
結晶化温度以上で熱間圧縮、とくに2段階熱間圧縮する
とR2TM14B化合物の粗大化によってHCJが低下
する傾向が強い。HCJの低下を抑制する方法としては
急冷磁石材料へのGa添加など合金組成に関する方法や
急冷磁石材料を迅速に熱間圧縮する方法がある。迅速な
熱間圧縮プロセスとして本発明者は定荷重負荷による圧
縮/直接通電方式を提案している(例えば特願平2−1
41073号)。しかし急冷磁石材料のアンダークエン
チ状態からオプチマムクエンチ状態に至る領域は連続的
なものである。このことは急冷磁石材料にGaなど添加
元素を加えた熱間圧縮急冷磁石であっても、または熱間
圧縮のプロセス制御を迅速に実施した直接通電急冷磁石
であっても急冷磁石材料のアンダークエンチ状態の程度
によってHCJが変動することを意味している。HCJ
はHCJの温度係数とともに磁石の非可逆減磁に代表さ
れる熱安定性に重大な影響を与えるものであるから磁石
のHCJ値をオプチマムクエンチ状態に近い水準で安定
化させることが各種モータやアクチュエータなどの磁気
回路空隙に強力な静磁界を安定して発生させるために必
要である。However, when a rapidly cooled magnet material is hot-compressed at a temperature higher than its crystallization temperature, particularly when it is subjected to two-step hot compression, the HCJ tends to decrease due to coarsening of the R2TM14B compound. Methods for suppressing the decrease in HCJ include methods related to alloy composition, such as adding Ga to the quenched magnet material, and methods of rapidly hot-compressing the quenched magnet material. As a rapid hot compression process, the present inventor has proposed a compression/direct energization method using a constant load (for example, Japanese Patent Application No. 2002-1
No. 41073). However, the region from the underquench state to the optimal quench state of the rapidly cooled magnet material is continuous. This means that even if it is a hot-compression quenched magnet in which additive elements such as Ga are added to the quenched magnet material, or a directly energized quenched magnet in which hot compression process control is quickly performed, the underquenching of the quenched magnet material will result. This means that HCJ varies depending on the degree of the condition. H.C.J.
This, together with the temperature coefficient of HCJ, has a significant effect on the thermal stability represented by irreversible demagnetization of the magnet. Therefore, it is important to stabilize the HCJ value of the magnet at a level close to the optimal quench state for various motors and actuators. This is necessary to stably generate a strong static magnetic field in the magnetic circuit air gap.
【0011】本発明は特定のアンダークエンチ状態急冷
磁石材料と迅速な熱間圧縮プロセスが可能な定荷重負荷
による圧縮/直接通電方式とを組み合わせることにより
直接通電急冷磁石のHCJ値をオプチマムクエンチ状態
に近い水準で安定化させようとするものである。The present invention brings the HCJ value of a directly energized quenched magnet to an optimal quench state by combining a specific underquenched quenched magnet material with a constant load compression/direct energization method that enables a rapid hot compression process. The aim is to stabilize it at a similar level.
【0012】0012
【課題を解決するための手段】本発明はX線回折図形に
おける1/〔1+(Ia/Ic)〕値(Iaは非晶質の
回折ピーク面積強度、Icは結晶質の回折ピーク面積強
度をそれぞれ表わす)を0.60未満に特定した希土類
−鉄系合金の急冷磁石材料またはそのビレットを定荷重
負荷による圧縮と直接通電とで迅速に熱間圧縮すること
によりHCJ値をオプチマムクエンチ状態に近い水準に
揃えた直接通電急冷磁石を製造する方法である。なおビ
レットではキャビティの圧力軸方向の投影面積Sとビレ
ットの圧力軸方向の投影面積Soとの比(S/So)≦
2.6とする。[Means for Solving the Problems] The present invention provides a 1/[1+(Ia/Ic)] value (Ia is the amorphous diffraction peak area intensity, Ic is the crystalline diffraction peak area intensity) in an X-ray diffraction pattern. The HCJ value is brought close to the optimal quench state by quickly hot-compressing the rare earth-iron alloy quenched magnet material or its billet, which is specified to have a value (represented by each expression) of less than 0.60, by constant load compression and direct energization. This is a method of manufacturing directly energized quenched magnets that meet the standards. For billets, the ratio of the projected area S of the cavity in the pressure axis direction to the projected area So of the billet in the pressure axis direction (S/So)≦
2.6.
