JPS58158973A - Non-volatile semiconductor memory - Google Patents

Non-volatile semiconductor memory

Info

Publication number
JPS58158973A
JPS58158973A JP57041157A JP4115782A JPS58158973A JP S58158973 A JPS58158973 A JP S58158973A JP 57041157 A JP57041157 A JP 57041157A JP 4115782 A JP4115782 A JP 4115782A JP S58158973 A JPS58158973 A JP S58158973A
Authority
JP
Japan
Prior art keywords
region
gate electrode
floating gate
insulating film
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57041157A
Other languages
Japanese (ja)
Inventor
Yoshikazu Kojima
芳和 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP57041157A priority Critical patent/JPS58158973A/en
Publication of JPS58158973A publication Critical patent/JPS58158973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To produce a strong capacity coupling between a control gate region and a floating gate electrode with small area by controlling the voltage of the floating gate electrode with the voltage of the control gate region of a single crystal Si through a thin oxidized film. CONSTITUTION:An N<+> type control gate region 15 is diffused in a P type Si substrate 11, a thin SiO2 film 18 is formed on the region, and a floating gate electrode 14 made of polycrystalline Si is formed on the film. A P<-> type polycrystalline Si is formed through a gate oxidized film 16 on the electrode, an N<+> type source region 12 and a drain region 13 are formed in the silicon, and the silicon interposed between the regions 12 and 13 is used as a channel region 20. In this manner, the channel conductance of the region 20 is varied by the voltage of the electrode 14, the electrostatic capacity is increased between the electrodes 14 and 15 while reducing the area, and an inexpensive low program voltage memory IC is obtained.

Description

【発明の詳細な説明】 本発明を浮遊ゲート電極上に読み出しトランジスタを設
け、浮遊ゲート電極下の半導体基板内に制御ゲート電極
を設けた浮遊ゲート型の不揮発性半導体メモリに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a floating gate nonvolatile semiconductor memory in which a read transistor is provided on a floating gate electrode and a control gate electrode is provided in a semiconductor substrate below the floating gate electrode.

半導体分野における微細加工技術の進歩Fihざましい
、半導体メモリの集積度は、その進歩により、2年に4
倍というスピードで増加している。
Due to advances in microfabrication technology in the semiconductor field, the degree of integration of semiconductor memory has increased by four times every two years.
It is increasing at twice the speed.

しかし、現在プログラム電圧が20Vと大きな電圧を必
要とする不揮発性半導体メモリは、他のメモリに比べ微
細化が難かしく、メモリ集積回路(IC)の小面積化に
よるコストダウンが困難であった。従って、低プログラ
ム璽、圧の不揮発性半導体メモリの実現が望まれている
However, nonvolatile semiconductor memories, which currently require a large programming voltage of 20 V, are difficult to miniaturize compared to other memories, and it has been difficult to reduce costs by reducing the area of memory integrated circuits (ICs). Therefore, it is desired to realize a non-volatile semiconductor memory with low programming time and pressure.

第1図は、従来の不揮発性半導体メモリの一実施例であ
る。P型の半導体基数1にN+のソース領域2及びドレ
イン領域6が設けられており、ソース領域2とドレイン
領域3の間のチャネル領域上にゲート酸化M6を介して
浮遊ゲート電極4が設けられている。さらに、浮遊ゲー
ト電極4の電位1kili制御する電極5が浮遊ゲート
電極4の酸化膜8t−介して設けられている。ソース領
域2とドレイン領域5の電位は、アルミ配線2a及び3
aにより決められる。浮遊ゲート電極4は、その中の電
荷を外へ揮発させないように、すべて酸化膜によりおお
われている。
FIG. 1 shows an example of a conventional nonvolatile semiconductor memory. A P-type semiconductor base number 1 is provided with an N+ source region 2 and a drain region 6, and a floating gate electrode 4 is provided on the channel region between the source region 2 and the drain region 3 via a gate oxide M6. There is. Further, an electrode 5 for controlling the potential of the floating gate electrode 4 by 1 kili is provided via the oxide film 8t of the floating gate electrode 4. The potentials of the source region 2 and drain region 5 are the same as those of the aluminum wirings 2a and 3.
Determined by a. The floating gate electrode 4 is entirely covered with an oxide film so that the charges therein are not volatilized to the outside.

