JPH0350983B2 - - Google Patents

Info

Publication number
JPH0350983B2
JPH0350983B2 JP19831583A JP19831583A JPH0350983B2 JP H0350983 B2 JPH0350983 B2 JP H0350983B2 JP 19831583 A JP19831583 A JP 19831583A JP 19831583 A JP19831583 A JP 19831583A JP H0350983 B2 JPH0350983 B2 JP H0350983B2
Authority
JP
Japan
Prior art keywords
measurement
electrode
polarization
measured
electrolytic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19831583A
Other languages
Japanese (ja)
Other versions
JPS6091250A (en
Inventor
Hiroyuki Hasebe
Masayuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP19831583A priority Critical patent/JPS6091250A/en
Publication of JPS6091250A publication Critical patent/JPS6091250A/en
Publication of JPH0350983B2 publication Critical patent/JPH0350983B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電解槽を用いて金属構造体の耐食性
等を非破壊的に評価する電気化学測定方法に関
し、更に詳しくは、塗装等の被覆層を施した金属
構造体の腐食状況を、塗膜上より非破壊的に評価
する電気化学測定方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an electrochemical measurement method for non-destructively evaluating the corrosion resistance etc. of a metal structure using an electrolytic bath, and more specifically, to This invention relates to an electrochemical measurement method for non-destructively evaluating the corrosion status of metal structures coated with paint.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

塗装等の被覆層を施した金属構造体の腐食状況
を評価するため、従来より塗膜表面の目視観察や
塗膜のtanδ測定などが行なわれて来た。しかし、
目視観察ではその腐食判定基準が主観的になりや
すい他、塗膜下での腐食が相当進行しないと塗膜
面に変化が現われないという問題点があつた。
又、塗膜のtanδの測定する手法においては、その
得られる値と実際の腐食状況との対応がつかない
場合が多く、実際的な評価技術とはいえなかつ
た。
In order to evaluate the corrosion status of metal structures coated with coating layers such as paint, visual observation of the coating film surface and tan δ measurement of the coating film have been conventionally performed. but,
Visual observation has the problem that the corrosion criteria tend to be subjective and that changes do not appear on the coating surface unless corrosion under the coating has progressed considerably.
In addition, in the method of measuring tan δ of a paint film, the obtained value often does not correspond to the actual corrosion situation, and it cannot be said to be a practical evaluation technique.

そこで、これらの問題点を解決するために、ク
ーロスタツト法、カレントインターラプター法や
交流インピーダンス法等の電気化学的測定法の適
用が試みられて来ているが、これらの測定法を行
なうためには、下地金属よりリード線を取り出す
ことが必要である。しかし、通常の構造物におい
ては、その全面に防食のため塗装が施してあるこ
とが多く、リード線を引き出すためには塗膜面を
一部取り去る必要があつた。そのため測定の度に
塗膜の一部の破壊・修復を行なわねばならず、非
能率的である他、修復が悪かつた場合、その箇所
の耐食性が劣化し腐食を引き起こす可能性が高く
なり、又、修復箇所の外観悪化により美観を重要
視する構造物の場合大きな問題を引き起こしかね
なかつた。さらに測定精度上も必ずしも充分な測
定精度を得る事が困難であつた。
Therefore, in order to solve these problems, attempts have been made to apply electrochemical measurement methods such as the coulostat method, current interrupter method, and AC impedance method. , it is necessary to take out the lead wire from the underlying metal. However, in ordinary structures, the entire surface of the structure is often coated with anti-corrosion paint, and it is necessary to remove a portion of the coated surface in order to pull out the lead wire. Therefore, it is necessary to destroy and repair a part of the paint film each time a measurement is made, which is inefficient and, if the repair is incorrect, there is a high possibility that the corrosion resistance of that part will deteriorate and corrosion will occur. In addition, in the case of structures where aesthetics are important, the deterioration of the appearance of the repaired area could cause major problems. Furthermore, it has been difficult to obtain sufficient measurement accuracy.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みなされたものであ
り、塗装等の被覆層を施した金属構造体表面にお
ける腐食等の電気化学的状況を前記被覆層上より
非破壊的にかつ高精度で測定する事の可能な電気
化学測定方法を提供することをその目的としてい
る。
The present invention has been made in view of the above-mentioned circumstances, and is a method for measuring electrochemical conditions such as corrosion on the surface of a metal structure coated with a coating layer such as paint, non-destructively and with high precision from above the coating layer. The purpose is to provide a possible electrochemical measurement method.