【0013】[0013]
【作用】以下、本発明を更に詳しく説明する。[Operation] The present invention will be explained in more detail below.
【0014】先ず急冷磁石材料の1/〔1+(Ia/I
c)〕値について説明する。ここで式1/〔1+(Ia
/Ic)〕はアンダークエンチ状態の急冷磁石材料のX
線回折図形において、ピー.エッチ.ハーマンズ(P.
H.Hermans)の結晶化度の算出方法(P.H.
Hermans et al;macromol.
chem.vol.50,No.98,1961)に基
づくものである。本発明では1/〔1+(Ia/Ic)
〕値を0.60未満に特定する。First, 1/[1+(Ia/I
c)] Explain the values. Here, the formula 1/[1+(Ia
/Ic)] is the quenched magnet material in the underquenched state.
In the line diffraction pattern, P. Naughty. Hermans (P.
H. Hermans) crystallinity calculation method (P.H.
Hermans et al; macromol.
chem. vol. 50, No. 98, 1961). In the present invention, 1/[1+(Ia/Ic)
] Specify the value to be less than 0.60.
【0015】本発明で言う急冷磁石材料とは希土類元素
R13〜14原子%を基準として代表的遷移金属元素F
eとCoのうち少なくとも1種以上の元素とBとを2:
14:1に近い割合で含む合金溶湯をメルトスピニング
と称する連続スプラット急冷したもので厚さ30μm程
度の不定形の薄帯または薄片である。なお合金の添加元
素として結晶粒成長を抑制したりHCJを高める元素Z
n,Al,Si,Nb,Ta,Ti,Zr,Hf,Wな
ど残留磁化が低下しない範囲で使用して差し支えない。
ただし連続スプラット急冷の段階で1/〔1+(Ia/
Ic)〕値が0.60未満であることが必要である。The quenched magnet material referred to in the present invention is a typical transition metal element F with a rare earth element R13 to 14 atomic % as a standard.
At least one element among e and Co and B are 2:
A molten alloy containing a ratio close to 14:1 is rapidly cooled by a continuous splat process called melt spinning, and it is an irregularly shaped ribbon or flake with a thickness of about 30 μm. In addition, as an additive element to the alloy, element Z suppresses grain growth and increases HCJ.
n, Al, Si, Nb, Ta, Ti, Zr, Hf, W, etc. may be used as long as the residual magnetization does not decrease. However, at the stage of continuous splat rapid cooling, 1/[1+(Ia/
Ic)] value is required to be less than 0.60.
【0016】また本発明で言うビレットとは、1/〔1
+(Ia/Ic)〕値が0.60未満の急冷磁石材料を
定荷重負荷による圧縮と直接通電とで熱間圧縮してあら
かじめビレット化したもので密度が真密度の80〜95
%程度が好ましい。[0016] The billet referred to in the present invention is 1/[1
+(Ia/Ic)] A rapidly cooled magnet material with a value of less than 0.60 is hot-compressed by applying a constant load and directly energized to form a billet, and the density is 80 to 95 of the true density.
% is preferable.
【0017】次に上記急冷磁石材料またはそのビレット
を定荷重負荷による圧縮と直接通電により直接通電急冷
磁石とする熱間圧縮プロセスの構成と動作を説明する。Next, the structure and operation of a hot compression process in which the quenched magnet material or its billet is compressed under a constant load and directly energized to form a quenched magnet will be described.
