JPH0434981A - Semiconductor nonvolatile memory - Google Patents

Semiconductor nonvolatile memory

Info

Publication number
JPH0434981A
JPH0434981A JP2143023A JP14302390A JPH0434981A JP H0434981 A JPH0434981 A JP H0434981A JP 2143023 A JP2143023 A JP 2143023A JP 14302390 A JP14302390 A JP 14302390A JP H0434981 A JPH0434981 A JP H0434981A
Authority
JP
Japan
Prior art keywords
gate electrode
region
memory
conductance
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2143023A
Other languages
Japanese (ja)
Other versions
JP2714874B2 (en
Inventor
Yoshikazu Kojima
芳和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2143023A priority Critical patent/JP2714874B2/en
Publication of JPH0434981A publication Critical patent/JPH0434981A/en
Application granted granted Critical
Publication of JP2714874B2 publication Critical patent/JP2714874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To make small the size of a memory and to make it possible to conduct a high-speed information readout by a method wherein a selector gate electrode and a floating gate electrode are arranged in parallel between source and drain regions and an increase in the density of the memory and the speedup of the memory are attained. CONSTITUTION:In case a memory is a non-selective one, the conductance of a channel formation region 3 of the non-selective memory can be always set into a small conductance by grounding the potentials of a selector gate electrode 10 and a control gate electrode 8. Accordingly, even if a voltage is applied to a drain region 4, an unnecessary charge is not injected in the region 3 because the inductance of the region 3 of the non-selective memory is set small. As this result, a high-speed information readout can be conducted. The reason why the conductance of the region 3 is small in a non-selective state regardless of the potential of a floating gate electrode 6 is because the conductance of the region 3 is controlled by the electrode 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ICカートなどに用いられている半導体不
揮発性メモリに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor nonvolatile memory used in IC carts and the like.

〔発明の概要〕[Summary of the invention]

この発明は、選択ゲート電極を有するMIS(Meta
14nslator−5emiconductor)型
半導体不揮発性メモリにおいて、チャネル形成領域の上
に電荷蓄積層を設け、チャネル形成領域の下に選択ゲー
ト電極を設けることにより高速動作及び高集積密度を得
られるようにしたものである。
This invention relates to MIS (Meta) having a selection gate electrode.
In a semiconductor nonvolatile memory of the 14nslator-5emiconductor type, a charge storage layer is provided above the channel formation region and a selection gate electrode is provided below the channel formation region, thereby achieving high speed operation and high integration density. be.

〔従来の技術〕[Conventional technology]

従来、第2図に示すようにP型シリコン基板11表面に
N0型のソース領域12とN゛型のドレイン領域14を
設け、ソース領域12とドレイン領域14との間に選択
ゲート絶縁膜19を介して選択ゲート電極20と、ゲー
ト絶縁膜15を介して浮遊ゲート電極16を設け、前記
ソース領域とドレイン領域との間のコンダクタンスが選
択ゲート電極20を浮遊ゲート電極16とにより制御さ
れる半導体不揮発性メモリが知られている。
Conventionally, as shown in FIG. 2, an N0 type source region 12 and an N' type drain region 14 are provided on the surface of a P type silicon substrate 11, and a selection gate insulating film 19 is provided between the source region 12 and the drain region 14. A selection gate electrode 20 is provided through the gate insulating film 15, and a floating gate electrode 16 is provided through the gate insulating film 15, and the conductance between the source region and the drain region is controlled by the selection gate electrode 20 and the floating gate electrode 16. sexual memory is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の半導体不揮発性メモリは、ソース領域と
ドレイン領域との間に、選択ゲート電極と浮遊ゲート電
極とが電気的にも構造的にも直列に配置されているため
に高集積化することが難しかった。また、メモリ情報を
読み出すときにおいては、浮遊ゲート電極を制御する制
御ゲート電極18の闇値電圧がデプレシノンヨン状態の
場合、選択されたメモリの浮遊ゲート電極下の基板11
0表面に充電電荷が入るために、不必要な電荷が多くな
り、その結果、高速読み出しも難しかった。
However, in conventional semiconductor non-volatile memories, the selection gate electrode and the floating gate electrode are arranged in series between the source region and the drain region, both electrically and structurally, making it difficult to achieve high integration. was difficult. Furthermore, when reading memory information, if the dark voltage of the control gate electrode 18 that controls the floating gate electrode is in a depressed state, the substrate 11 under the floating gate electrode of the selected memory
Since charging charges enter the zero surface, unnecessary charges increase, and as a result, high-speed readout is also difficult.