〔発明の概要〕[Summary of the invention]

本発明は、金属構造体表面の被覆層を介して前
記金属構造体の腐食状態を測定する電気化学測定
方法において、参照電極及び不溶性電極を具備し
た一対の同一形状の電解槽を前記金属構造体の被
覆層上に設け、それぞれの不溶性電極間に電気信
号を印加し一方の電解槽がカソード分極、他方の
電解槽がアノード分極となるように分極させ、そ
の際の参照電極間のインピーダンスを測定するこ
とを特徴とする電気化学測定方法である。
The present invention provides an electrochemical measurement method for measuring the corrosion state of a metal structure through a coating layer on the surface of the metal structure, in which a pair of electrolytic cells having the same shape and having a reference electrode and an insoluble electrode are attached to the metal structure. An electric signal is applied between each insoluble electrode to polarize one electrolytic cell to cathode polarization and the other to anode polarization, and the impedance between the reference electrodes is measured at this time. This is an electrochemical measurement method characterized by:

ここでいう分極とは電極に外部から電流を流す
ことで自然状態から、アノード方向またはカソー
ド方向へ電極電位を移動する操作を示す。従つて
交流による測定の場合は交流周波数で交互に分極
状態が現れることになる。すなわち被測定物の電
位が貴の方向に分極させられているアノード分極
状態と、被測定物が卑の方向に分極させられてい
るカソード分極状態とが交互に現れることにな
る。本発明方法による測定に使用する電源は交流
直流を問わないため、インピーダンスも交流、直
流をとわない。
Polarization here refers to an operation in which the electrode potential is moved from its natural state toward the anode or cathode by passing a current through the electrode from the outside. Therefore, in the case of measurement using alternating current, polarization states appear alternately at the alternating current frequency. That is, an anode polarization state in which the potential of the object to be measured is polarized in the noble direction and a cathode polarization state in which the potential of the object to be measured is polarized in the negative direction alternately appear. Since the power source used for the measurement according to the method of the present invention does not matter whether it is AC or DC, the impedance can also be AC or DC.

なお本発明における被覆層とは、有機質、無機
質等からなる被覆層であり、塗装等による被覆層
が挙げられる。
Note that the coating layer in the present invention is a coating layer made of an organic substance, an inorganic substance, etc., and includes a coating layer formed by painting or the like.

次に本発明を説明するために、従来より用いら
れて来た電解槽と本発明で用いられる電解槽とも
等価回路モデルに置き換え解析を行なう。
Next, in order to explain the present invention, the electrolytic cell conventionally used and the electrolytic cell used in the present invention will be replaced with an equivalent circuit model and analyzed.

第1図に本発明の一実施例を、又第2図に従来
より用いられて来た電解槽の一例をそれぞれ断面
的に示す。
FIG. 1 shows an embodiment of the present invention, and FIG. 2 shows a cross-sectional view of an example of an electrolytic cell conventionally used.

第1図および第2図において、電解槽本体1,
1′あるいは1は、被覆層としての塗膜層として
塗膜2で被われた金属構造体3の被測定面4,
4′あるいは4′に水密固定され、電解槽本体1,
1′あるいは1″のそれぞれの内部には対極5,
5′あるいは5と参照極6,6′あるいは6″およ
び電解質溶液7が保持される。対極5,5′ある
いは5″は被測定面4,4′あるいは4″に電気化
学的測定のための電気的刺激を与えるのに供さ
れ、通常白金等の不溶性金属からなる不溶性電極
が用いられる。また、参照極6,6′あるいは
6″は被測定面4,4′あるいは4″の分極を測定
するための基準となるもので、通常飽和甘コウ電
極(SCE)や銀−塩化銀電極あるいは白金黒付白
金等が用いられる。しかし、被測定面4,4′,
4″の分極に較べて対極5,5′,5″の分極が無
視し得る程小さい場合は対極5,5′,5″が参照
極の機能を兼ねることも可能である。電解質溶液
には通常食塩水が用いられるが、イオン導電性を
有する液体でかつ塗膜2を過度に劣化させないも
のであれば適宜使用できる。
In FIG. 1 and FIG. 2, the electrolytic cell body 1,
1' or 1 is a surface to be measured 4 of a metal structure 3 covered with a coating film 2 as a coating layer,
4' or 4' in a watertight manner, and the electrolytic cell body 1,
Inside each of 1' or 1'' there is a counter electrode 5,
5' or 5, a reference electrode 6, 6' or 6'' and an electrolyte solution 7 are held.A counter electrode 5, 5' or 5'' is attached to the surface to be measured 4, 4' or 4'' for electrochemical measurements. The reference electrode 6, 6' or 6'' is used to provide electrical stimulation, and an insoluble electrode made of an insoluble metal such as platinum is usually used. Usually, a saturated sweetened electrode (SCE), a silver-silver chloride electrode, or platinum with platinum black is used.
If the polarization of the counter electrodes 5, 5', 5" is negligibly small compared to the polarization of the electrode 4", the counter electrodes 5, 5', 5" can also function as reference electrodes. Usually, saline is used, but any liquid that has ionic conductivity and does not excessively deteriorate the coating film 2 can be used.