第2図は、浮遊ゲートを極4とまわりの電極との容量結
合を示す第1図の電気的等価回路図である。C,G、D
、S、Sub、F、G  piそれぞれ制御ゲート’I
I極5.ドレイン領域5.ソース領域2゜基板11浮遊
ゲート電極4を示す記号である。また、OOG r O
” + CI 、 Q Bu b Vsそれぞれ浮遊ゲ
ート電、極4と制御ゲート電極5.浮遊ゲート電極4と
ドレイン領域5.浮遊ゲート電極4とソース領域2、浮
遊ゲート電極4と基板1との靜埠容着の値である。第2
図に示した電気的等価回路の電荷中和条件より浮遊ゲー
ト電極の電位v1は次式のようになる。
FIG. 2 is an electrical equivalent circuit diagram of FIG. 1 showing capacitive coupling between the floating gate pole 4 and surrounding electrodes. C, G, D
, S, Sub, F, G pi respectively control gate 'I
I pole 5. Drain region5. This is a symbol indicating the source region 2°, the substrate 11, and the floating gate electrode 4. Also, OOG r O
” + CI, Q Bub Vs respectively floating gate electrode, pole 4 and control gate electrode 5. floating gate electrode 4 and drain region 5. floating gate electrode 4 and source region 2, floating gate electrode 4 and substrate 1. It is the value of appearance.Second
Based on the charge neutralization conditions of the electrical equivalent circuit shown in the figure, the potential v1 of the floating gate electrode is expressed by the following equation.

ここで、Vaaは制御ゲート電極の電位sQ’は浮遊ゲ
ート電極4の中の電荷量である。また、ソース領域2と
基板1の電位はゼロとした。
Here, Vaa is the potential sQ' of the control gate electrode and is the amount of charge in the floating gate electrode 4. Further, the potentials of the source region 2 and the substrate 1 were set to zero.

さらIc 、  Oaa )) G oになっているも
のとする。
Furthermore, it is assumed that Ic, Oaa)) Go.

(1)式より明らかなように、浮遊ゲート電極4に1子
が多数注入(書込み状態)されている場合、浮遊ゲート
電極4の電位に低く、従って、制御ゲート電極5に対す
る閾値電圧Vテは高くなる。浮遊ゲート型&4にあまり
電子が入っていない場合(消去状態)KI/′iv!は
低い、即ち、ソース・ドレイン領域間のチャネルコンダ
クタンスを検1出することによりメモリの記憶状態を知
ることができる。
As is clear from equation (1), when a large number of single cells are injected into the floating gate electrode 4 (written state), the potential of the floating gate electrode 4 is low, and therefore the threshold voltage Vte for the control gate electrode 5 is It gets expensive. When there are not many electrons in floating gate type &4 (erased state) KI/'iv! In other words, the storage state of the memory can be known by detecting the channel conductance between the source and drain regions.

次に1書込み方法、即ち、浮遊ゲー十1・極4に電子を
注入する方法について一説明する。11J11ゲート電
極5に正の大きな11込み電圧w嗜を;印加すると浮遊
ゲート電極40電位V’?’4V!W#rc引社ちれ(
り式のようになる。
Next, a writing method, that is, a method of injecting electrons into the floating gate electrode 4 will be explained. 11J11 When a large positive voltage w is applied to the gate electrode 5, the floating gate electrode 40 potential V'? '4V! W#rcHikishachire(
It becomes like this.

ここで、ドレイン領域if:・接@状態8に]して)・
(と、浮遊ゲート電極しと゛ドレイン領域・6との一部
の薄い酸化膜・7に:V ;P/、t o’xの大きさ
の強′電W−fiE加、ゎる、toxF′i酸化膜7の
膜厚である。この強電界により電子はドレイン領域5か
ら浮遊ゲート電極4へと注入される、tox=100A
の場合、VF:10V  で実用的な電子の注入が行な
われる。
Here, the drain region if:・connected to state 8])・
(Then, a strong electric current W-fiE with a magnitude of V;P/, toxF' i is the film thickness of the oxide film 7. Due to this strong electric field, electrons are injected from the drain region 5 to the floating gate electrode 4, tox = 100A.
In this case, practical electron injection is performed at VF: 10V.

次に、消去方法、即ち、電子管浮遊ゲート電極4から流
出する方法について説明する。
Next, the erasing method, that is, the method of flowing out from the electron tube floating gate electrode 4 will be explained.

制御ゲート電極5を接地すると、浮遊ゲート電極4の電
位Vνは(1)式より次式となる。
When the control gate electrode 5 is grounded, the potential Vv of the floating gate electrode 4 becomes the following equation from equation (1).