そこで、この発明は従来のこのような欠点を解決するた
め、メモリのサイズが小さく、かつ、高速読み出しので
きる半導体不揮発性メモリを得ることを目的としている
Therefore, in order to solve these conventional drawbacks, the present invention aims to provide a semiconductor nonvolatile memory that is small in memory size and capable of high-speed reading.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、この発明は選択ゲート電
極と浮遊ゲート電極をソース領域とドレイン領域との間
に並列に配置することにより、高密度化と高速化を達成
できるようにした。
In order to solve the above problems, the present invention makes it possible to achieve higher density and higher speed by arranging the selection gate electrode and the floating gate electrode in parallel between the source region and the drain region.

〔実施例〕 以下に、この発明の実施例を図面に基づいて説明する。〔Example〕 Embodiments of the present invention will be described below based on the drawings.

第1図において、絶縁基FiIの表面にN゛型ソース領
域2とN+型トドレイン領域4、ソース領域2とドレイ
ン領域4との間ののチャネル形成領域3とから成るシリ
コン薄膜を形成する。チャネル形成領域3の下に選択ゲ
ート絶縁膜9を介して選択ゲー)f4極10を設け、チ
ャネル形成領域3の上にゲート絶縁膜5を介して浮遊ゲ
ート電極6を設け、さらに浮遊ゲート電極6の上に制御
ゲート絶縁膜7を介して制御ゲート電極8が設けられて
いる。浮遊ゲート電極6は全て絶縁膜で覆われており、
その電位は、制御ゲート電極8の電位によって制御され
る。また、チャネル形成領域の導電型は浮遊ゲート電極
6と選択ゲートを極10の電位によって制御される。一
般に、メモリを選択していない場合のチャネル形成領域
3のコンダクタンスを小さ(しておく必要があるために
、形成時にはソース領域2及びドレイン領域4と逆導電
型のP型に形成する。また、チャネル形成領域3のコン
ダクタンスが浮遊ゲート電極6及び選択ゲート電極IO
の電位によって両方から制御できるようにするために、
チャネル形成領域3の膜厚は、チャフル形成領域3が全
て空乏化できる程度以下に薄膜化されている必要がある
In FIG. 1, a silicon thin film consisting of an N' type source region 2, an N+ type drain region 4, and a channel forming region 3 between the source region 2 and the drain region 4 is formed on the surface of an insulating base FiI. A selection gate f4 pole 10 is provided below the channel forming region 3 via a selection gate insulating film 9, a floating gate electrode 6 is provided above the channel forming region 3 via a gate insulating film 5, and a floating gate electrode 6 is provided above the channel forming region 3 via a gate insulating film 5. A control gate electrode 8 is provided on the control gate insulating film 7 with a control gate insulating film 7 interposed therebetween. The floating gate electrode 6 is entirely covered with an insulating film,
Its potential is controlled by the potential of control gate electrode 8. Further, the conductivity type of the channel forming region is controlled by the potential of the floating gate electrode 6 and the selection gate electrode 10. In general, since it is necessary to keep the conductance of the channel forming region 3 small when no memory is selected, it is formed to be P type, which is the opposite conductivity type to the source region 2 and drain region 4. The conductance of the channel forming region 3 is the same as that of the floating gate electrode 6 and the selection gate electrode IO.
In order to be able to control from both sides by the potential of
The thickness of the channel forming region 3 needs to be reduced to a level that allows all of the chaffle forming region 3 to be depleted.

次に、本発明の半導体不揮発性メモリの動作について説
明する。
Next, the operation of the semiconductor nonvolatile memory of the present invention will be explained.

まず、メモリ情報の読み出しは、ソース領域2を接地し
、制御ゲート電極8及び選択ゲート電極10に電源電圧
程度の高い電圧を印加し、ソース領域2とドレイン領域
4との間のコンダクタンスを検出する。即ち、ドレイン
領域4に負荷を介して電a電圧を印加すると、チャネル
形成el1M3のコンダクタンスが大きい場合には、ド
レイン領域4の電位であるVoutは0■近くになり、
逆にチャネル形成領域のコンダクタンスが小さい場合に
は、ドレイン領域4の電位Voutは電源電圧側の高い
電位になる。チャネル形成領域3のコンダクタンスは、
浮遊ゲート電極6の電荷量によって変化する。浮遊ゲー
ト電極6に多くの電子が注入されている場合は、コンダ
クタンスは小さく、逆に電子が少ない場合は、コンダク
タンスは大きくなる。
First, to read memory information, the source region 2 is grounded, a voltage as high as the power supply voltage is applied to the control gate electrode 8 and the selection gate electrode 10, and the conductance between the source region 2 and the drain region 4 is detected. . That is, when a voltage a is applied to the drain region 4 through a load, if the conductance of the channel forming element el1M3 is large, the potential Vout of the drain region 4 becomes close to 0.
Conversely, when the conductance of the channel forming region is small, the potential Vout of the drain region 4 becomes a high potential on the power supply voltage side. The conductance of the channel forming region 3 is
It changes depending on the amount of charge on the floating gate electrode 6. When many electrons are injected into the floating gate electrode 6, the conductance is small, and conversely, when there are few electrons, the conductance becomes large.