【0018】図1は定荷重負荷による圧縮と直接通電と
で急冷磁石材料またはそのビレットを熱間圧縮する要部
断面図である。図において1はダイ、2aおよび2bは
ダイ1に対応した一対の電極であり、ダイ1とキャビテ
ィを形成する。3aおよび3bは電極2aおよび2bの
反キャビティ面に配置した一対の熱補償体である。4は
所定の急冷磁石となる急冷磁石材料またはそのビレット
である。5aおよび5bは定荷重負荷の加圧系、6aは
放電処理電源、6bは直流定電流電源である。なおこれ
らの電源6aおよび6bは加圧系5aおよび5bの圧力
軸ロッドと電気的に接続されている。FIG. 1 is a sectional view of a main part in which a quenched magnetic material or a billet thereof is hot-compressed by compression under a constant load and direct energization. In the figure, 1 is a die, 2a and 2b are a pair of electrodes corresponding to the die 1, and form a cavity with the die 1. 3a and 3b are a pair of thermal compensators placed on the anti-cavity surfaces of the electrodes 2a and 2b. 4 is a quenched magnet material or a billet thereof that becomes a predetermined quenched magnet. 5a and 5b are constant load pressurization systems, 6a is a discharge processing power source, and 6b is a DC constant current power source. Note that these power sources 6a and 6b are electrically connected to the pressure shaft rods of the pressurizing systems 5a and 5b.
【0019】急冷磁石材料を直接通電急冷磁石とする熱
間圧縮プロセスは先ず一対の熱補償体3aおよび3bの
端面より電極2aおよび2bを介して急冷磁石材料4に
200〜500kgf/cm2の定荷重負荷による圧縮
を加える。圧縮により急冷磁石材料4のポテンシャルエ
ネルギーは低下する。続いて急冷磁石材料4に対して放
電を行う。放電による電子,イオン,励起種などの活性
化学種がある程度の運動エネルギーをもって急冷磁石材
料4の表面に衝突することにより急冷磁石材料表面に付
着している汚染物質や低分子化合物と反応するエッチン
グ効果でポテンシャルエネルギーは更に低下する。In the hot compression process in which the quenched magnet material is directly energized and made into a quenched magnet, first a constant load of 200 to 500 kgf/cm2 is applied to the quenched magnet material 4 from the end faces of a pair of thermal compensators 3a and 3b via electrodes 2a and 2b. Add compression due to load. The compression reduces the potential energy of the quenched magnet material 4. Subsequently, the quenched magnet material 4 is subjected to electric discharge. An etching effect in which active chemical species such as electrons, ions, and excited species due to discharge collide with the surface of the quenched magnet material 4 with a certain amount of kinetic energy, thereby reacting with contaminants and low-molecular compounds attached to the surface of the quenched magnet material. The potential energy decreases further.
【0020】上記のような放電処理ののち急冷磁石材料
4への定荷重負荷による圧縮圧力を保持したまま一対の
熱補償体3aおよび3bと電極2aおよび2bを介して
急冷磁石材料4へ直接通電する。各部の電流密度ΔIの
二乗およびρ/sc(ρは比抵抗,sは比重,cは比熱
,s×cは体積比熱)の両者に比例したジュール熱の発
生で昇温が始まる。After the above-described discharge treatment, current is applied directly to the quenched magnet material 4 via the pair of thermal compensators 3a and 3b and the electrodes 2a and 2b while maintaining the compression pressure due to the constant load applied to the quenched magnet material 4. do. The temperature begins to rise with the generation of Joule heat proportional to both the square of the current density ΔI at each part and ρ/sc (ρ is specific resistance, s is specific gravity, c is specific heat, and s×c is volumetric specific heat).
