JPS58154273A - Non-volatile semiconductor memory - Google Patents

Non-volatile semiconductor memory

Info

Publication number
JPS58154273A
JPS58154273A JP57037644A JP3764482A JPS58154273A JP S58154273 A JPS58154273 A JP S58154273A JP 57037644 A JP57037644 A JP 57037644A JP 3764482 A JP3764482 A JP 3764482A JP S58154273 A JPS58154273 A JP S58154273A
Authority
JP
Japan
Prior art keywords
floating gate
erasure
electrode
gate
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57037644A
Other languages
Japanese (ja)
Inventor
Yuichi Kato
祐一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP57037644A priority Critical patent/JPS58154273A/en
Publication of JPS58154273A publication Critical patent/JPS58154273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To obtain a non-volatile memory wherein error wiring is not generated, and electrical writing and erasure can be performed, by providing the electrode for erasure on a floating gate via a thin insulation film. CONSTITUTION:The floating gate 14 is superposed on only the thin insulation film and a drain region 13 by eliminating an overlap with a source region. The electrode 17 for erasure is provided on the thin insulation film on the floating gate 14. When the electrode 17 for erasure is put into a high potential to the drain region 13, the potential of the floating gate 14 is attracted, by capacity coupling, to the potential of the drain region 13 wherein the area of superposition part is large. As a result, the electrode 17 for erasure becomes into a high potential to the floating gate 14, then tunnel electrons flow into the electrode 17 for erasure from the floating gate 14 as shown by the arrow D, and accordingly erasure is completed.

Description

【発明の詳細な説明】 本発明は、嘴気的に書龜込み及び消去が可能でw4!F
壽込みを生じな!↑揮郷性半導体メモリに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention allows writing and erasing to be carried out by mouth, and w4! F
Don't make a fuss! ↑Regarding volatile semiconductor memory.

従−9電気的に書き込み及び消去可岬なチャネ個々のメ
モリに書き込みを行なうが否かを決定する選択ゲートを
、書き込みの起ζらないバイ了ス条件にしてお埴ても書
き込まれてしまう危険性が大きかった。そや理由を、第
1図に示した従来のチャール洋入製不揮発性半帰休メモ
リの一例の断面図を用いて!!−する。@1図において
、1はP型半導体基板であシ、その表面近傍に謡+型の
ソース領域2及びドンイく領域3が形成され、ソーネ、
ドレイン領域間のチャネルは、ソース領域側のチャネル
6とドレイン領域側のチャネル7が直列に接続されてお
り、チ、ヤネル6上のゲート絶縁膜8Fisチヤネル7
↓のゲート絶縁膜9よシ厚い。−薄い絶縁膜9.は、ソ
ース領域2上にも設けら、れある、厚い絶縁膜8上には
選択ゲート電極5が設けられている。第1図に示した従
来の不揮発性半導体メモリにおい工、ドレイン領域3に
ドレイン電圧として一定電圧VDを印加したとき、浮遊
ゲート4に電子が入っていない場合には浮遊ゲート下に
チャネル7が形成される。このとき選択ゲート5に読み
出し電圧マwt印加と、チャネル6も高コンダクタンス
KtJI、ソース領域2とドレイン領域30関にチャネ
ルが形成され、10日トランジスタが0菫状態と愈る。
Sub-9 Electrically writable and erasable channels Even if you set the selection gate that determines whether or not to write to each memory to a buy-accept condition that does not cause writing, data will still be written to the memory. The danger was great. The reason for this can be explained using the cross-sectional view of an example of a conventional non-volatile semi-vacuum memory manufactured by Charle Western Co., Ltd. shown in Figure 1! ! - to do. @1 In the figure, 1 is a P-type semiconductor substrate, and near the surface thereof, a source region 2 and a region 3 are formed.
In the channel between the drain regions, the channel 6 on the source region side and the channel 7 on the drain region side are connected in series.
It is thicker than the gate insulating film 9 shown below. -Thin insulating film 9. is also provided on the source region 2, and a selection gate electrode 5 is provided on the thick insulating film 8. In the conventional non-volatile semiconductor memory shown in FIG. 1, when a constant voltage VD is applied to the drain region 3 as the drain voltage, if no electrons enter the floating gate 4, a channel 7 is formed under the floating gate. be done. At this time, when the read voltage MA wt is applied to the selection gate 5, the channel 6 also has a high conductance KtJI, a channel is formed between the source region 2 and the drain region 30, and the transistor returns to the zero violet state on the 10th day.

とζろが、ドレイン領域3にVDを印加しても、浮遊ゲ
ー)4にある111m電子が入9込んでいると、チャネ
ル7は形成されずMo1)ランジスメは011状態であ
る。
However, even if VD is applied to the drain region 3, if the 111m electrons in the floating gate 4 are injected, the channel 7 will not be formed and the Mo1) transition will be in the 011 state.