−Qν V″”QO6+08.b+ C1+CD  ””” ”
’ ”””)さらに、ドレイン領域3に消去電圧Vlt
印加すると、浮遊ゲート4とドレイン領域5の間の薄い
酸化膜7に(Vm  Vy)/loxの大きさの強電界
が加わり、電子は浮遊ゲート電極4がらドレイン領域5
へと流出する。書込み時と同様に、zox==100A
  の場合vm=10V  で実用的消去が行なわれる
-Qν V″”QO6+08. b+ C1+CD ””” ”
``'''') Furthermore, an erase voltage Vlt is applied to the drain region 3.
When the voltage is applied, a strong electric field with a magnitude of (Vm Vy)/lox is applied to the thin oxide film 7 between the floating gate 4 and the drain region 5, and electrons are transferred from the floating gate electrode 4 to the drain region 5.
flows out to. As with writing, zox==100A
Practical erasure occurs when vm=10V.

以上、従来の浮遊ゲート型不揮発性メモリの動作につい
て述べたが、動作電圧、書込み電圧yw。
The operation of the conventional floating gate nonvolatile memory has been described above, and the operating voltage and write voltage yw.

消去電圧Vmを小さくする皮めKは、次のような関係を
満足するメモリが望ましい。
It is desirable that the initial value K for reducing the erase voltage Vm be a memory that satisfies the following relationship.

coa)athxb+cm+cD=川(4)この不轡式
が成り立つということは、1111]御ゲート電極5と
浮遊ゲート電極4とが強い容量結合をしていることを意
味し、その結果、浮遊ゲート電極4の電位vyFi鋭感
に制御ゲート電極5の電位voatcより制御される。
coa) ath The potential vyFi is sensitively controlled by the potential voatc of the control gate electrode 5.

第1図のような構造のメモリにおいて、(4)式を満足
させるようにする7 kt)Kは、浮遊ゲート11極4
と制御ゲート電極5の間の酸化膜81に薄くすればよい
、しかし、酸化膜8は、浮遊ゲート電極4の酸化膜、a
ち、多結晶ンリコンの酸化膜である次島に伝導率が高く
、少なくとも約1oooXないと、情報が揮発する虞れ
がある。従って、従来のメモリにおいては、プログラム
電圧を下げる交めに、浮遊ゲート電極4と制御ゲート電
極5のオーバーラツプを大キくスルことによってGO’
1大きくしていた。そのため、メモリセルの面積は大き
く、メモリICのコストダウンが困−であった。
In a memory with the structure shown in Fig. 1, 7 kt) K is the floating gate 11 poles 4 so as to satisfy equation (4).
The oxide film 81 between the floating gate electrode 4 and the control gate electrode 5 may be thinned.
Furthermore, the conductivity of the polycrystalline silicon oxide film is high, and unless it is at least about 1 oooX, there is a risk that information will evaporate. Therefore, in conventional memories, the GO'
It was increased by 1. Therefore, the area of the memory cell is large, making it difficult to reduce the cost of the memory IC.

本発明に、このような従来の欠点を克服するためになさ
れたものであり、セル面積の小さい、安価なメモリエC
を提供するものである。
The present invention has been made to overcome these conventional drawbacks, and provides an inexpensive memory card with a small cell area.
It provides:

本発明は、半導体基板内に制御ゲート領域を設けること
により、小面積でQOGを大きくシた構造のメモリセル
である。例えば、第5図は、本発明第一の実施例のメモ
リセルの断面図である。P型半導体基金11内にN+型
型数散層ら成る制御ゲート領域15を形成する。制御ゲ
ート領域15の上に薄いンリコン熱酸化膜18を形成し
、その上に多結晶ンリコンから取る浮遊ゲート電極14
會形成する。さらにゲート酸化膜16を介して多結晶層
を設け、その多結晶層内にN++散層のソース領域12
及びドレイン領域15を形成する。ソース領域12とド
レイン領域130間のP−の多結晶層がチャネル領域2
0で、チャネル領域20のチャネルコンダクタンスは、
浮遊ゲート電極14の電位によって変化する。浮遊ゲー
ト電極1401位がソース領域12に対して正の電位の
場合、チャネルコンダクタンスは高くなる。浮遊ゲート
電極14の電位は、薄いゲート酸化膜1B1fr介した
一]御ゲート領域15の電位によってll?II御され
る。
The present invention is a memory cell having a structure in which a control gate region is provided in a semiconductor substrate, thereby achieving a large QOG in a small area. For example, FIG. 5 is a cross-sectional view of a memory cell according to the first embodiment of the present invention. A control gate region 15 made of an N+ type scattered layer is formed in the P type semiconductor fund 11. A thin silicon thermal oxide film 18 is formed on the control gate region 15, and a floating gate electrode 14 made of polycrystalline silicon is formed thereon.
Form a meeting. Further, a polycrystalline layer is provided via a gate oxide film 16, and an N++ diffused source region 12 is provided within the polycrystalline layer.
and a drain region 15. The P- polycrystalline layer between the source region 12 and the drain region 130 is the channel region 2.
0, the channel conductance of the channel region 20 is
It changes depending on the potential of the floating gate electrode 14. When the floating gate electrode 1401 has a positive potential with respect to the source region 12, the channel conductance becomes high. The potential of the floating gate electrode 14 is determined by the potential of the control gate region 15 through the thin gate oxide film 1B1fr. II will be controlled.

酸化膜18Fi、単結晶ンリコンの熱酸化膜であるため
、100χと薄くても、浮遊ゲート電極14の中に蓄積
された電荷は揮発しない、従って、制御ゲート領域11
を半導体基根15内に設は次構造のメモリセルは、制御
ゲート領域15と浮遊ゲート電極140間の靜1容普を
小面積で、かつ大きなfilにすることができる次め、
安価な低プログラム重圧メモリICを提供することが可
能になる。
Since the oxide film 18Fi is a thermal oxide film of single crystal silicon, the charges accumulated in the floating gate electrode 14 will not volatilize even if it is as thin as 100χ.
A memory cell with the following structure is provided in the semiconductor base 15, and the silence between the control gate region 15 and the floating gate electrode 140 can be made small in area and large in thickness.
It becomes possible to provide an inexpensive low program burden memory IC.

第5図の第1の実施例は、ドレイン領域15と浮遊ゲー
ト電極14の間の薄い酸化膜17を介して浮遊ゲート電
極14へ電荷の注入−流出するメモリセルの断面図であ
る。読み出しは、制御ゲート領域15にある重圧全印加
し皮時、チャネル20のコンダクタンスの高e低により
行なわれる。
The first embodiment shown in FIG. 5 is a cross-sectional view of a memory cell in which charges are injected and discharged into the floating gate electrode 14 through a thin oxide film 17 between the drain region 15 and the floating gate electrode 14. Reading is carried out by the conductance of the channel 20 being high and low when a heavy pressure is applied to the control gate region 15.

浮遊ゲート電極14中に電子が多数入っている場合は、
低コンダクタンスとなる。浮遊ゲート電極14への電子
の注入(書込み)は、制御ゲート領域15にドレイン領
域13に対して高電圧を印加することにより行なわれる
。酸化膜17に、この高電圧による電界が加わり、電子
はドレイン領域13から浮遊ゲートを極14へ注入され
る。次に、浮遊ゲー)W椿14からドレイン領域13へ
の電子の流出(消去)ij、制御ゲート領域15に対し
、ドレイン領域13に高電圧を印加することにより行な
われる。書込み同様、酸化膜17に書込み時とは逆方向
の強電界が加わり、電子は浮遊ゲート型棒14からドレ
イン領域15へと流出する。
If there are many electrons in the floating gate electrode 14,
It has low conductance. Injection (writing) of electrons into the floating gate electrode 14 is performed by applying a high voltage to the control gate region 15 with respect to the drain region 13 . An electric field due to this high voltage is applied to the oxide film 17, and electrons are injected from the drain region 13 through the floating gate to the pole 14. Next, the outflow (erasing) of electrons from the floating gate W 14 to the drain region 13 is performed by applying a high voltage to the drain region 13 with respect to the control gate region 15 . Similar to writing, a strong electric field in the opposite direction to that during writing is applied to the oxide film 17, and electrons flow from the floating gate rod 14 to the drain region 15.

第5図VC示した如く、本発明は浮遊ゲートを極14の
電位を単結晶シリコンの薄い酸化膜18を介した制御ゲ
ート領域15の電位によって制御する構造になっている
ため、小if3積でも制御ゲート領域15と浮遊ゲート
電極14とは強い容量結合をすることができる、これは
、酸化膜18に単結話シリコンの熱酸化膜を用いている
ために、非常に絶縁性の良い薄い酸化膜を形成できるた
めである。
As shown in FIG. 5VC, in the present invention, the floating gate has a structure in which the potential of the pole 14 is controlled by the potential of the control gate region 15 via the thin oxide film 18 of single crystal silicon, so even a small if3 product can be used. A strong capacitive coupling can be established between the control gate region 15 and the floating gate electrode 14. This is because the oxide film 18 is a thermal oxide film of monocrystalline silicon, which is a thin oxide film with very good insulating properties. This is because a film can be formed.

第4図は、本発明第二の実施例の不揮発性メモリの断面
図である。読み出し方法に、W41の実施例と同様であ
るが、電子を浮遊ゲート電極24へ注入する方法が異な
る。P型基板21に対し、制御ゲート領域25に逆バイ
アスである正の電圧を印加すると、制御ゲート領域25
と強く容量結合した浮遊ゲート電極24は正の電位にな
り、浮遊ゲート電極24の下でさらに薄い酸化I[28
の下の半導体基板:!1面50は強く反転する1例えば
、薄い酸化膜の膜厚f100AK−して、制御ゲート領
域25に6■印加すると、半導体表面50の表面電位は
基叛内部の電位に対して約5V81j低くなる。この状
態において、基鈑内sVC少数キャリアである電子を注
入すると、電子は半導体表面50で電界加速され、浮遊
ゲー)IF極24へ入る。
FIG. 4 is a sectional view of a nonvolatile memory according to a second embodiment of the present invention. The reading method is the same as in the embodiment W41, but the method of injecting electrons into the floating gate electrode 24 is different. When a positive voltage, which is a reverse bias, is applied to the control gate region 25 of the P-type substrate 21, the control gate region 25
The floating gate electrode 24, which is strongly capacitively coupled to
Semiconductor substrate under:! For example, when a thin oxide film has a thickness f100AK- and a voltage of 6cm is applied to the control gate region 25, the surface potential of the semiconductor surface 50 becomes approximately 5V81j lower than the potential inside the substrate. . In this state, when electrons, which are sVC minority carriers in the substrate, are injected, the electrons are accelerated by an electric field on the semiconductor surface 50 and enter the floating IF pole 24.

一般にこの注入方法は、バイポーラ注入と呼ばれている
。少数キャリアは、第4図の如(、P型牛導体基1ii
21の表面KN型のインジェクタ領域27を設け、イン
ジェクタ領域に順方向市界會印加することによって得C
−〕れる。また、光?半導体基叡21へ照射すること¥
Cよっても得られる。
This injection method is generally called bipolar injection. The minority carriers are as shown in Fig. 4 (, P-type conductor group 1ii
By providing a KN-type injector region 27 on the surface of 21 and applying a forward voltage to the injector region, the C
−] to be. Also, light? Irradiating the semiconductor substrate 21
It can also be obtained by C.

糖5図は、チャネル注入型不揮発性メモリへ本発明を実
施した第三の夷弛例である。P型半導体基鈑31の表面
に、制御ゲート領域55から1illIねてN+拡散層
37を設け、浮遊ゲート電極34を絶縁膜41及び58
を介して橋わたす如く形成する、絶縁膜41の単位面積
当りの容量は、絶縁膜38に比べ小さい。制御ゲート領
域55に正の重圧を基板51に対して印加すると、絶縁
1![41と34の交わる部分下の半導体基鈑表面に大
きな表面電位差が生ずる。従って、IJ+拡散層よシ反
転層電荷が制御ゲート領域35へ向って流れると、その
表面1位差の生ずる部分で電子は電界加速され、浮遊ゲ
ート電極34−\矢印Bの如く入る。この注入を一般に
チャネル注入と呼んでいる。
Figure 5 is a third example of implementing the present invention into a channel-injected non-volatile memory. An N+ diffusion layer 37 is provided on the surface of the P-type semiconductor substrate 31, extending from the control gate region 55, and the floating gate electrode 34 is formed by insulating films 41 and 58.
The capacitance per unit area of the insulating film 41, which is formed so as to bridge through the insulating film 38, is smaller than that of the insulating film 38. When a positive pressure is applied to the control gate region 55 against the substrate 51, the insulation 1! [A large surface potential difference occurs on the surface of the semiconductor substrate under the intersection of 41 and 34. Therefore, when the inversion layer charge flows from the IJ+ diffusion layer toward the control gate region 35, electrons are accelerated by the electric field at a portion where a one-potential difference occurs on the surface, and enter the floating gate electrode 34-\as shown by arrow B. This injection is generally called channel injection.

第5図、第4図、第5図に示したように、種々の注入方
法の不揮発性メモリにおいて、本発明全実施できる。
As shown in FIGS. 5, 4, and 5, the present invention can be fully implemented in nonvolatile memories using various implantation methods.

本発明は、制御ゲート電極と情報の読み出しのためのメ
モリトランジスタの位置関係を、従来の構造に対し上下
逆の構造Vてすることにより、制御ゲート電、極と浮遊
ゲート電極の容量結合をより強くすることを可能にし、
その結果、低プログラム電圧でしか本面積の小すい安価
な不揮発性メモリの製造を可能にした。
The present invention improves the capacitive coupling between the control gate electrode and the floating gate electrode by making the positional relationship between the control gate electrode and the memory transistor for reading information upside down compared to the conventional structure. enable you to become stronger,
As a result, it has become possible to manufacture an inexpensive nonvolatile memory with a small surface area only by using a low programming voltage.

本俺明の説明は、P型基板に設けた場合でしかも読み出
しトランジスタの導電型がN型の場合についてのみ説明
したが、本発明はこれに限るものでないことは言うまで
もない。
Although the present invention has been described only in the case where the readout transistor is provided on a P-type substrate and the conductivity type of the readout transistor is N-type, it goes without saying that the present invention is not limited to this.

また、本発明の説明に用いた第1.第2.第5の実施例
においては、浮遊ゲートを極へ注入する電子あるいは正
孔を基鈑側から供給する構造になっている。しかし、本
発明は、浮遊ゲート電極の上の読み出しFランジスタ饋
から浮遊ゲート電極へ注入する1荷を供給する構造にも
適用できることは言うまでもない、
In addition, No. 1 used to explain the present invention. Second. In the fifth embodiment, the structure is such that electrons or holes injected into the floating gate electrode are supplied from the substrate side. However, it goes without saying that the present invention can also be applied to a structure in which a charge is injected into the floating gate electrode from the readout F transistor above the floating gate electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の浮遊ゲート型不揮発性半導体メモリの
断面図であり、第2図は、第1図の浮遊ゲート電極まわ
りの容1結合状態ケ示す電気的等価回路図である。 第3図は、本発明の第一の実施例のトンネル注大型不揮
発性半導体メモリの断面図であり、第4図は、本発明の
第二の実施例のバイポーラ注入型不揮発性半導体メモリ
の断面図であり、第5図は本発明の第三の実施例のチャ
ンネル注入型不揮発性半導体メモリの断面図である。 1.11,21.31・・・・・・半導体基板2.12
,22.32・・・・・・ソース領域5.15,25.
55・・・・・・ドレイン領域4.14,24.34・
・・・・・浮遊ゲート電極5.15,25,35・・・
・・・制御ゲート電極あるいは領域 27 ・・・−・・・・・・・・・・・・・・インジェ
クタ以上 出願人 株式会社第二精工合 第1図 第2図 S   5ub   D 第3図 1 第4図 第5図
FIG. 1 is a sectional view of a conventional floating gate nonvolatile semiconductor memory, and FIG. 2 is an electrical equivalent circuit diagram showing a capacitive coupling state around the floating gate electrode of FIG. FIG. 3 is a cross-sectional view of a tunnel-injected large-sized nonvolatile semiconductor memory according to the first embodiment of the present invention, and FIG. 4 is a cross-sectional view of a bipolar injection-type nonvolatile semiconductor memory according to the second embodiment of the present invention. FIG. 5 is a sectional view of a channel injection type nonvolatile semiconductor memory according to a third embodiment of the present invention. 1.11, 21.31... Semiconductor substrate 2.12
, 22.32... Source region 5.15, 25.
55...Drain region 4.14, 24.34.
...Floating gate electrode 5.15, 25, 35...
・・・Control gate electrode or region 27 ・・・-・・・・・・・・・・・・・・・Injector and above Applicant Daini Seiko Co., Ltd. Figure 1 Figure 2 S 5ub D Figure 3 1 Figure 4 Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板表面部分に設けられ次第
1導電型と異なる第一2導電型の制御ゲート領域と、少
なくとも前記制御ゲート領域上に第1のゲート絶縁!I
Aを介して設けらhた浮遊ゲート電極と、前記浮遊ゲー
ト電極上に第2のゲート絶縁膜を介して設けらねた読み
出し用トランジスタとからなり、WJ記制御ゲート領域
に対する前記読み出し用トランジスタの閾値電圧が、前
記浮遊ゲート電極中のW荷量により変化することt%轍
とする不揮発性半導体メモリ。
(1) A control gate region of a second conductivity type different from the first conductivity type provided on the surface portion of the semiconductor substrate of the first conductivity type, and a first gate insulation at least on the control gate region! I
It consists of a floating gate electrode provided through A, and a readout transistor provided on the floating gate electrode with a second gate insulating film interposed therebetween, and the readout transistor is connected to the control gate region WJ. A non-volatile semiconductor memory in which the threshold voltage varies by t% depending on the W loading amount in the floating gate electrode.
(2)  前記読み出し用トランジスタのドレイン領域
あるいはソース領域と前記浮遊ゲートII極との間の前
記第2のゲート絶縁膜に強電界を印加することにより、
前記浮遊ゲート電極へ電荷を注入あるいけ流出すること
を可能としたこと′fr%轍とする特許請求の範囲w1
.1須記載の不揮発性半導体メモリ。
(2) by applying a strong electric field to the second gate insulating film between the drain region or source region of the read transistor and the floating gate II pole;
It is possible to inject or drain charges to the floating gate electrode. Claims w1 include 'fr% ruts'
.. Non-volatile semiconductor memory described in item 1.
(3)前記制御ゲート領域と接する前配半導体基叛表向
σ)上に@5のゲート絶縁膜を設け、前記第5のゲート
絶縁膜の上に前記浮遊ゲート電極を設け、前記制御ゲー
ト領域から離れて前記半導体基板着面にw42導市型の
インジェクタ領域f設けるとともに、前記制御ゲート領
域に前記半導体基板に対し逆方向電圧である第1の電圧
を印加することにより前記第5のゲート絶縁膜の下の前
記半導体基板表面に強電界を形成し、前記強電界部分に
前記インジェクタより少数キャリアを注入することによ
り、前記少数キャリアの−gを前記浮遊ゲート電極へ注
入することを可能としたこと?特徴とする特許請求の範
囲第1項記載の不揮発性半導体メモリ。
(3) A @5 gate insulating film is provided on the front semiconductor substrate surface (σ) in contact with the control gate region, the floating gate electrode is provided on the fifth gate insulating film, and the floating gate electrode is provided on the control gate region. A W42 type injector region f is provided on the semiconductor substrate surface apart from the semiconductor substrate, and a first voltage which is a reverse voltage with respect to the semiconductor substrate is applied to the control gate region to insulate the fifth gate By forming a strong electric field on the surface of the semiconductor substrate under the film and injecting minority carriers from the injector into the strong electric field portion, it was possible to inject -g of the minority carriers into the floating gate electrode. thing? A nonvolatile semiconductor memory according to claim 1, characterized in that:
(4)  前記制御ゲート領域と接する前記半導体基會
表面上1/[第4のゲート絶ilt膜を設け、前記第4
のゲート絶縁機に接して前記第4のゲート絶縁膜より単
位■積当りの容量が小ざい第5のゲート絶縁膜を設け、
前記第4及び第5のゲート絶縁膜上に前記浮遊ゲート電
極を設け、前記浮遊ゲート電極及び前記第5のゲート絶
縁膜の下の前記半導体基板表面に第2導電型の拡散領域
ケ設けるとともに、前記制御ゲート電極に前記第1の電
圧と極性の同じ第2の電圧全印加することによシ前記拡
散領域と前記制御ゲート領域間にチャネル1i流を流し
、前記第4のゲート絶縁膜と前記第5のゲート絶縁膜の
接する前記半導体基板表面より前記チャネル電流の一部
の電荷を前記浮遊ゲート電極へ注入することを可能とし
たこと1に%徴とする特許請求の範囲第1項記載の不揮
発性半導体メモリ。
(4) providing a fourth gate isolation film on the surface of the semiconductor substrate in contact with the control gate region;
A fifth gate insulating film having a smaller capacity per unit product than the fourth gate insulating film is provided in contact with the gate insulating film,
The floating gate electrode is provided on the fourth and fifth gate insulating films, and a second conductivity type diffusion region is provided on the surface of the semiconductor substrate under the floating gate electrode and the fifth gate insulating film, By fully applying a second voltage having the same polarity as the first voltage to the control gate electrode, a channel current 1i is caused to flow between the diffusion region and the control gate region, and the fourth gate insulating film and the Claim 1 according to claim 1, wherein part of the charge of the channel current can be injected into the floating gate electrode from the surface of the semiconductor substrate in contact with the fifth gate insulating film. Non-volatile semiconductor memory.
(5)  前記第1のゲート絶縁膜が200!以下の膜
厚の二酸化シリコン膜であること1frll!i徹とす
る特許請求の範囲第1項から第4項いづれか記載の不揮
発性半導体メモリ。
(5) The first gate insulating film has a thickness of 200! The silicon dioxide film must have the following thickness 1frll! A nonvolatile semiconductor memory according to any one of claims 1 to 4.
JP57041157A 1982-03-16 1982-03-16 Non-volatile semiconductor memory Pending JPS58158973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57041157A JPS58158973A (en) 1982-03-16 1982-03-16 Non-volatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57041157A JPS58158973A (en) 1982-03-16 1982-03-16 Non-volatile semiconductor memory

Publications (1)

Publication Number Publication Date
JPS58158973A true JPS58158973A (en) 1983-09-21

Family

ID=12600576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57041157A Pending JPS58158973A (en) 1982-03-16 1982-03-16 Non-volatile semiconductor memory

Country Status (1)

Country Link
JP (1) JPS58158973A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153690A (en) * 1989-10-18 1992-10-06 Hitachi, Ltd. Thin-film device
US5324677A (en) * 1988-06-15 1994-06-28 Seiko Instruments Inc. Method of making memory cell and a peripheral circuit
US5360756A (en) * 1993-01-20 1994-11-01 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a monocrystal silicon layer
US5488243A (en) * 1992-12-04 1996-01-30 Nippondenso Co., Ltd. SOI MOSFET with floating gate
WO2002037575A1 (en) * 2000-11-02 2002-05-10 Infineon Technologies Ag Semiconductor memory cell and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102072A (en) * 1980-12-17 1982-06-24 Toshiba Corp Semiconductor memory storage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102072A (en) * 1980-12-17 1982-06-24 Toshiba Corp Semiconductor memory storage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5324677A (en) * 1988-06-15 1994-06-28 Seiko Instruments Inc. Method of making memory cell and a peripheral circuit
US5153690A (en) * 1989-10-18 1992-10-06 Hitachi, Ltd. Thin-film device
US5488243A (en) * 1992-12-04 1996-01-30 Nippondenso Co., Ltd. SOI MOSFET with floating gate
US5360756A (en) * 1993-01-20 1994-11-01 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device having a monocrystal silicon layer
WO2002037575A1 (en) * 2000-11-02 2002-05-10 Infineon Technologies Ag Semiconductor memory cell and method for producing the same
US6940121B2 (en) * 2000-11-02 2005-09-06 Infineon Technology Ag Semiconductor memory cell

Similar Documents

Publication Publication Date Title
JP2965415B2 (en) Semiconductor storage device
King et al. Charge-trap memory device fabricated by oxidation of si/sub 1-x/ge/sub x
KR100218275B1 (en) Ferroelectric memory device with bulk-type one transistor structure
JPS59111370A (en) Nonvolatile semiconductor memory
JPH0745794A (en) Drive method for ferroelectric memory
JPH0258788B2 (en)
JPH07193150A (en) Non-volatile semiconductor memory and its operation method
JP2001217328A (en) Method of operating semiconductor device
JPH0130313B2 (en)
JPS59161873A (en) Semiconductor non-volatile memory
KR100930074B1 (en) Single Transistor Floating Body DRAM Cell Device with Nonvolatile Functions
JPH04105368A (en) Nonvolatile semiconductor storage device
JPS58158973A (en) Non-volatile semiconductor memory
JP2008118040A (en) Nonvolatile semiconductor storage device, manufacturing method thereof, and information writing method using the same
JPS6038881A (en) Semiconductor nonvolatile memory
JPS6322626B2 (en)
JPH02237164A (en) Nonvolatile memory and its writing
JPH07120721B2 (en) Nonvolatile semiconductor memory device
JP3069607B2 (en) Operating method of semiconductor nonvolatile memory
JPS6367783A (en) Semiconductor storage device
JP2867267B2 (en) Semiconductor nonvolatile memory and operation method thereof
JPH0434981A (en) Semiconductor nonvolatile memory
JPS58154273A (en) Non-volatile semiconductor memory
JPH05226665A (en) Semiconductor storage device
JPH0677491A (en) Semiconductor device