【0021】急冷磁石材料4の初期状態のρ/scは1
0−4程度である。そこでキャビティを構成する電極2
aおよび2bのρ/scを10−4程度、またはそれよ
りやや低い10−5水準とする。そして電極2aおよび
2bの反キャビティ面に接する一対の熱補償体3aおよ
び3bのρ/scを10−3水準とする。これにより急
冷磁石材料4の昇温を熱補償体4aおよび4bからの伝
熱で補正することができる。昇温が補正されたキャビテ
ィ中の急冷磁石材料4は定荷重負荷による圧縮圧力下で
急冷磁石材料4の結晶化温度以上に加熱されると、10
−1〜10−2mm/secまたはそれ以上の歪み速度
で塑性変形し緻密化する。歪み速度は急冷磁石材料4の
昇温に伴う粘性低下で加速されるが緻密化の進展によっ
てピークを示し次第に小さな値に推移する。歪み速度1
0−3〜0mm/sec程度になった時点で電流を遮断
すれば急冷磁石材料4はHCJ値がオプチマムクエンチ
状態に近い水準でほぼ真密度まで高密度化した直接通電
急冷磁石となる。なおHCJ値をオプチマムクエンチ状
態に近い水準とするには昇温ピークを結晶化温度〜75
0℃以下とすることや昇温を10−1〜10−3Tor
rの真空雰囲気中で行うことが望ましい。[0021] ρ/sc in the initial state of the rapidly solidified magnet material 4 is 1
It is about 0-4. There, the electrode 2 that forms the cavity
The ρ/sc of a and 2b is set to about 10 −4 or a slightly lower level of 10 −5. The ρ/sc of the pair of thermal compensators 3a and 3b which are in contact with the anti-cavity surfaces of the electrodes 2a and 2b is set at the 10-3 level. Thereby, the temperature rise of the rapidly cooled magnet material 4 can be corrected by heat transfer from the thermal compensators 4a and 4b. When the quenched magnet material 4 in the cavity whose temperature rise has been corrected is heated to a temperature higher than the crystallization temperature of the quenched magnet material 4 under compression pressure by constant load loading, the temperature rise is 10
- Plastically deformed and densified at a strain rate of -1 to 10-2 mm/sec or more. The strain rate is accelerated by a decrease in viscosity as the temperature of the rapidly cooled magnet material 4 increases, but as densification progresses, the strain rate shows a peak and gradually decreases to a smaller value. Strain rate 1
If the current is cut off when the current reaches about 0-3 to 0 mm/sec, the quenched magnet material 4 becomes a directly energized quenched magnet whose HCJ value is close to the optimal quench state and is highly densified to almost true density. In addition, in order to bring the HCJ value to a level close to the optimal quench state, the heating peak should be set at the crystallization temperature ~75
Keep the temperature below 0℃ and increase the temperature to 10-1 to 10-3 Torr.
It is desirable to perform this in a vacuum atmosphere of r.
【0022】以上、定荷重負荷による圧縮と直接通電と
で急冷磁石材料を熱間圧縮する方式について説明したが
、急冷磁石材料のビレットを定荷重負荷による圧縮と直
接通電とで熱間圧縮し磁気異方性を誘発することもでき
る。この標準操作は定荷重負荷による圧縮圧力Pと通電
電流Iの双方を熱間圧縮時にステップアップする。具体
的には一次圧力P1((0.2〜1.0)×P2)下で
15秒程度放電し電極とビレット間に均質な導電性を確
保したのち一次電流I1((0.2〜1.0)×I2)
を付加する。約20秒後にはビレットの塑性変形が開始
され約40秒後にはP1下でのビレット塑性変形ピーク
が観測される。ピークが過ぎた時点で二次圧力P2(キ
ャビティの圧力軸方向の投影面積当たり250〜300
kgf/cm2)に切り替え、最後は二次電流I2(キ
ャビティの圧力軸方向の投影面積当たり250〜350
A/cm2)を10〜20秒程度として最終形状とする
。全通電時間は約80秒である。なおキャビティの圧力
軸方向の投影面積Sとビレットの圧力軸方向の投影面積
Soとの比(S/So)≦2.6とする必要がある。The method of hot-compressing the quenched magnet material by compression under a constant load and direct energization has been described above.A billet of the quenched magnet material is hot-compressed by compression under a constant load and direct energization to create a magnetic It is also possible to induce anisotropy. In this standard operation, both the compression pressure P due to constant load application and the current I are stepped up during hot compression. Specifically, after discharging for about 15 seconds under the primary pressure P1 ((0.2 to 1.0) .0)×I2)
Add. Plastic deformation of the billet starts after about 20 seconds, and the billet plastic deformation peak under P1 is observed after about 40 seconds. When the peak has passed, the secondary pressure P2 (250 to 300 per projected area in the pressure axis direction of the cavity)
kgf/cm2), and finally the secondary current I2 (250 to 350 per projected area in the pressure axis direction of the cavity).