第3図、第4図はそれぞれ第1図、第2図を等
価回路モデルで置き換えたものであり、Rc,Cc
はそれぞれ対極5,5′,5″の分極抵抗及び二重
層容量を、Rsは電解液7の溶液抵抗を。Rf,Cf
はそれぞれ塗膜2の被測定面4,4,4″におけ
る絶縁抵抗及び電気容量を、Rp,Cdは塗膜2と
金属構造体3との界面の腐食反応の被測定面4,
4,4″における反応抵抗及び二重層容量を、
Rmは金属構造体3の電気抵抗をそれぞれ示して
いる。又、端子A,B,A′,B′,C,D,Eは
第1図及び第2図に示したものと同一内容であ
る。
Figures 3 and 4 are equivalent circuit models that replace Figures 1 and 2, respectively, and Rc, Cc
are the polarization resistance and double layer capacitance of the counter electrodes 5, 5', and 5'', respectively, and Rs is the solution resistance of the electrolyte 7. Rf, Cf
are the insulation resistance and electric capacitance at the surfaces to be measured 4, 4, and 4'' of the coating film 2, respectively, and Rp and Cd are the surface to be measured 4 and
The reaction resistance and double layer capacity at 4,4″ are
Rm indicates the electrical resistance of the metal structure 3, respectively. Terminals A, B, A', B', C, D, and E have the same content as shown in FIGS. 1 and 2.

これらの各種の容量C、抵抗Rのうち溶液抵抗
Rsは通常塗膜抵抗Rf,Rf′や反応抵抗Rp,Rp′に
較べて非常に小さく、また分極測定は参照極端子
B,B′間で行なわれることから対極5,5′,
5″の分極抵抗Rcと二重層容量Ccは分極測定に関
与せず、従つて分極の解析においてその寄与を除
外できる。又、通常の金属においてはRmはほぼ
零を示し無視することが可能である。したがつて
第1図において端子A−A′間へ又第2図におい
ては、端子C−E間へ電気刺激を与えた際に第1
図の端子B−B′間又は第2図の端子D−E間で
測定される分極へ関与する等価回路を抽出し第5
図及び第6図のように簡略化することができる。
Among these various capacitances C and resistances R, the solution resistance
Rs is usually very small compared to coating film resistances Rf, Rf' and reaction resistances Rp, Rp', and since polarization measurement is performed between reference electrode terminals B, B', counter electrodes 5, 5',
5" polarization resistance Rc and double layer capacitance Cc are not involved in polarization measurement, so their contribution can be excluded in polarization analysis. Also, in normal metals, Rm is almost zero and can be ignored. Therefore, when electrical stimulation is applied between terminals A and A' in Figure 1 and between terminals C and E in Figure 2, the first
Extract the equivalent circuit that is involved in the polarization measured between terminals B and B' in the figure or between terminals D and E in Figure 2.
It can be simplified as shown in FIG.

第5図の端子B−B′間のインピーダンスをZ1
とすると、Z1は式(1)で示される。
The impedance between terminals B and B' in Figure 5 is Z 1
Then, Z 1 is expressed by equation (1).

Z1=Rf/1+jωRf・Cf+Rp/1+jωRp・Cd+Rp
′/1+jωRp′・Cd+Rf′/1+jωRf′・Cf…(1) 第6図の端子D−E間のインピーダンスをZ2
するとZ2は式(2)で示される。
Z 1 = Rf/1+jωRf・Cf+Rp/1+jωRp・Cd+Rp
'/1+jωRp'·Cd+Rf'/1+jωRf'·Cf (1) Let Z2 be the impedance between terminals DE and E in FIG. 6, and Z2 is expressed by equation (2).

Z2=Rf/1+jωRf・Cf+Rp/1+jωRpCd …(2) 次に第1図において使用される2組の電解槽を
同一形状ものにすることによりRf=Rf′,Cf=
Cf′,Rp=Rp′,Cd=Cd′となり式(1)は式(1)の如
く簡略化される。
Z 2 = Rf/1+jωRf・Cf+Rp/1+jωRpCd…(2) Next, by making the two sets of electrolytic cells used in Fig. 1 have the same shape, Rf=Rf′, Cf=
Cf′, Rp=Rp′, and Cd=Cd′, so equation (1) is simplified as shown in equation (1).

Z1=2・Rf/1+jωRf・Cf+2・Rp/1+jωRp・Cd
…(1)′ 上記式から明らかなように本発明方法で得られ
るインピーダンスZ1は、従来法で得られる単独の
電極の場合(Z2)の2倍であることが分かる。従
つて本発明方法で得られたインピーダンスを単純
に1/2とすることで従来と同様のインピーダンス
を求めることができる。
Z 1 =2・Rf/1+jωRf・Cf+2・Rp/1+jωRp・Cd
...(1)' As is clear from the above equation, the impedance Z 1 obtained by the method of the present invention is twice the impedance (Z 2 ) obtained by the conventional method using a single electrode. Therefore, by simply halving the impedance obtained by the method of the present invention, the same impedance as in the conventional method can be obtained.

以上説明して来た通り本発明の電気化学測定方
法によれば、従来は欠くことができなかつた下地
金属よりのリード線の引き出しを不要にすること
ができる。
As explained above, according to the electrochemical measurement method of the present invention, it is possible to eliminate the need to draw out lead wires from the underlying metal, which was indispensable in the past.

従来の測定方法では、直流測定の場合、アノー
ド分極もしくはカノード分極のどちらか一方の測
定しか行えない。従つて極性依存性のある腐食測
定では正確な測定は行えない。また交流測定でも
測定時間が必ずしも測定用交流電源の周期の整数
倍ではないため、カソード分極状態とアノード分
極状態の時間が同一ではなくなるため、どちらか
の分極状態の影響が強く現われることになる。従
つて測定精度、再現性に問題があつたが、本発明
方法によれば、一方がアノード分極されていると
き他方はカノード分極されており、そのインピー
ダンスの和、すなわち両電極間のインピーダンス
を測定するわけであるから、アノード分極状態と
カソード分極状態の平均値を求めることができ
る。従つて測定周波数が低くなつても一方の分極
状態の影響が強く現れることはなく、測定精度及
び再現性の点で従来法に比べ改善される。また直
流測定の場合でも同様の事がいえる。
In the case of direct current measurement, conventional measurement methods can only measure either anode polarization or cathode polarization. Therefore, polarity-dependent corrosion measurements cannot provide accurate measurements. Furthermore, even in AC measurements, the measurement time is not necessarily an integral multiple of the period of the measurement AC power supply, so the times of the cathode polarization state and the anode polarization state are not the same, so the influence of one of the polarization states will appear strongly. Therefore, there were problems with measurement accuracy and reproducibility, but according to the method of the present invention, when one electrode is polarized as an anode, the other is polarized as a cathode, and the sum of their impedances, that is, the impedance between both electrodes, can be measured. Therefore, the average value of the anode polarization state and the cathode polarization state can be determined. Therefore, even if the measurement frequency becomes low, the influence of one polarization state does not appear strongly, and the measurement accuracy and reproducibility are improved compared to the conventional method. The same thing can also be said in the case of direct current measurement.