メモリが非選択の場合、選択ゲート電極1o及び制御ゲ
ート電極8の電位を接地することにより、常に小さなコ
ンダクタンスにすることができる。従って、トレイン領
域4に電圧が印加されていても、非選択のメモリのチャ
ネル形成領域3のコンダクタンスは小さく設定されてい
るために、不必要な電荷がチャネル形成領域3に注入さ
れない。この結果、高速な情報読み出しができる。浮遊
ゲート電極6の電位にかかわらず、チャネル形成領域3
のコンダクタンスが、非選択状態で小さい理由は、チャ
ネル形成領域3のコンダクタンスが選択ゲート電極10
によって制御されているためである。
When the memory is not selected, the conductance can always be kept small by grounding the potentials of the selection gate electrode 1o and the control gate electrode 8. Therefore, even if a voltage is applied to the train region 4, unnecessary charges are not injected into the channel forming region 3 because the conductance of the channel forming region 3 of the unselected memory is set small. As a result, information can be read out at high speed. Regardless of the potential of the floating gate electrode 6, the channel formation region 3
The reason why the conductance of the channel forming region 3 is small in the non-selected state is that the conductance of the selected gate electrode 10 is small in the non-selected state.
This is because it is controlled by

次に、浮遊ゲート電極6へ電子を注入する書き込み動作
について説明する。
Next, a write operation for injecting electrons into the floating gate electrode 6 will be explained.

ソース領域2を接地し、ドレイン領域4にドレイン書き
込み電圧■□(例えば5V)を印加し、制御ゲート電極
8に制御ゲート書き込み電圧V (6p(例えば10■
)を印加する。ドレイン領域4とチャネル形成領域3と
の間に多くのホントキャリアが発生し、その一部が浮遊
ゲート電極6に注入される。いわゆるチャネル注入によ
って書き込みされる。ソース領域2とドレイン領域4と
の間のチャネル形成領域3を0,2−程度にすることに
より高速で書き込みを行うことができる。また本発明の
不揮発性メモリにおいては、書き込み時に、チャネル形
成領域3が全て空乏化するために、浮遊ゲート電極6と
チャネル形成領域3との間の容量が非常に少ない。従っ
て、浮遊ゲート電極6と制御ゲート電極8との容量結合
を小さな面積で大きく形成することができ、その結果、
さらに、高速書き込みが可能になっている。
The source region 2 is grounded, a drain write voltage (for example, 5 V) is applied to the drain region 4, and a control gate write voltage V (6p (for example, 10 V) is applied to the control gate electrode 8.
) is applied. Many real carriers are generated between the drain region 4 and the channel forming region 3, and some of them are injected into the floating gate electrode 6. It is written by so-called channel injection. Writing can be performed at high speed by making the channel forming region 3 between the source region 2 and drain region 4 about 0.2-. Furthermore, in the nonvolatile memory of the present invention, since the channel forming region 3 is completely depleted during writing, the capacitance between the floating gate electrode 6 and the channel forming region 3 is very small. Therefore, a large capacitive coupling between the floating gate electrode 6 and the control gate electrode 8 can be formed in a small area, and as a result,
Furthermore, high-speed writing is possible.

次に、浮遊ゲート電極6から電子を抜き取る消去動作に
ついて説明する。
Next, an erase operation for extracting electrons from the floating gate electrode 6 will be explained.