A/cm2) for about 10 to 20 seconds to form the final shape. The total energization time is about 80 seconds. Note that the ratio (S/So) of the projected area S of the cavity in the pressure axis direction and the projected area So of the billet in the pressure axis direction must be 2.6.
【0023】[0023]
【実施例】以下、本発明を一実施例により更に詳しく説
明する。ただし以下に示す磁気特性値は50kOeパル
ス着磁の自記磁束計(RFM)または振動型磁力計(V
SM)による測定値である。EXAMPLE Hereinafter, the present invention will be explained in more detail by way of an example. However, the magnetic property values shown below are based on a 50 kOe pulse magnetized self-recording flux meter (RFM) or a vibrating magnetometer (V
SM).
【0024】合金組成Nbx(Fe0.80Co0.2
0)94−xB6、オプチマムクエンチ状態の急冷磁石
材料を図1の構成の圧力と直接通電で密度が真密度の8
0〜95%,外径16mm,重さ16.9gのビレット
とした(圧力250kg/cm2,電流密度280A/
cm2,雰囲気10−1〜10−2Torr)。このビ
レットを圧縮と直接通電による熱間圧縮プロセスで外径
24mm,高さ5mmの直接通電急冷磁石(S/So=
2.25)とした(P1=0.4×P2,P2=280
kg/cm2,I1=0.5×I2,I2=260A/
cm2)。Alloy composition Nbx (Fe0.80Co0.2
0) 94-xB6, the density of the quenched magnet material in the optimal quench state reaches the true density of 8 by applying pressure and direct current in the configuration shown in Figure 1.
0 to 95%, outer diameter 16 mm, weight 16.9 g (pressure 250 kg/cm2, current density 280 A/
cm2, atmosphere 10-1 to 10-2 Torr). This billet was compressed and hot-compressed by direct energization into a directly energized quenching magnet (S/So=
2.25) (P1=0.4×P2, P2=280
kg/cm2, I1=0.5×I2, I2=260A/
cm2).
【0025】図2は上記磁石のNd量に対する磁気特性
を示した特性図である。図2に示すようにNd量13〜
14原子%の範囲がHCJ,4πIrとも高い値を示す
。
またHCJ値は材料状態とともにNd量などの合金組成
によっても大きく影響される。このことは急冷磁石材料
のHCJ値では材料状態を特定することが困難であるこ
とを示唆している。FIG. 2 is a characteristic diagram showing the magnetic characteristics of the above-mentioned magnet with respect to the amount of Nd. As shown in Figure 2, the amount of Nd is 13~
The range of 14 atomic % shows high values for both HCJ and 4πIr. Furthermore, the HCJ value is greatly influenced by the alloy composition, such as the amount of Nd, as well as the material condition. This suggests that it is difficult to specify the material state based on the HCJ value of the quenched magnet material.
【0026】図3(a)〜(f)は合金組成Nd13.
6Pr0.15Fe77.5Co3.0B5.8のアン
ダークエンチ状態が異なる急冷磁石材料6種のX線回折
図形を示す特性図である。X線源はCu−Kα,40k
V−30mA,走査速度0.5°/min,走査範囲(
2θ=20〜60°)である。図3(a)はピー.エッ
チ.ハーマンズ(P.H.Hermans)の方法で1
/〔1+(Ia/Ic)〕値を求めたもので、Ia=0
.393(kcps×deg),Ic=0.330(k
cps×deg),1/〔1+(Ia/Ic)〕=0.
45である。(b)〜(f)の1/〔1+(Ia/Ic
)〕値も図中に示す。FIGS. 3(a) to 3(f) show alloy composition Nd13.