〔発明の実施例〕[Embodiments of the invention]

本発明の電気化学測定方法を簡便なものにする
ために第7図に一部断面的に示す磁石固定式の電
解槽を試作し測定を行なつた。試験片としては軟
鋼板16の上に顔料を含まないエポキシ塗膜8を
有する塗装鋼を、又電解液12としては3%食塩
水を使用しソーラートロン1250形により、交流イ
ンピーダンス測定を行なつた。なお第7図中9,
9′は電解槽容器を、10,10′は飽和甘コウ電
極を、11はは不溶性電極としての白金板を、1
3は磁気ヨークを、14は磁石を、15,15′
は水密シールを、それぞれ示す。腐食反応系への
電気的な刺激を与えたときの応答を解析するのに
一般に用いられているコール・コールプロツト
(刺激に対して測定されるインピーダンスを複素
平面上にプロツトした図)を第8図aに示す。次
に比較のため軟鋼板16よりリード線を引き出
し、同じくソーラートロン1250形で交流測定を行
なつて得たコールコールプロツトを第8b図に示
す。第8図においてaとbは形状が一致し、aは
bに較べ実数軸、虚数軸の値がそれぞれ2倍とな
つた。
In order to simplify the electrochemical measuring method of the present invention, a prototype electrolytic cell with fixed magnets, shown partially in cross section in FIG. 7, was manufactured and measured. The test piece was coated steel with a pigment-free epoxy coating 8 on the mild steel plate 16, and 3% saline was used as the electrolyte 12. AC impedance was measured using a Solartron 1250 model. . Note that 9 in Figure 7,
9' is an electrolytic cell container, 10 and 10' are saturated sweet electrodes, 11 is a platinum plate as an insoluble electrode, and 1
3 is a magnetic yoke, 14 is a magnet, 15, 15'
indicate a watertight seal, respectively. Figure 8 shows a Cole-Cole plot (a plot of impedance measured in response to a stimulus on a complex plane) that is commonly used to analyze the response when electrical stimulation is applied to a corrosion reaction system. Shown in a. Next, for comparison, a lead wire was drawn out from the mild steel plate 16, and AC measurement was performed using the same Solartron 1250 model, and a call-call plot obtained is shown in FIG. 8b. In FIG. 8, a and b have the same shape, and the values of a and b on the real and imaginary axes are respectively twice as large as those of b.

この結果から前記計算の結果が正しいことが確
認された。
This result confirmed that the above calculation result was correct.

また本発明では測定時間を適当に選んでも必ず
一方の電極がカノード分極状態であるときは他方
がアノード分極状態であり、その電極間のインピ
ーダンスを測定しているということは、結果的に
カソード分極とアノード分極の平均を測定してい
ることになる。従来法の如くの1個の電解槽を用
いた場合は、測定時間が必ずしも測定用交流電源
の周期の整数倍ではないため、アノード分極若し
くはカソード分極のどちらかの影響がでてしま
う。電気化学的測定ではmHz程度の低い周波数で
の測定も通常行われており、この影響は非常にで
やすいものであつた。測定時間を正確にコントロ
ールすることは非常に困難であり、結果的に再現
性に乏しく、高精度の測定は困難であつた。これ
に対し常に平均値を測定していることになる本発
明ではこの様な問題はなく再現性の良い、高精度
の測定を行うことができる。
Furthermore, in the present invention, even if the measurement time is appropriately selected, when one electrode is in the cathodic polarization state, the other is always in the anode polarization state, and the fact that the impedance between the electrodes is measured means that the cathodic polarization is This means that we are measuring the average of anode polarization. When one electrolytic cell is used as in the conventional method, the measurement time is not necessarily an integral multiple of the period of the AC power source for measurement, so the influence of either anode polarization or cathode polarization will appear. In electrochemical measurements, measurements are usually performed at frequencies as low as mHz, and this effect is very likely to occur. It is very difficult to accurately control the measurement time, resulting in poor reproducibility and difficulty in highly accurate measurement. On the other hand, the present invention, which always measures the average value, does not have this problem and can perform highly accurate measurements with good reproducibility.

〔発明の効果〕〔Effect of the invention〕

以上述べて来た通り、本発明の電気化学測定方
法を塗装鋼の評価に使用することにより、従来は
欠くことのできなかつた下地金属よりのリード線
の引出しが不要となるため、それに伴う塗膜の破
壊、修復の作業が不必要になり評価作業の効率を
著しく向上させることが可能となつたほか、現場
での測定が著るしく容易となつたのに加え塗膜の
耐久性を損うおそれが殆んで解消した。
As mentioned above, by using the electrochemical measurement method of the present invention to evaluate coated steel, it becomes unnecessary to draw out lead wires from the base metal, which was indispensable in the past. In addition to making it possible to significantly improve the efficiency of evaluation work by eliminating the need for film destruction and repair work, on-site measurements have become significantly easier, and there is no need to damage the durability of the paint film. Most of my fears have disappeared.

さらに本発明においては、一対の電解槽を用い
る事によりそれぞれの電解槽が、アノード分極と
カソード分極する為高精度で再現性に優れた測定
が可能となる。つまり一般に腐食測定において
は、極性依存性を有する為、一方の極性のみで測
定した場合には必ずしも正確な測定が可能ではな
かつた。これに対し本発明においては、一方がカ
ソード分極のときは他方がカソード分極である両
電極間のインピーダンスを測定しているため、一
方の極性に偏つた結果にはならず、再現性に優れ
高精度の測定が可能となる。
Further, in the present invention, by using a pair of electrolytic cells, each electrolytic cell has anode polarization and cathode polarization, making it possible to perform measurements with high precision and excellent reproducibility. In other words, since corrosion measurement generally has polarity dependence, accurate measurement is not always possible when measuring only with one polarity. On the other hand, in the present invention, the impedance between the two electrodes is measured when one is cathodically polarized and the other is cathodically polarized, so the results are not biased towards one polarity and are highly reproducible. Accuracy can be measured.

又通常の金属構造体においては下地金属が接地
されているため、従来の電気化学測定装置では差
動増巾器を用いてもノイズ入力がある場合、この
ノイズ入力自体も増巾され正確な測定を妨げてい
たのに対し、本発明の場合には一対の電解槽を用
いる事によりノイズ入力を差動増巾器により打ち
消すことが可能となり測定精度が大巾に向上し、
工業上極めて有効なものと言える。
In addition, in normal metal structures, the base metal is grounded, so if there is noise input in conventional electrochemical measurement equipment even if a differential amplifier is used, this noise input itself will be amplified and accurate measurements will not be possible. However, in the case of the present invention, by using a pair of electrolytic cells, it is possible to cancel out the noise input with a differential amplifier, which greatly improves measurement accuracy.
It can be said that it is extremely effective industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電解槽の基本構成を説明
する説明図、第2図は従来の電解槽の基本構成を
説明する説明図、第3図は第1図の等価回路モデ
ル、第4図は第2図の等価回路モデル、第5図は
第3図より電位応答に関与する分を抽出した等価
回路モデル、第6図は第4図より電位応答に関与
する分を抽出した等価回路モデル、第7図は本発
明に係る実施例にて使用した電解槽の構成図、第
8図aは実施例にて測定されたコール・コールプ
ロツト、第8図bは従来の電解槽にて測定された
コール・コールプロツトを示す。 1,1′,1″……電解槽本体、2……被覆層
(塗膜)、3……金属構造体(下地金属)、4,
4′,4″……被測定面、5,5′,5″……不溶性
電極(対極)、6,6′,6″……参照極、7……
電解質溶液、8……エポキシ塗料、9,9′……
電解槽容器、10,10′……飽和甘コウ電極、
11……不溶性電極(白金板)、12……3%食
塩水、13……磁気ヨーク、14……磁石、1
5,15′……水密シール、16……軟鋼板。
FIG. 1 is an explanatory diagram explaining the basic configuration of an electrolytic cell according to the present invention, FIG. 2 is an explanatory diagram explaining the basic configuration of a conventional electrolytic cell, FIG. 3 is an equivalent circuit model of FIG. The figure shows the equivalent circuit model of Figure 2, Figure 5 shows the equivalent circuit model that extracts the parts involved in potential response from Figure 3, and Figure 6 shows the equivalent circuit model that extracts the parts involved in potential response from Figure 4. Figure 7 is a configuration diagram of an electrolytic cell used in an example according to the present invention, Figure 8a is a Cole-Cole plot measured in an example, and Figure 8b is a measurement using a conventional electrolytic cell. The following shows the call plot. 1, 1', 1''... Electrolytic cell body, 2... Coating layer (coating film), 3... Metal structure (base metal), 4,
4', 4"...Measurement surface, 5, 5', 5"...Insoluble electrode (counter electrode), 6, 6', 6"...Reference electrode, 7...
Electrolyte solution, 8...Epoxy paint, 9,9'...
Electrolytic cell container, 10, 10'...saturated sweet electrode,
11... Insoluble electrode (platinum plate), 12... 3% saline, 13... Magnetic yoke, 14... Magnet, 1
5, 15'... Watertight seal, 16... Mild steel plate.

