JPH0432982B2 - - Google Patents

Info

Publication number
JPH0432982B2
JPH0432982B2 JP22982284A JP22982284A JPH0432982B2 JP H0432982 B2 JPH0432982 B2 JP H0432982B2 JP 22982284 A JP22982284 A JP 22982284A JP 22982284 A JP22982284 A JP 22982284A JP H0432982 B2 JPH0432982 B2 JP H0432982B2
Authority
JP
Japan
Prior art keywords
coating film
impedance
electrode
sponge
paint film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22982284A
Other languages
Japanese (ja)
Other versions
JPS61108954A (en
Inventor
Kunio Deguchi
Kyoshi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22982284A priority Critical patent/JPS61108954A/en
Publication of JPS61108954A publication Critical patent/JPS61108954A/en
Publication of JPH0432982B2 publication Critical patent/JPH0432982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • G01N27/205Investigating the presence of flaws in insulating materials

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は塗膜測定プローブに係り、特に金属表
面に防錆や美観仕上げ等の目的で塗付された塗装
膜の劣化を電気化学的に検出し評価するに好適な
塗膜測定プローブに関する。 〔発明の技術的背景〕 一般に、金属表面の塗膜劣化の検出や評価を行
なう場合、第5図の概念図に示す如き構成を用い
た電気化学的評価方式が実施されている。同図に
示す如く、評価に当つては素地金属1上に塗装し
た評価すべき塗装膜2の上に導電性ゲル3を介し
てAl箔等の測定用電極4を接触させる。次に、
素地金属1と測定用電極4間に電流計5を介して
電流電源6を用いて交流電圧を印加する。このと
きに印加された電圧を素地金属1と測定用電極4
の間に接続された電圧計7により読取る。 一般に、塗装膜2は塗装直後の正常な状態では
電気抵抗が非常に大きく、108Ω−cmあるいはそ
れ以上の直流抵抗を有する。塗装膜2の電気的等
価回路は、塗装膜2が正常な場合には、第6図の
等価回路図に示すように抵抗Rfと容量Cfとの並
列回路で表わされる。これに対して、塗装膜2が
劣化してくると、この抵抗Rfが減少してくると
ともに、第6図に示されるような単純な等価回路
から複数の時定数を持つような複雑なインピーダ
ンスを示すようになつてくる。しかしながら、劣
化の初期段階では、抵抗Rfと容量Cfとの並列回
路として扱うことが可能である。 塗装膜2のインピーダンスZ(jω)は、第5図
の構成を通じて測定される電圧、電流に基いて、
(1)式から求めることができる。 Z(jω)=e(jω)/i(jω) ……(1) ただし、ωは角周波数、e(jω)は電圧、i
(jω)は電流である。また、もう一つの劣化の指
標であるtanδは(2)式から求めることができる。 tanδ=|Zm|/|Ze| ……(2) ここで、Zmはインピーダンスの虚数部、Zeは
インピーダンスの実数部である。ちなみに、実数
部とはインピーダンスが純抵抗で得られるときの
位相成分である。塗装膜が劣化してくると、第6
図の抵抗Rfが減少し、同じ交流電圧e(jω)を印
加した場合にはi(jω)が増加し、インピーダン
スZ(jω)が減少する。同様にして、抵抗Rfが減
少してくると、|Ze|が減少しtanδが増加する。
このようにして塗装膜2のインピーダンスあるい
はtanδを測定することで、塗装膜の劣化を検出す
ることができる。 塗装膜2の劣化前後のインピーダンスの変化を
第7図ならびに第8図の特性図を示す。ちなみ
に、第7図はインピーダンスの絶対値を周波数
(対数)に対してプロツトしたものであり、一般
にボード線図と言われている。劣化していない塗
装膜のインピーダンス曲線aに対して塗装膜が劣
化してくるとインピーダンスは曲線bのような周
波数の低い側での減少が顕著となる。したがつ
て、インピーダンスの絶対値のみから劣化を検出
する場合には、周波数の低い方で測定する方が有
効である。一方、第8図はインピーダンスを実数
部と虚数部とで表示したもので、一般にはナイキ
スト線図と言われる形に複素表示したものであ
る。塗装膜2が劣化してくるとインピーダンス軌
跡dは正常な場合(曲線c)と比べて半円が小さ
くなるとともに円が変形してくる。この形から塗
装膜の劣化の程度を推定することができる。 〔背景技術の問題点〕 上述した如く、第5図の概念図に示す如き構成
を通じて、塗装膜2のインピーダンスを測定した
結果から塗装膜2の劣化を検出することができ
る。ところが、このような方式において正確な測
定を行なうためには、アルミニウム箔等の測定用
電極4を塗装膜2に密着される必要がある。この
ため、従来から導電性ゲル3を被測定面に塗布し
て、測定誤差を少なくするべき対策が考えられて
きた。しかしながら、塗装膜2上の被測定面が天
井面や凹面部分に対応するような場合には、第9
図a,bに示すように、導電性ゲル3内に気泡M
を生じやすく、生じた気泡Mの除去も極めて困難
であるというような状況になりやすい。この場
合、塗装膜2上の被測定面全面に導電性ゲル3が
介在していない状態となり、測定用電極4と塗装
膜2の間の測定面積が一定とならない。このため
に、インピーダンスの測定結果に誤差を生じ、塗
装膜2の本来のインピーダンスが測定できなくな
り、塗装膜2の劣化を正確に検出することが不可
能となる。 〔発明の目的〕 従つて、本発明の目的は、上記従来技術の問題
点を解消し、金属構造体表面に塗布された塗装膜
の劣化を正確かつ簡便に検出、評価することを可
能とした塗膜測定プローブを提供するにある。 〔発明の概要〕 上記目的を達成するために、本発明は塗膜に対
向する面に配されるスポンジ状電極と、スポンジ
状電極に含浸すべき導電性ゲルを収容する容器と
を備えた塗膜測定プローブを提供するものであ
る。 〔発明の実施例〕 以下、図面を参照しながら本発明の実施例を説
明する。 第1図は本発明の一実施例に係る塗膜測定プロ
ーブの概略構成図で、同図aは断面図、同図bは
底面図をそれぞれ示すものである。一方、第2図
は第1図に示した塗膜測定プローブを使用して塗
装膜の凹面状部分の塗膜インピーダンスを測定し
ている状態を示した説明図である。 さて、第1図に示す如く、プローブ本体8の内
部にはベロー9を取り付けた多孔板10が配され
ており、先端には外面(被測定面側)を凸面状に
したスポンジ状電極11が取り付けられている。
更に、プローブ本体8のベロー9の上部には空気
抜き孔12が配され、側面には導電性ゲル3を注
入するためのゲル注入口13が設けられている。
導電性ゲル3は注入口13よりスポンジ状電極1
1と多孔板10およびベロー9から成るゲル槽内
に注入される。導電性ゲル3にはリード線として
被覆銅線14が接続されている。ちなみに、導電
性ゲル3としては3%食塩水に3%の増粘剤(カ
ルボキシメチルセルローズ)を加えたもの等が使
用可能である。なお、プローブ本体8の下端には
塗膜インピーダンスの測定時にプローブ本体8を
塗装膜に固定するための磁石15が取り付けられ
ている。 かかる構成において、次にその作用を第2図の
説明図に従つて説明する。第1図に示すように構
成された塗膜測定プローブを塗装膜2上の被測定
面に当てると、プローブ本体8の先端部のスポン
ジ状電極11は凸面状となつているために被測定
面側に必ず中央部より接触して行き、塗装膜2の
スポンジ状電極11との間に気泡が発生しても、
これは外周に押し出されていく。このため、気泡
を生じることなく、最終的にスポンジ状電極11
は塗装膜2の被測定面に全面密着して、磁石15
と素地金属1の間の磁気的な吸着力により固定さ
れる。導電性ゲル3はスポンジ状電極11に浸み
込んでおり、被測定塗膜面全面に付着する。ま
た、スポンジ状電極11を被測定面に押しつけた