FIG. 6 is a characteristic diagram showing the X-ray diffraction patterns of six types of quenched magnet materials with different underquench states of 6Pr0.15Fe77.5Co3.0B5.8. X-ray source is Cu-Kα, 40k
V-30mA, scanning speed 0.5°/min, scanning range (
2θ=20 to 60°). Figure 3(a) shows P. Naughty. 1 by the method of P.H. Hermans
/[1+(Ia/Ic)] value is calculated, Ia=0
.. 393(kcps×deg), Ic=0.330(k
cps×deg), 1/[1+(Ia/Ic)]=0.
It is 45. (b) to (f) 1/[1+(Ia/Ic
)] values are also shown in the figure.
【0027】上記合金組成Nd13.6Pr0.15F
e77.5Co3.0B5.8の1/〔1+(Ia/I
c)〕値が異なる急冷磁石材料6種を図1に示した構成
の定荷重負荷による圧縮と直接通電で外径16mm,重
さ16.9gの直接通電急冷磁石(S/So=1磁石)
とした(圧力250kg/cm2,電流密度280A/
cm2,雰囲気10−1〜10−2Torr)。[0027] The above alloy composition Nd13.6Pr0.15F
e77.5Co3.0B5.8 1/[1+(Ia/I
c)] Six types of quenched magnet materials with different values were compressed under a constant load and directly energized in the configuration shown in Figure 1 to create a directly energized quenched magnet (S/So = 1 magnet) with an outer diameter of 16 mm and a weight of 16.9 g.
(pressure 250 kg/cm2, current density 280 A/
cm2, atmosphere 10-1 to 10-2 Torr).
【0028】図4は1/〔1+(Ia/Ic)〕値に対
する急冷磁石材料とS/So=1の直接通電急冷磁石の
HCJの関係を示す特性図である。図4に示すように1
/〔1+(Ia/Ic)〕値0.60付近で材料も、そ
の磁石のHCJも大きく変化している。1/〔1+(I
a/Ic)〕値0.60以上で磁石のHCJの低下が見
られオプチマムクエンチ状態からオーバークエンチ状態
に移行し始めている。しかし1/〔1+(Ia/Ic)
〕値0.60未満では、1/〔1+(Ia/Ic)〕値
に比例した磁石のHCJの増加が見られアンダークエン
チ状態ではあるが、オプチマムクエンチ状態に極めて近
い水準と言える。上記直接通電急冷磁石の4πIrは急
冷磁石材料そのものと同等の8.2〜8.3kGである
。従って樹脂結合急冷磁石に比較して磁気回路空隙の静
磁界は30%以上向上することを示唆している。FIG. 4 is a characteristic diagram showing the relationship between the HCJ of the quenched magnet material and the directly energized quenched magnet with S/So=1 for the 1/[1+(Ia/Ic)] value. 1 as shown in Figure 4
/[1+(Ia/Ic)] When the value is around 0.60, both the material and the HCJ of the magnet change significantly. 1/[1+(I
a/Ic)] value of 0.60 or more, a decrease in the HCJ of the magnet is observed, and the state begins to shift from the optimal quench state to the overquench state. However, 1/[1+(Ia/Ic)
] When the value is less than 0.60, the HCJ of the magnet increases in proportion to the 1/[1+(Ia/Ic)] value, and although it is an underquench state, it can be said to be at a level extremely close to an optimal quench state. The 4πIr of the directly energized quenched magnet is 8.2 to 8.3 kG, which is equivalent to the quenched magnet material itself. Therefore, it is suggested that the static magnetic field of the magnetic circuit air gap is improved by 30% or more compared to a resin-bonded quenched magnet.
【0029】次に1/〔1+(Ia/Ic)〕値0.5
9および0.65の急冷磁石材料をそれぞれ密度が真密
度の80〜95%で外径の異なる円柱ビレットとし、こ
れを外径24mm,高さ5mmの磁石とした(P1=0
.4×P2,P2=280kg/cm2,I1=0.5
×I2,I2=260A/cm2)。Next, 1/[1+(Ia/Ic)] value 0.5
9 and 0.65 were made into cylindrical billets with densities of 80 to 95% of the true density and different outer diameters, and these were made into magnets with an outer diameter of 24 mm and a height of 5 mm (P1 = 0
.. 4×P2, P2=280kg/cm2, I1=0.5
×I2, I2=260A/cm2).
【0030】図5はS/Soに対する磁気特性を示す特
性図である。図5に示すようにS/So≒2で4πIr
は11kGを超え(BH)maxも概ね30MGOeに
達するが、HCJは1/〔1+(Ia/Ic)〕値0.
59と0.65とで低下の様子が異なる。1/〔1+(
Ia/Ic)〕値0.59すなわち0.60未満であれ
ばHCJの大きな低下は見られず、S/Soが2.40
程度で(BH)maxの最高値が得られる。FIG. 5 is a characteristic diagram showing the magnetic characteristics for S/So. As shown in Figure 5, S/So≒2 and 4πIr
exceeds 11 kG and (BH) max reaches approximately 30 MGOe, but HCJ has a 1/[1+(Ia/Ic)] value of 0.
The manner of decline is different between 59 and 0.65. 1/[1+(
Ia/Ic)] value of 0.59, that is, less than 0.60, no significant decrease in HCJ was observed, and S/So was 2.40.
The maximum value of (BH)max can be obtained at a maximum value of (BH)max.
【0031】なおS/Soが2.60を超えると1/〔
1+(Ia/Ic)〕値が0.60未満であってもHC
Jの低下が始まるのでS/So≦2.6とすることが好
ましい。[0031] Note that if S/So exceeds 2.60, 1/[
1+(Ia/Ic)] Even if the value is less than 0.60, HC
Since J starts to decrease, it is preferable that S/So≦2.6.
【0032】[0032]
【発明の効果】本発明は特定のアンダークエンチ状態急
冷磁石材料と迅速な熱間圧縮プロセスが可能な定荷重負
荷による圧縮/直接通電方式とを組み合わせることによ
り直接通電急冷磁石のHCJ値をオプチマムクエンチ状
態に近い水準で安定化させたもので各種モータやアクチ
ュエータなどの磁気回路空隙に強力な静磁界を安定して
発生させる効果がある。Effects of the Invention The present invention optimizes the HCJ value of a directly energized quenched magnet by combining a specific underquenched quenched magnet material with a constant load compression/direct energization method that enables a rapid hot compression process. It is stabilized at a level close to the current state, and has the effect of stably generating a strong static magnetic field in the magnetic circuit gap of various motors and actuators.
【図1】圧縮と直接通電のプロセスを示す要部断面図[Figure 1] Cross-sectional view of main parts showing the process of compression and direct energization
【
図2】磁石のNd量と磁気特性との関係を示す特性図[
Figure 2: Characteristic diagram showing the relationship between the amount of Nd in a magnet and its magnetic properties
【
図3】急冷磁石材料6種のX線回折図形を示す特性図[
Figure 3: Characteristic diagram showing the X-ray diffraction patterns of six types of quenched magnet materials
【
図4】1/〔1+(Ia/Ic)〕値に対する材料と磁
石のHCJの変化を示す特性図[
Figure 4: Characteristic diagram showing changes in HCJ of materials and magnets with respect to 1/[1+(Ia/Ic)] value
【図5】S/Soに対する磁気特性の変化を示す特性図
[Figure 5] Characteristic diagram showing changes in magnetic properties with respect to S/So
1 ダイ 2a,2b 一対の電極 3a,3b 一対の熱補償体 4 急冷磁石材料またはビレット 5a,5b 加圧系 6a 放電処理電源 6b 直流定電流電源 1 Die 2a, 2b A pair of electrodes 3a, 3b A pair of thermal compensators 4 Quenched magnet material or billet 5a, 5b Pressure system 6a Discharge processing power supply 6b DC constant current power supply
Claims (2)
Ic)〕値(Iaは非晶質の回折ピーク面積強度、Ic
は結晶質の回折ピーク面積強度をそれぞれ表わす)が0
.60未満である希土類−鉄系合金の急冷磁石材料また
はそのビレットを定荷重負荷による圧縮と直接通電とで
熱間圧縮する直接通電急冷磁石の製造方法。Claim 1: 1/[1+(Ia/
Ic)] value (Ia is the amorphous diffraction peak area intensity, Ic
(represents the diffraction peak area intensity of crystalline material) is 0.
.. A method for producing a directly energized quenched magnet, in which a quenched magnet material of a rare earth-iron alloy having a particle diameter of less than 60% or a billet thereof is hot-compressed by constant load application and direct energization.
レットの圧力軸方向の投影面積Soとの比(S/So)
が1.0〜2.6である請求項1記載の直接通電急冷磁
石の製造方法。[Claim 2] Ratio between the projected area S of the cavity in the pressure axis direction and the projected area So of the billet in the pressure axis direction (S/So)
2. The method for producing a directly energized quenched magnet according to claim 1, wherein: 1.0 to 2.6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3130934A JPH04356903A (en) | 1991-06-03 | 1991-06-03 | Manufacture of direct current flow quenching magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3130934A JPH04356903A (en) | 1991-06-03 | 1991-06-03 | Manufacture of direct current flow quenching magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04356903A true JPH04356903A (en) | 1992-12-10 |
Family
ID=15046124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3130934A Pending JPH04356903A (en) | 1991-06-03 | 1991-06-03 | Manufacture of direct current flow quenching magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04356903A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003007521A (en) * | 2000-11-13 | 2003-01-10 | Sumitomo Metal Mining Co Ltd | High weather-resistant magnet powder and magnet using the same |
-
1991
- 1991-06-03 JP JP3130934A patent/JPH04356903A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003007521A (en) * | 2000-11-13 | 2003-01-10 | Sumitomo Metal Mining Co Ltd | High weather-resistant magnet powder and magnet using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5449417A (en) | R-Fe-B magnet alloy, isotropic bonded magnet and method of producing same | |
JP4596645B2 (en) | High performance iron-rare earth-boron-refractory-cobalt nanocomposites | |
JP2007517414A (en) | Nano composite permanent magnet | |
JP4376453B2 (en) | Iron-rare earth-boron / refractory metal magnetic composite | |
JP2727506B2 (en) | Permanent magnet and manufacturing method thereof | |
JP2727505B2 (en) | Permanent magnet and manufacturing method thereof | |
Ono et al. | Isotropic bulk exchange-spring magnets with 34 kJ/m/sup 3/prepared by spark plasma sintering method | |
JP2000096102A (en) | Heat resistant rare earth alloy anisotropy magnet powder | |
US5178691A (en) | Process for producing a rare earth element-iron anisotropic magnet | |
JPH0669009A (en) | Manufacture of rare earth-iron based magnet | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
Tang et al. | New alnico magnets fabricated from pre-alloyed gas-atomized powder through diverse consolidation techniques | |
US5201963A (en) | Rare earth magnets and method of producing same | |
JP3003979B2 (en) | Permanent magnet and method for manufacturing the same | |
US4715891A (en) | Method of preparing a magnetic material | |
JPH04356903A (en) | Manufacture of direct current flow quenching magnet | |
JP3645312B2 (en) | Magnetic materials and manufacturing methods | |
JP2003257764A (en) | Manufacturing method for rare earth permanent magnet | |
JP3178848B2 (en) | Manufacturing method of permanent magnet | |
JP2579787B2 (en) | Manufacturing method of permanent magnet | |
JP2530185B2 (en) | Manufacturing method of permanent magnet | |
JPH04143221A (en) | Production of permanent magnet | |
JP2000232012A (en) | Manufacture of rare-earth magnet | |
JPH04329602A (en) | Manufacture of composite magnet | |
JP4484024B2 (en) | Rare earth sintered magnet and manufacturing method thereof |