以上が、従来の不揮発性半導体メ41Jの読み出し方法
である。書き込み時には、ドレイン領域3と選択ゲー)
5をソース領域2と基板1に対し高電位にすると、ソー
ス、ドレイン−のチャネル6゜7が形成される。電子は
、ソース領域2からチャネル6に添って流れ出る。この
とき、浮遊ゲート4は容量結合によタドレイン領域3の
電位に強(引かれ高電位になっているため、チャネル7
の表面は大匙(反転し、その電位はドレイン領域3の電
位とほぼ等しくなる。また、チャネル6も反転してお夛
、その表面電位はソース電位にほぼ等しい、従って、チ
ャネル6と7の境界近傍lOに急使な電界が生じる。電
子はここで強く加速され、その一部が矢印ムのごとく浮
遊ゲートに入り込み、書き込みが完了する。tた、消去
時にはソース領域2をドレイン領域3に対し高電位にす
る。これによp1浮遊ゲート4とソース領域20間の薄
い絶[j19に高電界が加わり、電子が矢印Bのごと(
トンネル電子して消去が行なわれる。
The above is the conventional reading method for the nonvolatile semiconductor memory 41J. When writing, drain region 3 and selection game)
When 5 is placed at a high potential with respect to the source region 2 and substrate 1, source and drain channels 6.7 are formed. Electrons flow out from the source region 2 along the channel 6. At this time, the floating gate 4 is strongly attracted to the potential of the drain region 3 due to capacitive coupling and is at a high potential, so the channel 7
The surface of the spoon is inverted and its potential is approximately equal to the potential of the drain region 3. Channel 6 is also inverted and its surface potential is approximately equal to the source potential, so that the potential of channels 6 and 7 is approximately equal to the source potential. A strong electric field is generated near the boundary IO.The electrons are strongly accelerated here, and some of them enter the floating gate as shown by the arrow, completing the writing.In addition, when erasing, the source region 2 is connected to the drain region 3. This applies a high electric field to the thin isolation [j19] between the p1 floating gate 4 and the source region 20, and the electrons move as shown by arrow B (
Erasing is performed using tunnel electrons.

しかしながら、以上説明したように読み出し、書き込み
、消去全ての動作を電気的に行なうメモIJにおいて、
書き込み時にドレイン領域3の電位をソース領域2に対
して高くすると、同時に浮遊ゲー、4.ツーニー、1域
2よ、電位に□、矢印0のととく電子がトンネル電流°
によシソース領域2から浮遊ゲート4へ流れ込む、その
ため選択ゲート5を書き込みが起らないようにソース領
域2と同電位にしておいても、書き込みが行なわれてし
まうことがある。第3図は二薄いゲート酸化膜88ム、
厚いゲート酸化l1g1050ム、基板濃度7 * 6
 X to”’ am”の試料に対し上記の現象上説明
する実験結果である。第3図はソース領域2に対し、ド
レイン領域に書き込み電圧をav、to秒間印加したと
愈の選択ゲートパイ了スに対するMol)ツンジスタの
閾値変化を示している。理想的には、選択ゲートの閾値
約2v以下では、書亀込みは行なわれず、トランジスタ
の閾値変化は無いはずであるが、前述の理由により閾値
が0.5V変化している。これKより誤書き込みを生ず
ゐ恐れがある。
However, as explained above, in the memory IJ in which all reading, writing, and erasing operations are performed electrically,
When the potential of the drain region 3 is made higher than that of the source region 2 during writing, at the same time a floating gate, 4. Tooney, region 1, 2, the potential is □, and the electron at arrow 0 is a tunnel current °
Therefore, even if the selection gate 5 is set to the same potential as the source region 2 to prevent writing, writing may occur. Figure 3 shows two thin gate oxide films 88m,
Thick gate oxide l1g1050m, substrate concentration 7*6
These are experimental results for explaining the above phenomenon for a sample of X to"'am". FIG. 3 shows the change in the threshold value of the MoI transistor with respect to the selection gate voltage when a write voltage is applied to the source region 2 and the drain region for av and to seconds. Ideally, when the selection gate threshold is about 2V or less, no programming is performed and there should be no change in the transistor threshold, but the threshold changes by 0.5V for the reason described above. This may cause erroneous writing due to K.

本発明は、以上のような誤書龜込みを防止するため浮遊
ゲート上に薄い絶縁膜を介して消去用電極を設けたもの
である。
In the present invention, an erasing electrode is provided on the floating gate with a thin insulating film interposed therebetween in order to prevent the above-mentioned writing errors.

第2図は、消去用電極を有する本発明の不揮発性半導体
メモリの断面図であゐ、第2図において、浮遊ゲー) 
14は従来のものと異な9、ソース領域I2とオーバー
ラツプをす(シ薄い絶縁膜上及びドレイン領域13のみ
に重なり合っている。消去用電極17は浮遊ゲート14
上の薄い絶縁膜の上に設けられている。消去方法を以下
に示す、消去用電極17をドレイン領域13に対し高電
位にすると、浮遊ゲート14の電位は電なり′合った部
分の面積の大匙いドレイン領域13の電位に容量結合に
よp引きつけられる。その結果消去用電極17は浮遊ゲ
ー) 14に対し高電位になシ、トンネル電子が矢印り
のように浮遊ゲート14から消去用電極17に流れ込み
消去が完了する。第st!i1に、薄いゲート蟻化膜8
8ム、厚いゲート酸化膜1050ム、基板濃度6゜7X
10”51−”の試料に対する、本発明による67%l
O秒間の書き込み後の選択ゲートバイアスに対する10
日トランジスタの閾値変化を示しである。
FIG. 2 is a cross-sectional view of the nonvolatile semiconductor memory of the present invention having an erasing electrode.
14 differs from the conventional one in that it overlaps with the source region I2 (it overlaps only on the thin insulating film and the drain region 13).
It is provided on the upper thin insulating film. The erasing method is shown below. When the erasing electrode 17 is set at a high potential with respect to the drain region 13, the potential of the floating gate 14 is capacitively coupled to the potential of the drain region 13, which has a large area where the potentials match. p is attracted. As a result, the erasing electrode 17 is at a high potential with respect to the floating gate 14, and tunnel electrons flow from the floating gate 14 to the erasing electrode 17 as shown by the arrow, completing erasing. No. st! i1, thin gate ant film 8
8μm, thick gate oxide film 1050μm, substrate concentration 6°7X
67% l according to the invention for a sample of 10"51-"
10 for select gate bias after writing for O seconds
The figure shows the change in the threshold value of the transistor.

このように、本発明により誤I!込みの生じない電気的
に書き込み、消去の可能な不揮発性メモリが実現される
Thus, according to the present invention, the erroneous I! A nonvolatile memory that can be electrically written to and erased without causing any data is realized.

本発明の説明KP型半導体基板を用いたが、これに限る
ものではないことは、言うまでもない。
Description of the Invention Although a KP type semiconductor substrate is used, it goes without saying that the present invention is not limited to this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の不揮発性半導体メモリの一実施例の断面
図、 第2図は本発明による不揮発性半導体メモリの賽施例の
断面図、 第3図は薄いゲージ酸化I[88ム、厚いゲート酸(1
1,al1050A、In濃度6 * 7 X 10”
 cps−”の試料に対す為、従来のものと、本発明に
よるM08)ランジスメの、6マ、10秒間の書き込み
後の閾1i[変化を示す図である。 1 、11 、 、半導体基板 2.12.、ソース領域 3.13.、ドレイン領域 4 、14 、 、浮遊ゲート電極 5.15.、選択ゲート電極 6.7.、チャネル領域 8.9.、ゲート絶縁属  、1゜ 10、、、、電子注入領域 16 @ II @ II消去用電極        
以上出願人 株式会社纂二精工舎 代理人 弁理士最上  等・
FIG. 1 is a sectional view of an embodiment of a conventional non-volatile semiconductor memory, FIG. 2 is a sectional view of an embodiment of a non-volatile semiconductor memory according to the present invention, and FIG. 3 is a thin gauge oxide I [88 mm, thick Gate acid (1
1, al1050A, In concentration 6 * 7 x 10”
1, 11, , semiconductor substrate 2. cps-” sample, the threshold 1i [changes] after writing for 6 mm and 10 seconds for the conventional one and the M08) plunger according to the present invention. 12., Source region 3.13., Drain region 4, 14, , Floating gate electrode 5.15., Selection gate electrode 6.7., Channel region 8.9., Gate insulator, 1°10,... , electron injection region 16 @II @II erasing electrode
Applicant: Koji Seikosha Co., Ltd. Agent, Patent Attorney Mogami, etc.

Claims (1)

【特許請求の範囲】[Claims] #Il導電型・の半導体基板の表面近傍に互いに間隔t
−置いて設けられ′ft篇1導電型と異なる第2導電型
のソース、ドレイン領域と、前記ドレイン領域上に設け
られたj11ゲート絶*aと、前記ソース、ドレイン領
域間の半導体基板表面の第1チヤネル領域と、前記II
Iチャネル領域上に設けられた第2ゲート絶縁属と、前
記ソース、ドレイン領域間の前記第1チヤネル領域以外
の第2チヤネル領斌と、前記第2チヤネル領域上に設け
られた第3ゲート絶縁膜と、前記第3ゲート絶縁膜上に
設けられた選択ゲート電極と、前記第1ゲート絶縁膜上
及び第2ゲート絶縁展上に設けられ些浮遊ゲート電極と
、前記浮遊ゲート電極上に設けられた第4ゲート絶縁膜
と、前記第4ゲート絶鰍膜上に設けられた消去用電極と
からなる不揮発性半導体メモリ、   −
There is a distance t near the surface of the #Il conductivity type semiconductor substrate.
- source and drain regions of a second conductivity type different from the first conductivity type provided separately; a gate isolation*a provided on the drain region; and a semiconductor substrate surface between the source and drain regions. a first channel region; and the II
a second gate insulator provided on the I channel region; a second channel region other than the first channel region between the source and drain regions; and a third gate insulator provided on the second channel region. a selection gate electrode provided on the third gate insulating film, a floating gate electrode provided on the first gate insulating film and the second gate insulating film, and a selection gate electrode provided on the floating gate electrode. a nonvolatile semiconductor memory comprising a fourth gate insulating film and an erasing electrode provided on the fourth gate insulating film;
JP57037644A 1982-03-10 1982-03-10 Non-volatile semiconductor memory Pending JPS58154273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57037644A JPS58154273A (en) 1982-03-10 1982-03-10 Non-volatile semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57037644A JPS58154273A (en) 1982-03-10 1982-03-10 Non-volatile semiconductor memory

Publications (1)

Publication Number Publication Date
JPS58154273A true JPS58154273A (en) 1983-09-13

Family

ID=12503353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57037644A Pending JPS58154273A (en) 1982-03-10 1982-03-10 Non-volatile semiconductor memory

Country Status (1)

Country Link
JP (1) JPS58154273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144976A (en) * 1984-01-06 1985-07-31 Seiko Instr & Electronics Ltd Writing method at low voltage of nonvolatile semiconductor memory
US4667217A (en) * 1985-04-19 1987-05-19 Ncr Corporation Two bit vertically/horizontally integrated memory cell
US6121087A (en) * 1996-06-18 2000-09-19 Conexant Systems, Inc. Integrated circuit device with embedded flash memory and method for manufacturing same
KR100348311B1 (en) * 2000-07-19 2002-08-09 주식회사 하이닉스반도체 Nonvolatile Memory Device and method for Fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292441A (en) * 1976-01-30 1977-08-03 Toshiba Corp Semiconductor memory unit
JPS5513901A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Fixed memory of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292441A (en) * 1976-01-30 1977-08-03 Toshiba Corp Semiconductor memory unit
JPS5513901A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Fixed memory of semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144976A (en) * 1984-01-06 1985-07-31 Seiko Instr & Electronics Ltd Writing method at low voltage of nonvolatile semiconductor memory
US4667217A (en) * 1985-04-19 1987-05-19 Ncr Corporation Two bit vertically/horizontally integrated memory cell
US6121087A (en) * 1996-06-18 2000-09-19 Conexant Systems, Inc. Integrated circuit device with embedded flash memory and method for manufacturing same
KR100348311B1 (en) * 2000-07-19 2002-08-09 주식회사 하이닉스반도체 Nonvolatile Memory Device and method for Fabricating the same

Similar Documents

Publication Publication Date Title
KR100292361B1 (en) How to Write Data in Semiconductor Nonvolatile Memory
JP3073645B2 (en) Nonvolatile semiconductor memory device and method of operating the same
EP0991080A2 (en) Non-volatile semiconductor memory device
JPH07120720B2 (en) Nonvolatile semiconductor memory device
EP0083194A2 (en) Electrically erasable programmable read only memory cell having a single transistor
JPH0258788B2 (en)
JP2830447B2 (en) Semiconductor nonvolatile storage device
JPH027295A (en) Non-volatile semiconductor memory
JPH04105368A (en) Nonvolatile semiconductor storage device
JPS58154273A (en) Non-volatile semiconductor memory
JPH02308571A (en) Semiconductor memory device
US10049741B2 (en) Non-volatile memory with floating gate having protruding portion
JP2732070B2 (en) Writing method for nonvolatile semiconductor memory device
JPS63306598A (en) Erasing system for non-volatile memory cell
JPH0577189B2 (en)
JP3878370B2 (en) Nonvolatile memory and driving method thereof
JPH06334195A (en) Non-volatile semiconductor memory device
KR100488583B1 (en) Dual bit split gate flash memory device and method for driving the same
JPS6045067A (en) Nonvolatile semiconductor memory device
JP2867267B2 (en) Semiconductor nonvolatile memory and operation method thereof
JPS58158973A (en) Non-volatile semiconductor memory
JP4262313B2 (en) Nonvolatile memory device
JP2723247B2 (en) Nonvolatile semiconductor memory device
US5134450A (en) Parallel transistor circuit with non-volatile function
JPH03101168A (en) Nonvolatile semiconductor memory