りはがしたりする時に生じるゲル槽内の圧力の変
化は、ベロー9の伸縮により緩衝される。測定時
のプローブ本体8の固定は磁石15により行なう
ので、斜面、垂直面、天井面のいずれでも確実に
固定することができ、簡単でかつ確実な塗装膜イ
ンピーダンスの測定が可能となる。 さて、本実施例の塗膜測定プローブを使用して
エポキシ系厚膜塗料の塗装膜インピーダンスを測
定した結果を下の表1に示す。表1からも明らか
な如く、測定結果はアルミ箔電極を使用した場合
とほぼ一致しており、本実施例の塗膜測定プロー
ブは塗膜インピーダンス測定に当つて有効に作用
する。
[Technical Field of the Invention] The present invention relates to a coating film measuring probe, and in particular to a coating film suitable for electrochemically detecting and evaluating deterioration of a coating film applied to a metal surface for purposes such as rust prevention and aesthetic finishing. Concerning membrane measurement probes. [Technical Background of the Invention] Generally, when detecting and evaluating the deterioration of a coating film on a metal surface, an electrochemical evaluation method using a configuration as shown in the conceptual diagram of FIG. 5 is implemented. As shown in the figure, for evaluation, a measuring electrode 4 such as Al foil is brought into contact with a coating film 2 to be evaluated, which is coated on a base metal 1, via a conductive gel 3. next,
An alternating voltage is applied between the base metal 1 and the measurement electrode 4 using a current power source 6 via an ammeter 5. The voltage applied at this time is applied to the base metal 1 and the measurement electrode 4.
The voltage is read by a voltmeter 7 connected between the two. Generally, the coating film 2 has a very high electrical resistance in a normal state immediately after coating, and has a DC resistance of 10 8 Ω-cm or more. When the paint film 2 is normal, the electrical equivalent circuit of the paint film 2 is represented by a parallel circuit of a resistor Rf and a capacitor Cf, as shown in the equivalent circuit diagram of FIG. On the other hand, as the coating film 2 deteriorates, this resistance Rf decreases, and a complex impedance with multiple time constants can be changed from a simple equivalent circuit as shown in FIG. It will come as shown. However, at the initial stage of deterioration, it is possible to treat it as a parallel circuit of a resistor Rf and a capacitor Cf. The impedance Z (jω) of the coating film 2 is determined based on the voltage and current measured through the configuration shown in FIG.
It can be obtained from equation (1). Z(jω) = e(jω)/i(jω) ...(1) where ω is the angular frequency, e(jω) is the voltage, i
(jω) is the current. Further, tan δ, which is another index of deterioration, can be obtained from equation (2). tanδ=|Zm|/|Ze|...(2) Here, Zm is the imaginary part of impedance, and Ze is the real part of impedance. Incidentally, the real part is the phase component when impedance is obtained by pure resistance. When the paint film deteriorates, the 6th
When the resistance Rf in the figure decreases and the same AC voltage e(jω) is applied, i(jω) increases and the impedance Z(jω) decreases. Similarly, as resistance Rf decreases, |Ze| decreases and tanδ increases.
By measuring the impedance or tan δ of the paint film 2 in this manner, deterioration of the paint film can be detected. The characteristic diagrams of FIG. 7 and FIG. 8 show changes in impedance before and after deterioration of the coating film 2. Incidentally, FIG. 7 is a plot of the absolute value of impedance versus frequency (logarithm), and is generally referred to as a Bode diagram. As the paint film deteriorates, the impedance decreases more markedly on the lower frequency side as shown by curve b, compared to the impedance curve a of the undegraded paint film. Therefore, when detecting deterioration only from the absolute value of impedance, it is more effective to measure at a lower frequency. On the other hand, FIG. 8 shows the impedance as a real part and an imaginary part, which is generally expressed as a complex diagram in a form called a Nyquist diagram. As the paint film 2 deteriorates, the semicircle of the impedance locus d becomes smaller and the circle becomes deformed compared to the normal case (curve c). The degree of deterioration of the paint film can be estimated from this shape. [Problems of Background Art] As described above, deterioration of the coating film 2 can be detected from the results of measuring the impedance of the coating film 2 through the configuration shown in the conceptual diagram of FIG. However, in order to carry out accurate measurements using such a method, it is necessary that the measuring electrode 4 made of aluminum foil or the like be brought into close contact with the coating film 2. For this reason, conventional measures have been taken to reduce measurement errors by applying conductive gel 3 to the surface to be measured. However, when the surface to be measured on the coating film 2 corresponds to a ceiling surface or a concave surface, the ninth
As shown in Figures a and b, air bubbles M are inside the conductive gel 3.
This tends to result in a situation where it is extremely difficult to remove the bubbles M that have formed. In this case, the conductive gel 3 is not present on the entire surface of the coating film 2 to be measured, and the measurement area between the measurement electrode 4 and the coating film 2 is not constant. This causes an error in the impedance measurement result, making it impossible to measure the original impedance of the paint film 2, and making it impossible to accurately detect the deterioration of the paint film 2. [Object of the Invention] Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art and to make it possible to accurately and easily detect and evaluate the deterioration of a paint film applied to the surface of a metal structure. To provide coating measurement probes. [Summary of the Invention] In order to achieve the above object, the present invention provides a coating comprising a sponge-like electrode disposed on a surface facing the coating film, and a container containing a conductive gel to be impregnated into the sponge-like electrode. A membrane measurement probe is provided. [Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a coating film measuring probe according to an embodiment of the present invention, in which FIG. 1A shows a cross-sectional view, and FIG. 1B shows a bottom view. On the other hand, FIG. 2 is an explanatory diagram showing a state in which the coating film impedance of a concave portion of the coating film is measured using the coating film measurement probe shown in FIG. 1. Now, as shown in FIG. 1, a perforated plate 10 with a bellows 9 attached thereto is disposed inside the probe body 8, and a sponge-like electrode 11 with a convex outer surface (surface to be measured) is disposed at the tip. installed.
Further, an air vent hole 12 is provided in the upper part of the bellows 9 of the probe body 8, and a gel injection port 13 for injecting the conductive gel 3 is provided in the side surface.
The conductive gel 3 is inserted into the sponge-like electrode 1 from the injection port 13.
1, a perforated plate 10, and a bellows 9. A covered copper wire 14 is connected to the conductive gel 3 as a lead wire. Incidentally, as the conductive gel 3, a solution prepared by adding 3% thickener (carboxymethyl cellulose) to 3% saline can be used. Note that a magnet 15 is attached to the lower end of the probe body 8 for fixing the probe body 8 to the paint film when measuring the paint film impedance. The operation of this configuration will now be explained with reference to the explanatory diagram of FIG. 2. When the coating film measurement probe configured as shown in FIG. Even if air bubbles occur between the coating film 2 and the sponge-like electrode 11,
This is pushed out to the outer periphery. Therefore, the sponge-like electrode 11 is finally