Claims (1)

【特許請求の範囲】[Claims] 1 金属構造体表面の被覆層を介して前記金属構
造体の腐蝕状態を測定する電気化学測定方法にお
いて、参照電極及び不溶性電極を具備した一対の
同一形状の電解槽を前記金属構造体の被覆層上に
設け、それぞれの不溶性電極間に電気信号を印加
し一方の電解槽がカソード分極、他方の電解槽が
アノード分極となるように分極させ、その際の参
照電極間のインピーダンスを測定することを特徴
とする電気化学測定方法。
1. In an electrochemical measurement method for measuring the corrosion state of the metal structure through the coating layer on the surface of the metal structure, a pair of electrolytic cells of the same shape equipped with a reference electrode and an insoluble electrode are connected to the coating layer of the metal structure. By applying an electric signal between the insoluble electrodes, one electrolytic cell is polarized as a cathode and the other as an anode, and the impedance between the reference electrodes is measured. Characteristic electrochemical measurement method.
JP19831583A 1983-10-25 1983-10-25 Electrochemical measuring apparatus Granted JPS6091250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19831583A JPS6091250A (en) 1983-10-25 1983-10-25 Electrochemical measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19831583A JPS6091250A (en) 1983-10-25 1983-10-25 Electrochemical measuring apparatus

Publications (2)

Publication Number Publication Date
JPS6091250A JPS6091250A (en) 1985-05-22
JPH0350983B2 true JPH0350983B2 (en) 1991-08-05

Family

ID=16389077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19831583A Granted JPS6091250A (en) 1983-10-25 1983-10-25 Electrochemical measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6091250A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664624B2 (en) * 2000-02-02 2005-06-29 住友大阪セメント株式会社 Electrocorrosion test equipment
JP5975274B2 (en) * 2012-07-27 2016-08-23 トヨタ自動車株式会社 Electrode inspection method and use thereof
JP6747495B2 (en) * 2018-12-11 2020-08-26 マツダ株式会社 Corrosion resistance test method for coated metal materials
JP2020118468A (en) * 2019-01-18 2020-08-06 マツダ株式会社 Corrosion resistance test device of coated metal material
JP6813122B2 (en) * 2020-10-07 2021-01-13 マツダ株式会社 Corrosion resistance test method for coated metal materials

Also Published As

Publication number Publication date
JPS6091250A (en) 1985-05-22

Similar Documents

Publication Publication Date Title
Reddy et al. Degradation of organic coatings in a corrosive environment: a study by scanning Kelvin probe and scanning acoustic microscope
JPH0436339B2 (en)
JPH0543268B2 (en)
US20080179198A1 (en) System and method of use for electrochemical measurement of corrosion
Xie et al. A novel dual-impedance-analysis EQCM system—investigation of bovine serum albumin adsorption on gold and platinum electrode surfaces
EP0258170A3 (en) A corrosion probe and method for measuring corrosion rates
Benito et al. An electrochemical impedance and ac-electrogravimetry study of PNR films in aqueous salt media
US4488939A (en) Vapor corrosion rate monitoring method and apparatus
JP2016510120A5 (en)
CN110095336A (en) A kind of online sound emission of tank bottom stress corrosion-electrochemistry Collaborative experiment device
EP0107491A2 (en) Electrochemical method of testing for surface-characteristics, and testing apparatus for use in the method
de Abreu et al. Influence of probe size for local electrochemical impedance measurements
JP2519786B2 (en) Method for detecting the degree of coating film deterioration of painted metal parts
JPH0350983B2 (en)
JPS60200153A (en) Metal corrosion measuring apparatus
Kępas et al. Implications of layer-by-layer electrodeposition of polypyrrole from a solution of the same composition for ion transport in the polymer electrode
JPH07333188A (en) Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor
Xu et al. Frumkin correction of corrosion electric field generated by 921A-B10 galvanic couple
KR100508877B1 (en) method for detecting the coating defect and corrosion points of the pipelines in soil using the electrochemical impedance spectroscopy
JPS60249043A (en) Instrument for measuring corrosion of metal
JPH034104B2 (en)
JPH0464581B2 (en)
JP2019113534A (en) Corrosion environment measuring device, and measure method of liquid film thickness and electrical conductivity using the same
JPS6130175Y2 (en)
JP2599169Y2 (en) Jig for corrosion test