制御ゲート電極8を接地し、ソース領域2に消去電圧V
stC約10V)を印加し、浮遊ゲート電極6の中の電
子をソース領域2ヘゲート絶縁膜5を介してトンネル電
流により抜き取る0例えば、ゲート絶縁膜5は約100
層間度に薄い酸化膜に形成すればよい。本発明の半導体
不揮発性メモリの場合、消去電圧を印加すると、チャネ
ル形成領域3の電位は浮いているために、ソース領域2
とチャネル形成領域3との間に接合リーク電流が流れに
くい。従って、昇圧回路による電圧に容易に消去できる
The control gate electrode 8 is grounded and the erase voltage V is applied to the source region 2.
stC (approximately 10 V) is applied, and the electrons in the floating gate electrode 6 are extracted to the source region 2 via the gate insulating film 5 by a tunnel current.
It is sufficient to form a thin oxide film between layers. In the case of the semiconductor nonvolatile memory of the present invention, when an erase voltage is applied, the potential of the channel forming region 3 is floating, so that the source region 2
Junction leakage current is less likely to flow between the channel forming region 3 and the channel forming region 3. Therefore, it can be easily erased by the voltage generated by the booster circuit.

表1に読み出し、書き込み及び消去の動作電圧を示した
Table 1 shows the operating voltages for reading, writing, and erasing.

表1 半導体不揮発性メモリの動作表 第3図は、本発明の半導体不揮発性メモリをアレイ状に
配置した場合の回路図である。ドレイン領域を接続して
ピント線に、制御ゲート電極及び選択ゲート電極を各々
接続してワード線にすることによって、任意のメモリを
選択できる。
Table 1 Operation Table of Semiconductor Nonvolatile Memory FIG. 3 is a circuit diagram when the semiconductor nonvolatile memory of the present invention is arranged in an array. Any memory can be selected by connecting the drain region to the focus line, and connecting the control gate electrode and the selection gate electrode to form a word line.

今まで説明した本発明の半導体不揮発性メモリは、電荷
蓄積層として、浮遊ゲート電極を用いた場合であるが、
第4図は絶縁膜を用いた例である。
The semiconductor nonvolatile memory of the present invention described so far uses a floating gate electrode as the charge storage layer, but
FIG. 4 shows an example using an insulating film.

即ち、チャネル形成領域3の上にゲート絶縁膜35及び
ゲート電極38が形成されている。ゲート絶縁膜35の
中に電荷蓄積層として窒化膜を設けである。
That is, a gate insulating film 35 and a gate electrode 38 are formed on the channel forming region 3 . A nitride film is provided in the gate insulating film 35 as a charge storage layer.

窒化膜に電荷を出し入れするには、ソース・ドレイン領
域に対してゲート電極38に正及び負の高い電圧を印加
することによって行うことができる。
Charge can be transferred into and out of the nitride film by applying high positive and negative voltages to the gate electrode 38 with respect to the source/drain regions.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したように絶縁基板上に非常に薄
いシリコン膜を設け、そのシリコン膜にチャネル形成領
域を設け、そのチャネル形成領域の電位をシリコン膜の
上方に形成した浮遊ゲート電極と下方に形成した選択ゲ
ート電極で制御することにより、構造的に小さくかつ、
高速読み出しを容易にする効果がある。
As explained above, this invention provides a very thin silicon film on an insulating substrate, a channel formation region in the silicon film, and a floating gate electrode formed above the silicon film and a floating gate electrode formed below the silicon film. By controlling the selection gate electrode formed in the
This has the effect of facilitating high-speed reading.

は本発明の第2の実施例の半導体不揮発性メモリの断面
図である。
FIG. 2 is a cross-sectional view of a semiconductor nonvolatile memory according to a second embodiment of the present invention.

・絶縁基板 ・N゛型ソース領域 ・N゛型ドレイン領域 ・浮遊ゲート電極 以上 出願人 セイコー電子工業株式会社 代理人 弁理士 林  敬 之 助・Insulating substrate ・N-type source region ・N-type drain region ・Floating gate electrode that's all Applicant: Seiko Electronics Industries Co., Ltd. Agent: Patent Attorney Takayoshi Hayashi

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかる半導体不揮発性メモリの断面
図であり、第2図は従来の半導体不揮発性メモリの断面
図である。第3図は本発明の半導体不揮発性メモリアレ
イの回路図である。第4図牛導体千揮発性メt’J 第1図 従来の牛s1本千1f光柱メモリ 第3図
FIG. 1 is a sectional view of a semiconductor nonvolatile memory according to the present invention, and FIG. 2 is a sectional view of a conventional semiconductor nonvolatile memory. FIG. 3 is a circuit diagram of a semiconductor nonvolatile memory array of the present invention. Figure 4 Cow conductor 1,000 volatile met'J Figure 1 Conventional cow s 1,000 1f light pillar memory Figure 3

Claims (1)