is fully in close contact with the surface to be measured of the coating film 2, and the magnet 15
It is fixed by the magnetic adsorption force between the base metal 1 and the base metal 1. The conductive gel 3 soaks into the sponge-like electrode 11 and adheres to the entire surface of the coating film to be measured. Furthermore, changes in the pressure within the gel bath that occur when the sponge electrode 11 is pressed against or peeled off from the surface to be measured are buffered by the expansion and contraction of the bellows 9. Since the probe body 8 is fixed by the magnet 15 during measurement, it can be securely fixed on any slope, vertical surface, or ceiling surface, making it possible to easily and reliably measure the coating film impedance. Now, the results of measuring the coating film impedance of the epoxy thick film paint using the coating film measuring probe of this example are shown in Table 1 below. As is clear from Table 1, the measurement results are almost the same as those obtained when aluminum foil electrodes are used, and the coating film measurement probe of this example works effectively in measuring coating film impedance.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、塗装膜イ
ンピーダンスの測定に当つて、被測定塗膜面が斜
面、垂直面、天井面であつても、また凹状面や凸
状面であつても、さらに導電性ゲルを塗布した時
に気泡を生じ易いような箇所であつても、測定面
内の気泡の発生を防止でき、塗膜劣化を検出する
ためのインピーダンスの測定を正確に実施するこ
とを可能とした塗膜測定プローブを得ることでき
るものである。
As described above, according to the present invention, when measuring paint film impedance, it is possible to measure paint film impedance regardless of whether the paint film surface to be measured is a slope, a vertical surface, a ceiling surface, or a concave or convex surface. Furthermore, even in areas where bubbles are likely to occur when applying conductive gel, it is possible to prevent bubbles from forming within the measurement surface, making it possible to accurately measure impedance to detect paint film deterioration. This makes it possible to obtain a coating film measurement probe that allows for the measurement of coatings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは本発明の一実施例に係る塗膜測
定プローブの断面図および底面図、第2図は第1
図に示した塗膜測定プローブを用いて塗装膜劣化
を電気化学的に評価する状態を示す説明図、第3
図a,bは電極の形状の他の例を示す説明図、第
4図a,bはそれぞれ本発明の他の実施例および
その他の実施例を示す説明図、第5図は塗装膜劣
化を電気化学的に評価する周知の方式を示す概念
図、第6図は塗装膜の電気的な等価回路図、第7
図は塗装膜の劣化によるインピーダンスの周波数
依存性の変化を示す特性図、第8図は第7図を複
素平面上で表わした特性図、第9図a,bはAl
箔電極を用いた場合の問題点を示す説明図であ
る。 1……素地金属、2……塗装膜、3……導電性
ゲル、8……プローブ本体、9……ベロー、10
……多孔板、11……スポンジ状電極、14……
リード線、15……磁石。
1a and 1b are cross-sectional views and bottom views of a coating film measurement probe according to an embodiment of the present invention, and FIG.
Explanatory diagram showing the state in which paint film deterioration is electrochemically evaluated using the paint film measurement probe shown in Figure 3.
Figures a and b are explanatory views showing other examples of electrode shapes, Figures 4 a and b are explanatory views showing other embodiments of the present invention and other examples, respectively, and Figure 5 is an explanatory view showing other examples of electrode shapes. A conceptual diagram showing a well-known method for electrochemical evaluation. Figure 6 is an electrical equivalent circuit diagram of a paint film. Figure 7 is a conceptual diagram showing a well-known method of electrochemical evaluation.
The figure is a characteristic diagram showing changes in the frequency dependence of impedance due to deterioration of the paint film, Figure 8 is a characteristic diagram representing Figure 7 on a complex plane, Figure 9 a and b are Al
It is an explanatory view showing a problem when using a foil electrode. DESCRIPTION OF SYMBOLS 1... Base metal, 2... Paint film, 3... Conductive gel, 8... Probe body, 9... Bellows, 10
... Porous plate, 11 ... Sponge-like electrode, 14 ...
Lead wire, 15...Magnet.

Claims (1)

【特許請求の範囲】 1 塗膜に対向する面に配されるスポンジ状電極
と、このスポンジ状電極に含浸すべき導電性ゲル
を収納する容器とを備えたことを特徴とする塗膜
測定プローブ。 2 前記スポンジ状電極の周辺に磁石を配したこ
とを特徴とする特許請求の範囲第1項に記載の塗
膜測定プローブ。 3 前記容器が導電性ゲルの圧力を吸収するよう
に構成されることを特徴とする特許請求の範囲第
1項に記載の塗膜測定プローブ。 4 前記容器がベロー状に構成されることを特徴
とする特許請求の範囲第1項に記載の塗膜測定プ
ローブ。 5 前記スポンジ状電極は、前記塗膜に対向する
面が凸面であることを特徴とする特許請求の範囲
第1項に記載の塗膜測定プローブ。
[Scope of Claims] 1. A coating film measurement probe comprising: a sponge-like electrode disposed on a surface facing the coating film; and a container containing a conductive gel to be impregnated into the sponge-like electrode. . 2. The coating film measurement probe according to claim 1, characterized in that a magnet is arranged around the sponge-like electrode. 3. The coating film measurement probe according to claim 1, wherein the container is configured to absorb the pressure of the conductive gel. 4. The coating film measurement probe according to claim 1, wherein the container is configured in a bellows shape. 5. The coating film measurement probe according to claim 1, wherein the sponge-like electrode has a convex surface facing the coating film.
JP22982284A 1984-10-31 1984-10-31 Probe for measuring coat film Granted JPS61108954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22982284A JPS61108954A (en) 1984-10-31 1984-10-31 Probe for measuring coat film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22982284A JPS61108954A (en) 1984-10-31 1984-10-31 Probe for measuring coat film

Publications (2)

Publication Number Publication Date
JPS61108954A JPS61108954A (en) 1986-05-27
JPH0432982B2 true JPH0432982B2 (en) 1992-06-01

Family

ID=16898209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22982284A Granted JPS61108954A (en) 1984-10-31 1984-10-31 Probe for measuring coat film

Country Status (1)

Country Link
JP (1) JPS61108954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145136A (en) * 2012-01-13 2013-07-25 Panasonic Corp Fatigue testing method and fatigue testing device of test piece

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3685916T2 (en) * 1985-05-14 1993-02-25 Shell Int Research ADHESIVE TEST CELL.
GB8523553D0 (en) * 1985-09-24 1985-10-30 Colebrand Ltd Corrosion detection
JPH02157642A (en) * 1988-12-12 1990-06-18 Hideaki Takahashi Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
JPH04190149A (en) * 1990-04-09 1992-07-08 Toshiba Corp Apparatus for diagnosing deterioration of film
JPH04218756A (en) * 1991-03-29 1992-08-10 Toshiba Corp Method for diagnosing deterioration of film
JP4804170B2 (en) * 2006-02-24 2011-11-02 大日本塗料株式会社 Measurement cell for under-coat metal corrosion diagnostic equipment
EP2068139A1 (en) 2007-12-06 2009-06-10 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Electrochemical cell for EIS
JP2009204593A (en) * 2008-02-29 2009-09-10 Ihi Corp Probe for electrochemical measurement in electrolyte, electrochemical measuring device, and electrochemical measuring method using it
JP6037868B2 (en) * 2012-04-19 2016-12-07 関西ペイント株式会社 Electrochemical measurement probe and corrosion evaluation method
JP6574355B2 (en) * 2015-08-05 2019-09-11 太平洋セメント株式会社 Corrosion sensor and corrosion detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145136A (en) * 2012-01-13 2013-07-25 Panasonic Corp Fatigue testing method and fatigue testing device of test piece

Also Published As

Publication number Publication date
JPS61108954A (en) 1986-05-27

Similar Documents

Publication Publication Date Title
JPH0432982B2 (en)
US2457234A (en) Apparatus for electrolytically determining the thickness of metal coatings
CN111879695A (en) Real-time monitoring method for coating failure and corrosion monitoring sensor
US3649472A (en) Porosity testing
CN111788478A (en) Corrosion measuring device
US3293155A (en) Method for determining the corrosion resistance of anodized aluminum parts
JP4804170B2 (en) Measurement cell for under-coat metal corrosion diagnostic equipment
JPS6131948A (en) Instrument for measuring impedance of coated film
US4537664A (en) Method for continuously monitoring oxide thickness on moving aluminum foil
EP0245116A2 (en) Apparatus and method for measuring resistivity
JPH02285250A (en) Probe for measuring coating film
JPH0521423B2 (en)
JPS60200153A (en) Metal corrosion measuring apparatus
JPH0528781B2 (en)
CN111103506B (en) Method for detecting breakdown voltage of special-shaped plate
JPH06102218A (en) Measuring method for deterioration of coating film
GB1577724A (en) Humidity sensors
JP2670371B2 (en) Coating film measurement probe
JPH04335150A (en) Probe for measuring deterioration of paint film
JPH0792119A (en) Probe for measuring deterioration of coating film
JPH0648405Y2 (en) Surface resistance measuring probe
JPH0350983B2 (en)
JPH0619339B2 (en) Highly sensitive polarization measuring method and apparatus for coated metal
US5410256A (en) Dissipation factor as a predictor of anodic coating performance
JPH0333007Y2 (en)