【特許請求の範囲】[Claims] 絶縁膜基板上に半導体薄膜が設けられ、前記半導体薄膜
が第1導電型のソース領域とドレイン領域と、前記ソー
ス領域と前記ドレイン領域の間に形成されるチャネル形
成領域とから構成されているとともに、前記チャネル形
成領域上に第1のゲート絶縁膜を介して設けられた浮遊
ゲート電極と、前記浮遊ゲート電極上に制御ゲート絶縁
膜を介して設けられた制御ゲート電極と、前記チャネル
形成領域下に第2のゲート絶縁膜を介して設けられた選
択ゲート電極とからなる半導体不揮発性メモリ。
A semiconductor thin film is provided on an insulating film substrate, and the semiconductor thin film is composed of a source region and a drain region of a first conductivity type, and a channel forming region formed between the source region and the drain region. , a floating gate electrode provided on the channel forming region via a first gate insulating film, a control gate electrode provided on the floating gate electrode via a control gate insulating film, and a control gate electrode provided below the channel forming region. and a selection gate electrode provided through a second gate insulating film.
JP2143023A 1990-05-30 1990-05-30 Semiconductor nonvolatile memory Expired - Fee Related JP2714874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143023A JP2714874B2 (en) 1990-05-30 1990-05-30 Semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143023A JP2714874B2 (en) 1990-05-30 1990-05-30 Semiconductor nonvolatile memory

Publications (2)

Publication Number Publication Date
JPH0434981A true JPH0434981A (en) 1992-02-05
JP2714874B2 JP2714874B2 (en) 1998-02-16

Family

ID=15329122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143023A Expired - Fee Related JP2714874B2 (en) 1990-05-30 1990-05-30 Semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JP2714874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446299A (en) * 1994-04-29 1995-08-29 International Business Machines Corporation Semiconductor random access memory cell on silicon-on-insulator with dual control gates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123083A (en) * 1989-10-05 1991-05-24 Agency Of Ind Science & Technol Semiconductor memory element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123083A (en) * 1989-10-05 1991-05-24 Agency Of Ind Science & Technol Semiconductor memory element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446299A (en) * 1994-04-29 1995-08-29 International Business Machines Corporation Semiconductor random access memory cell on silicon-on-insulator with dual control gates
DE19512431A1 (en) * 1994-04-29 1995-11-02 Ibm Semiconductor memory cell with random access to silicon-on-insulator with double control gates
DE19512431C2 (en) * 1994-04-29 2001-09-13 Ibm Semiconductor memory cell with random access to silicon-on-insulator with double control gates and their manufacturing process

Also Published As

Publication number Publication date
JP2714874B2 (en) 1998-02-16

Similar Documents

Publication Publication Date Title
US5592415A (en) Non-volatile semiconductor memory
US5341342A (en) Flash memory cell structure
CN100490152C (en) Non-volatile memory cell and related operation method
JP3171122B2 (en) Semiconductor storage device and information reading method for semiconductor storage device
JPH0760864B2 (en) Semiconductor integrated circuit device
US4479203A (en) Electrically erasable programmable read only memory cell
JP2830447B2 (en) Semiconductor nonvolatile storage device
KR20040031655A (en) Single bit nonvolatile memory cell and methods for programming and erasing thereof
JPH04105368A (en) Nonvolatile semiconductor storage device
US5136540A (en) Non-volatile semiconductor memory for volatiley and non-volatiley storing information and writing method thereof
JPH11238814A (en) Semiconductor storage device and its control method
JPH05304301A (en) Rewriting system for nonvolatile semiconductor memory cell
JPH0434981A (en) Semiconductor nonvolatile memory
JPH07120721B2 (en) Nonvolatile semiconductor memory device
JPS58158973A (en) Non-volatile semiconductor memory
KR100488583B1 (en) Dual bit split gate flash memory device and method for driving the same
US6853027B2 (en) Semiconductor nonvolatile memory with low programming voltage
JPH06350097A (en) Nonvolatile semiconductor memory
JPH03290960A (en) Nonvolatile semiconductor memory
JPS6045067A (en) Nonvolatile semiconductor memory device
JP3104978B2 (en) Control method for nonvolatile semiconductor memory device
JP3422812B2 (en) Rewriting method of nonvolatile semiconductor memory cell
JPH03101168A (en) Nonvolatile semiconductor memory
Van Houdt et al. Optimization of a submicron HIMOS Flash E 2 PROM cell for implementation in a virtual ground array configuration
JPS6146979B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees