JP2020118468A - Corrosion resistance test device of coated metal material - Google Patents

Corrosion resistance test device of coated metal material Download PDF

Info

Publication number
JP2020118468A
JP2020118468A JP2019007371A JP2019007371A JP2020118468A JP 2020118468 A JP2020118468 A JP 2020118468A JP 2019007371 A JP2019007371 A JP 2019007371A JP 2019007371 A JP2019007371 A JP 2019007371A JP 2020118468 A JP2020118468 A JP 2020118468A
Authority
JP
Japan
Prior art keywords
corrosion resistance
water
resistance test
container
coated metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019007371A
Other languages
Japanese (ja)
Inventor
照朗 浅田
Teruaki Asada
照朗 浅田
將展 佐々木
Masanori Sasaki
將展 佐々木
重永 勉
Tsutomu Shigenaga
勉 重永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2019007371A priority Critical patent/JP2020118468A/en
Priority to US16/729,851 priority patent/US11566996B2/en
Priority to EP20150704.3A priority patent/EP3686575B1/en
Priority to CN202010021192.XA priority patent/CN111458287B/en
Publication of JP2020118468A publication Critical patent/JP2020118468A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/04Corrosion probes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F13/00Inhibiting corrosion of metals by anodic or cathodic protection
    • C23F13/02Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
    • C23F13/04Controlling or regulating desired parameters
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F2213/00Aspects of inhibiting corrosion of metals by anodic or cathodic protection
    • C23F2213/30Anodic or cathodic protection specially adapted for a specific object
    • C23F2213/32Pipes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To provide a corrosion resistance test device capable of improving reliability of a corrosion resistance test with a simple configuration.SOLUTION: A corrosion resistance test device of a coated metal material in which a surface treatment film is provided in a metal base material comprises: a container mounted on the surface treatment film and including a plurality of hydrous electrolyte material holding parts which open in a bottom surface in contact with the surface treatment film; a hydrous electrolyte material housed in each of the hydrous electrolyte material holding parts of the container and coming into contact with each of a plurality of mutually separate measurement portions of the surface treatment film; a plurality of electrodes coming into contact with the hydrous electrolyte material housed in each of the hydrous electrolyte material holding parts; an external circuit connecting between the plurality of electrodes; and conducting means for conducting to the metal base material via the electrodes and the external circuit.SELECTED DRAWING: Figure 2

Description

本開示は被覆金属材の耐食性試験装置に関する。 The present disclosure relates to a corrosion resistance test apparatus for coated metal materials.

従来より、塗膜性能を評価する手法として複合サイクル試験、塩水噴霧試験等の腐食促進試験が行われている。 Conventionally, a corrosion acceleration test such as a combined cycle test and a salt spray test has been performed as a method for evaluating coating film performance.

しかし、かかる腐食促進試験においては、評価に数ヶ月を要するため、例えば塗装鋼板の構成材料や焼付条件の異なる塗膜の膜質を簡便に評価し、塗装条件の最適化等を迅速に行うことが困難である。従って、材料開発、塗装工場の工程管理、車両防錆に係る品質管理の場において、塗装鋼板の耐食性を迅速且つ簡便に評価する定量評価法の確立が望まれている。 However, in such a corrosion acceleration test, several months are required for the evaluation, and therefore, for example, it is possible to easily evaluate the film quality of the coating material with different constituent materials and baking conditions of the coated steel sheet, and to quickly optimize the coating conditions. Have difficulty. Therefore, it is desired to establish a quantitative evaluation method for quickly and simply evaluating the corrosion resistance of a coated steel sheet in the field of material development, process control in a coating plant, and quality control related to vehicle rust prevention.

これに対して、特許文献1には、金属部材の表面に施された皮膜の耐食性を評価する手法として、金属部材及び対極部材を水又は電解質液に浸漬し、測定電源の負端子側を金属部材に、正端子側を対極部材に電気的に接続し、対極部材から皮膜を通して金属部材に流れる酸素拡散限界電流に基づいて当該皮膜の防食性能を評価することが記載されている。 On the other hand, in Patent Document 1, as a method for evaluating the corrosion resistance of the film applied to the surface of the metal member, the metal member and the counter electrode member are immersed in water or an electrolyte solution, and the negative terminal side of the measurement power source is made of metal. It is described that the positive terminal side of the member is electrically connected to a counter electrode member, and the anticorrosion performance of the film is evaluated based on the oxygen diffusion limit current flowing from the counter electrode member through the film to the metal member.

特許文献2には、塗装金属材の塗膜表面側に含水電解質材料を介して電極を配置し、塗装金属材の基材と塗膜表面との間に電圧を印加し、塗膜が絶縁破壊するときの電圧値に基づいて、塗装金属材の耐食性を評価することが記載されている。 In Patent Document 2, an electrode is arranged on the coating film surface side of a coated metal material via a hydrous electrolyte material, and a voltage is applied between the base material of the coated metal material and the coating film surface to cause dielectric breakdown of the coating film. It is described that the corrosion resistance of the coated metal material is evaluated based on the voltage value at the time of performing.

特許文献3には、塗装金属材の塗膜表面側に含水電解質材料を介して電極を配置し、塗装金属材の塗膜に含水電解質材料を浸透させ、塗装金属材の基材と塗膜表面との間に電圧を印加し、該電圧の印加に伴って流れる電流に関する値に基づき、塗装金属材の耐食性を評価することが記載されている。 In Patent Document 3, an electrode is arranged on the coating film surface side of a coated metal material via a hydrous electrolyte material, the hydrous electrolyte material is permeated into the coating film of the coated metal material, and the base material of the coated metal material and the coating film surface. It is described that a voltage is applied between and, and the corrosion resistance of the coated metal material is evaluated based on the value related to the current flowing with the application of the voltage.

特開2007−271501号公報JP, 2007-271501, A 特開2016−50915号公報JP, 2016-50915, A 特開2016−50916号公報JP, 2016-50916, A

ところで、被覆金属材の表面処理膜上に複数の測定部分を設け、当該複数の測定部分の各々に対応するように複数の電極及び電解質材料を配置して、複数の電極間に通電し、被覆金属材の耐食性を試験することが考えられる。この場合、複数の測定部分に対応する位置に電極及び電解質材料を配置するため、複数の測定容器を配置すると、耐食性試験装置の構成が煩雑となる等の問題や、複数の測定容器の位置ずれに起因する耐食性試験の信頼性の低下等の問題があった。 By the way, a plurality of measurement portions are provided on the surface-treated film of the coated metal material, a plurality of electrodes and an electrolyte material are arranged so as to correspond to each of the plurality of measurement portions, and an electric current is applied between the plurality of electrodes to coat the electrodes. It is conceivable to test the corrosion resistance of metal materials. In this case, since the electrodes and the electrolyte material are arranged at the positions corresponding to the plurality of measurement parts, if a plurality of measurement containers are arranged, problems such as the configuration of the corrosion resistance test device becoming complicated, and the displacement of the plurality of measurement containers will occur. However, there was a problem such as a decrease in reliability of the corrosion resistance test due to the above.

そこで、本開示は、簡便な構成で、耐食性試験の信頼性を向上し得る耐食性試験装置をもたらすことを課題とする。 Therefore, it is an object of the present disclosure to provide a corrosion resistance test apparatus that has a simple structure and can improve the reliability of the corrosion resistance test.

上記課題を解決するために、ここに開示する耐食性試験装置は、金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験装置であって、上記表面処理膜上に載置され、該表面処理膜に接する底面において開口する含水電解質材料保持部を複数備えた容器と、上記容器の含水電解質材料保持部の各々に収容され、上記表面処理膜の相離れた複数の測定部分の各々に接触する含水電解質材料と、上記含水電解質材料保持部の各々に収容された含水電解質材料に接触する複数の電極と、上記複数の電極間を接続する外部回路と、上記電極及び上記外部回路を介して上記金属製基材に通電する通電手段とを備えたことを特徴とする。 In order to solve the above problems, the corrosion resistance test apparatus disclosed herein is a corrosion resistance test apparatus for a coated metal material in which a surface treatment film is provided on a metal base material, and is placed on the surface treatment film. A container provided with a plurality of water-containing electrolyte material holding portions that open at the bottom surface in contact with the surface-treated membrane, and each of the water-containing electrolyte material holding portions of the container are housed in a plurality of separated measurement portions of the surface-treated membrane. Water-containing electrolyte material in contact with each, a plurality of electrodes in contact with the water-containing electrolyte material accommodated in each of the water-containing electrolyte material holding portion, an external circuit connecting between the plurality of electrodes, the electrode and the external circuit And an energizing means for energizing the metal base material via the.

本構成によれば、含水電解質材料を収容する複数の含水電解質材料保持部を備えた容器を表面処理膜上に載置することにより、簡単な構成で、含水電解質材料を複数の測定部分の各々に接触するように配置することができる。また、複数の含水電解質材料保持部は、1つの容器に設けられているから、所定の測定部分に接触するように含水電解質材料を配置することが容易となるとともに、含水電解質材料の配置に位置ずれが生じにくく、耐食性試験の信頼性を高めることができる。そうして、より短時間で安定した耐食性試験を行うことができる。 According to this configuration, by placing a container having a plurality of water-containing electrolyte material holding portions that contain the water-containing electrolyte material on the surface treatment membrane, with a simple configuration, each of the water-containing electrolyte material of the plurality of measurement portions. Can be placed in contact with. Further, since the plurality of water-containing electrolyte material holding portions are provided in one container, it is easy to arrange the water-containing electrolyte material so as to come into contact with a predetermined measurement portion, and the position of the water-containing electrolyte material is arranged. The deviation is unlikely to occur, and the reliability of the corrosion resistance test can be improved. Then, a stable corrosion resistance test can be performed in a shorter time.

好ましい態様では、上記容器の底面は平坦であり、上記含水電解質材料保持部の各々は、上記底面に設けられた開口部を備え、上記容器を上記底面に垂直な方向に貫通する貫通孔からなる構成としてもよい。 In a preferred embodiment, the bottom surface of the container is flat, and each of the water-containing electrolyte material holding portions is provided with an opening provided in the bottom surface, and comprises a through hole penetrating the container in a direction perpendicular to the bottom surface. It may be configured.

本構成によれば、容器に設けられた貫通孔が含水電解質材料保持部として機能するから、より簡単な構成で、信頼性の高い耐食性試験が可能となる。 According to this configuration, since the through hole provided in the container functions as the water-containing electrolyte material holding portion, it is possible to perform a highly reliable corrosion resistance test with a simpler configuration.

なお、金属製基材は、例えば、家電製品、建材、自動車部品等を構成する鋼材、例えば、冷間圧延鋼板(SPC)、合金化溶融亜鉛めっき鋼板(GA)、高張力鋼板又はホットスタンプ材等であり、或いは軽合金材であってもよい。金属製基材は、表面に化成皮膜(リン酸塩皮膜(例えば、リン酸亜鉛皮膜)、クロメート皮膜等)が形成されたものであってもよい。 The metal base material is, for example, a steel material that constitutes home appliances, building materials, automobile parts, etc., for example, a cold rolled steel plate (SPC), a galvannealed steel plate (GA), a high tensile steel plate or a hot stamp material. Etc., or may be a light alloy material. The metal base material may have a chemical conversion coating (phosphate coating (for example, zinc phosphate coating), chromate coating, etc.) formed on the surface thereof.

特に望ましくは、上記金属製基材は、鋼板であり、上記容器は、上記底面側であり且つ上記貫通孔の各々の開口部近傍に配置された磁石を備えている構成を採用することができる。 Particularly preferably, the metal base material may be a steel plate, and the container may be configured to include a magnet arranged on the bottom surface side and near each opening of the through hole. ..

本構成によれば、容器の底面側に磁石が配置されているから、金属製基材として鋼板を用いた被覆金属材に、容器は磁力により吸着固定される。そうして、容器の位置ずれを効果的に抑制することができ、耐食性試験の信頼性を向上させることができる。なお、磁石としては、高い吸着力を得る観点から、例えばネオジム磁石やサマリウムコバルト磁石等を用いることが望ましい。 According to this configuration, since the magnet is arranged on the bottom surface side of the container, the container is attracted and fixed by the magnetic force to the coated metal material using the steel plate as the metal base material. Thus, the displacement of the container can be effectively suppressed, and the reliability of the corrosion resistance test can be improved. As the magnet, it is desirable to use, for example, a neodymium magnet, a samarium cobalt magnet, or the like from the viewpoint of obtaining a high attractive force.

また、好ましくは、上記含水電解質材料保持部の外周を覆うように、上記容器の外周部に配置された第1加熱要素と、上記第1加熱要素に接続され、該第1加熱要素の温度を制御する温度コントローラとを備えている構成としてもよい。 Further, preferably, the first heating element arranged on the outer peripheral portion of the container is connected to the first heating element so as to cover the outer periphery of the water-containing electrolyte material holding portion, and the temperature of the first heating element is adjusted. It may be configured to include a temperature controller for controlling.

本構成によれば、第1加熱要素及び温度コントローラにより含水電解質材料保持部に収容された含水電解質材料の温度を調整することができるから、所望の試験時間に亘って含水電解質材料の温度を一定に保つことができる。そうして、種々の温度条件における耐食性試験を精度よく行うことができる。なお、第1加熱要素としては、例えばラバーヒータやフィルムヒータ等を採用することができる。 According to this configuration, the temperature of the water-containing electrolyte material accommodated in the water-containing electrolyte material holding portion can be adjusted by the first heating element and the temperature controller, so that the temperature of the water-containing electrolyte material is kept constant over a desired test time. Can be kept at By doing so, the corrosion resistance test under various temperature conditions can be performed accurately. A rubber heater, a film heater, or the like can be used as the first heating element.

上記被覆金属材の上記容器が配置される側と反対側に配置された第2加熱要素を備え、上記温度コントローラにより、上記第1加熱要素及び上記第2加熱要素の温度は30℃以上100℃以下に制御される
本技術によれば、第1加熱要素と第2加熱要素により含水電解質材料及び被覆金属材を上記温度に保つことで、所定の温度条件における信頼性の高い耐食性試験が可能となる。なお、第2加熱要素としては、例えばホットプレート等を採用することができる。
A second heating element arranged on the opposite side of the coated metal material from the side on which the container is arranged is provided, and the temperature of the first heating element and the second heating element is 30° C. or higher and 100° C. by the temperature controller. According to the present technology that is controlled below, it is possible to perform a highly reliable corrosion resistance test under a predetermined temperature condition by keeping the hydrous electrolyte material and the coating metal material at the above temperature by the first heating element and the second heating element. Become. A hot plate or the like can be used as the second heating element.

また、上記容器は、上記容器の底面を形成するシリコーン樹脂製の底部と、上記底部における上記底面と反対側に延設された絶縁性の樹脂材料製の本体とを備えていることが望ましい。 Further, it is preferable that the container includes a bottom portion made of a silicone resin that forms a bottom surface of the container, and a main body made of an insulating resin material and extending on a side of the bottom portion opposite to the bottom surface.

本技術によれば、表面処理膜と接触する容器の底面をシリコーン樹脂製とすることにより、容器と表面処理膜との密着性を向上させることができ、容器と表面処理膜との間からの含水電解質材料の漏れを効果的に抑制することができる。また、容器の本体を絶縁性の樹脂材料製とすることにより、含水電解質材料保持部間の絶縁性を確保しつつ、容器を軽量化及び低コスト化することができ、延いては装置の軽量化及び低コスト化に資することができる。 According to the present technology, the bottom surface of the container that comes into contact with the surface-treated film is made of a silicone resin, so that the adhesion between the container and the surface-treated film can be improved, and the contact between the container and the surface-treated film can be improved. Leakage of the hydrous electrolyte material can be effectively suppressed. Further, by making the container body made of an insulating resin material, it is possible to reduce the weight and cost of the container while ensuring the insulation between the water-containing electrolyte material holding portions, and thus the weight of the device. And cost reduction.

好ましい態様では、上記測定部分の各々は、上記表面処理膜を貫通して上記金属製基材に達する人工傷を含んでおり、上記通電手段によって、上記人工傷の少なくとも1つがアノードサイトとなり、他の少なくとも1つがカソードサイトとなって上記被覆金属材の腐食が進行するように、上記金属製基材に通電される構成を採用することができる。 In a preferred embodiment, each of the measurement portions includes an artificial scratch that penetrates the surface-treated film and reaches the metal base material, and at least one of the artificial scratches serves as an anode site by the current-carrying means. It is possible to adopt a configuration in which the metal base material is energized so that at least one of the above becomes a cathode site and the corrosion of the coated metal material proceeds.

金属の腐食は、水と接触する金属が溶解(イオン化)して遊離電子を生ずるアノード反応(酸化反応)と、その遊離電子によって水中の溶存酸素が水酸基OHを生成するカソード反応(還元反応)が同時に起こることで進行することが知られている。 Corrosion of metals is anodic reaction (oxidation reaction) in which a metal in contact with water dissolves (ionizes) to generate free electrons, and cathodic reaction (reduction reaction) in which dissolved oxygen in water forms hydroxyl group OH − due to the free electrons. It is known that progress occurs when the two occur at the same time.

本技術では、被覆金属材の複数の人工傷のうちの少なくとも1つが、金属製基材の金属の溶出反応(酸化反応)を生ずるアノードサイトとなる。アノードサイトで発生した電子が金属製基材を通って流入する他の少なくとも1つの人工傷が、電子による還元反応が起きるカソードサイトとなる。 In the present technology, at least one of the plurality of artificial scratches on the coated metal material serves as an anode site that causes a metal elution reaction (oxidation reaction) of the metal base material. At least one other artificial flaw in which the electrons generated at the anode site flow through the metallic substrate becomes the cathode site where the reduction reaction by the electrons occurs.

アノードサイトでは、溶出した金属イオンは、電極(負極)に引き寄せられ、含水電解質材料中の溶存酸素や電極(負極)での水の電気分解により発生したOHと反応して水酸化鉄になる。このアノードサイトでは、電子が供給されるから、電気防食と同じ原理で、金属製基材の金属がイオンになって含水電解質材料に多少溶解するものの、被覆金属材の腐食は進まない。 At the anode site, the eluted metal ions are attracted to the electrode (negative electrode) and react with dissolved oxygen in the water-containing electrolyte material and OH generated by electrolysis of water at the electrode (negative electrode) to form iron hydroxide. .. Since electrons are supplied to this anode site, the metal of the metal base material becomes ions and dissolves in the water-containing electrolyte material to some extent by the same principle as in the case of cathodic protection, but the corrosion of the coated metal material does not proceed.

一方、カソードサイトでは、アノードサイトから金属製基材を介して流入する電子が、表面処理膜を浸透した水や溶存酸素、水中の電離Hと反応して水素やOHが発生する。また、水の電気分解による水素も発生する。これにより、表面処理膜下でのpHが上がり、被覆金属材の腐食が進行する。 On the other hand, at the cathode site, electrons flowing from the anode site through the metal base material react with water and dissolved oxygen that have permeated the surface-treated film, and ionized H + in water to generate hydrogen and OH . Also, hydrogen is generated by electrolysis of water. As a result, the pH under the surface-treated film increases, and the corrosion of the coated metal material proceeds.

上記カソードサイトにおけるOHの生成は上述の腐食モデルのカソード反応に相当するから、本技術に係る装置を用いた耐食性試験は、外部回路による金属製基材への通電により、当該被覆金属材の実際の腐食を加速再現するものであるということができる。 Since the generation of OH − at the cathode site corresponds to the cathodic reaction of the corrosion model described above, the corrosion resistance test using the device according to the present technology is performed by applying an electric current to the metal base material by an external circuit to remove the coated metal material. It can be said that it is an accelerated reproduction of actual corrosion.

そして、上記カソードサイトとなる人工傷では、アルカリ性になること(OHの生成)により、金属製基材表面の下地処理(化成処理)がダメージを受けて表面処理膜の密着性が低下し(下地処理がされていない場合は単純に金属製基材と表面処理膜の密着性が低下し)、表面処理膜の膨れが発生する。また、水の電気分解やHの還元により発生した水素ガスが表面処理膜の膨れを促進する。従って、この表面処理膜の膨れの程度をみることによって、当該耐食性試験における供試材の腐食進展速度を計ることができる。 Then, the artificial scratch that becomes the cathode site becomes alkaline (generation of OH ), so that the base treatment (chemical conversion treatment) on the surface of the metal base material is damaged, and the adhesion of the surface treatment film deteriorates ( If the base treatment is not performed, the adhesion between the metal base material and the surface treatment film is simply reduced), and the surface treatment film swells. Further, hydrogen gas generated by electrolysis of water or reduction of H + promotes swelling of the surface-treated film. Therefore, by observing the degree of swelling of the surface-treated film, the corrosion progress rate of the test material in the corrosion resistance test can be measured.

このように、本技術では、被覆金属材にアノードサイトとカソードサイトを人工的に形成し、容器を用いてその人工傷各々に接触するように含水電解質材料を保持しつつ、通電手段を用いて通電することで、人工傷における腐食を促進させるようにしている。そうして、実際の腐食を加速再現するから、得られる腐食進展速度データは、実際の腐食進展速度と相関性が高いものになる。よって、本技術によれば、被覆金属材の耐食性に関して信頼性の高い試験を行なうことができる。 As described above, in the present technology, the anode site and the cathode site are artificially formed on the coated metal material, and the container is used to hold the water-containing electrolyte material so as to come into contact with each of the artificial scratches, while using the energizing means. By energizing, the corrosion of artificial scratches is promoted. Then, since the actual corrosion is reproduced in an accelerated manner, the obtained corrosion progress rate data has a high correlation with the actual corrosion progress rate. Therefore, according to the present technology, it is possible to perform a highly reliable test on the corrosion resistance of the coated metal material.

上記複数の人工傷間の距離は、カソードサイトの表面処理膜の膨れの確認の容易さの観点から、2cm以上であることが好ましく、3cm以上であることがさらに好ましい。 The distance between the plurality of artificial scratches is preferably 2 cm or more, and more preferably 3 cm or more from the viewpoint of easy confirmation of the swelling of the surface-treated film on the cathode site.

上記カソードサイトの人工傷の径は0.1mm以上5mm以下であることが望ましい。 The diameter of the artificial scratch on the cathode site is preferably 0.1 mm or more and 5 mm or less.

上記カソードサイトの人工傷の径(金属製基材の露出径)に関しては、その径が小さくなるほど、通電性が低下してカソード反応が進み難くなる。一方、その径が大きくなると、カソード反応が不安定になり、腐食の加速再現性が低下する。人工傷の径を上記範囲とすることにより、カソード反応の促進と腐食の加速再現性を両立させることができる。 Regarding the diameter of the artificial scratch on the cathode site (exposed diameter of the metal base material), the smaller the diameter, the lower the electrical conductivity and the more difficult the cathode reaction proceeds. On the other hand, when the diameter becomes large, the cathodic reaction becomes unstable, and the accelerated reproducibility of corrosion deteriorates. By setting the diameter of the artificial scratch within the above range, both acceleration of the cathode reaction and accelerated reproducibility of corrosion can be achieved.

上記通電手段による通電は10μA以上10mA以下の電流値とすることが望ましい。 It is desirable that the energization by the energizing means has a current value of 10 μA or more and 10 mA or less.

通電の電流値に関しては、該電流値が小さくなるほど腐食の加速性が低下して試験に長時間を要するようになる。一方、その電流値が大きくなると、腐食反応速度が不安定になり、実際の腐食の進行との相関性が悪くなる。電流値を上記範囲とすることにより、試験時間の短縮化と試験の信頼性の向上とを両立させることができる。 With respect to the current value for energization, the smaller the current value is, the less accelerated the corrosion is, and the longer the test becomes. On the other hand, when the current value becomes large, the corrosion reaction rate becomes unstable, and the correlation with the actual progress of corrosion deteriorates. By setting the current value within the above range, it is possible to reduce the test time and improve the reliability of the test.

上記含水電解質材料は、水、支持電解質及び粘土鉱物を含む泥状物であることが望ましい。 The water-containing electrolyte material is preferably a muddy material containing water, a supporting electrolyte and a clay mineral.

粘土鉱物は、表面処理膜へのイオンの移動及び水の浸透を促進させ、腐食の進行を効果的に促すことができる。 The clay mineral promotes the migration of ions and the penetration of water into the surface-treated film, and can effectively promote the progress of corrosion.

なお、上記粘土鉱物は、層状ケイ酸塩鉱物又はゼオライトであることが好ましい。そして、上記層状ケイ酸塩鉱物は、カオリナイト、モンモリロナイト、セリサイト、イライト、グローコナイト、クロライト及びタルクから選択される少なくとも一つであることが好ましい。 The clay mineral is preferably layered silicate mineral or zeolite. The layered silicate mineral is preferably at least one selected from kaolinite, montmorillonite, sericite, illite, glowconite, chlorite and talc.

また、上記支持電解質は、塩化ナトリウム、硫酸ナトリウム及び塩化カルシウムから選択される少なくとも一つの塩であることが好ましい。 The supporting electrolyte is preferably at least one salt selected from sodium chloride, sodium sulfate and calcium chloride.

上記表面処理膜は、樹脂塗膜であることが望ましい。 The surface treatment film is preferably a resin coating film.

樹脂塗膜としては、例えば、エポキシ樹脂系、アクリル樹脂系等のカチオン電着塗膜(下塗り塗膜)があり、電着塗膜に上塗り塗膜が重ねられた積層塗膜、電着塗膜に中塗り塗膜及び上塗り塗膜が重ねられた積層塗膜等であってもよい。 Examples of the resin coating film include cationic electrodeposition coating film (undercoating coating film) of epoxy resin type, acrylic resin type, etc., laminated coating film in which an overcoating coating film is superposed on the electrodeposition coating film, electrodeposition coating film It may be a laminated coating film in which an intermediate coating film and a top coating film are superposed on each other.

なお、上記金属製基材への通電のために、電極を上記含水電解質材料に埋没状態に設けることができる。そのような電極としては、炭素電極、白金電極等を使用することができ、特に、上記表面処理膜に相対する少なくとも一つの孔を有する有孔電極を採用することができ、該有孔電極を上記表面処理膜と略平行に配置することが好ましい。例えば、有孔電極は、中央に孔を有するリング状とされ、該孔が上記人工傷に相対するように設けられる。或いは、有孔電極としてメッシュ状の電極を採用し、該メッシュ電極を上記含水電解質材料に埋没した状態で上記表面処理膜と略平行になるように配置してもよい。 The electrodes may be embedded in the hydrous electrolyte material in order to energize the metal base material. As such an electrode, a carbon electrode, a platinum electrode or the like can be used, and in particular, a perforated electrode having at least one hole facing the surface-treated film can be adopted. It is preferable to dispose it substantially parallel to the surface treatment film. For example, the perforated electrode has a ring shape having a hole in the center, and the hole is provided so as to face the artificial wound. Alternatively, a mesh-shaped electrode may be adopted as the perforated electrode, and the mesh electrode may be arranged so as to be substantially parallel to the surface-treated film in a state of being buried in the hydrous electrolyte material.

本開示によれば、含水電解質材料を収容する複数の含水電解質材料保持部を備えた容器を表面処理膜上に載置することにより、簡単な構成で、含水電解質材料を複数の測定部分の各々に接触するように配置することができる。また、複数の含水電解質材料保持部は、1つの容器に設けられているから、所定の測定部分に接触するように含水電解質材料を配置することが容易となるとともに、含水電解質材料の配置に位置ずれが生じにくく、耐食性試験の信頼性を高めることができる。そうして、より短時間で安定した耐食性試験を行うことができる。 According to the present disclosure, by placing a container having a plurality of water-containing electrolyte material holding portions that contain the water-containing electrolyte material on the surface treatment membrane, with a simple configuration, each of the water-containing electrolyte material of the plurality of measurement portions. Can be placed in contact with. Further, since the plurality of water-containing electrolyte material holding portions are provided in one container, it is easy to arrange the water-containing electrolyte material so as to come into contact with a predetermined measurement portion, and the position of the water-containing electrolyte material is arranged. The deviation is unlikely to occur, and the reliability of the corrosion resistance test can be improved. Then, a stable corrosion resistance test can be performed in a shorter time.

第1実施形態に係る耐食性試験装置を示す図。The figure which shows the corrosion resistance test apparatus which concerns on 1st Embodiment. 図1のA−A線における断面図。Sectional drawing in the AA line of FIG. 図1の耐食性試験装置を用いた耐食性試験の原理を示す図。The figure which shows the principle of the corrosion resistance test using the corrosion resistance test apparatus of FIG. 容器の本体の平面図、正面図及び底面図。The top view, front view, and bottom view of the main body of the container. 比較例3の供試材1の耐食性試験結果を示す図表。The chart which shows the corrosion resistance test result of the sample material 1 of the comparative example 3. 参考例1の腐食進展速度と試験例1の腐食進展速度の相関を示すグラフ。5 is a graph showing the correlation between the corrosion progress rate of Reference Example 1 and the corrosion progress rate of Test Example 1. 塗膜上の付着物が水、5%NaCl(スプレー)、及び5%CaClスプレーであるときの塗膜の吸水量及び膨れ発生率を示す図表。Deposits of water on the coated film, 5% NaCl (spray), and water absorption and swelling table showing the incidence of the coating film when a 5% CaCl 2 sprays. 塗膜上の付着物が模擬泥であるときの塗膜の吸水量及び膨れ発生率を示す図表。The figure which shows the water absorption amount of a coating film and the swelling generation rate when the deposit on a coating film is a simulation mud. 塗膜上の付着物が5%NaCl(浸漬)であるときの塗膜の吸水量及び膨れ発生率を示す図表。The figure which shows the water absorption amount and swelling generation rate of a coating film when the deposit on a coating film is 5% NaCl (immersion). 各種塗膜上付着物における塗膜への水の浸入速度を示すグラフ。The graph which shows the infiltration rate of the water in a coating film in the deposit on various coating films. 耐食性試験における定電流通電制御時の電流プロット図。The current plot figure at the time of constant current energization control in a corrosion resistance test. 耐食性試験における定電圧通電制御時の電流プロット図。The current plot figure at the time of constant voltage electricity control in a corrosion resistance test. 第2実施形態に係る耐食性試験装置に使用するカバーの斜視図。The perspective view of the cover used for the corrosion resistance testing apparatus which concerns on 2nd Embodiment.

以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The description of the preferred embodiments below is merely exemplary in nature and is not intended to limit the present invention, its application, or its application.

(第1実施形態)
<耐食性試験装置>
図1〜図3に示すように、本実施形態に係る耐食性試験装置100は、被覆金属材1の耐食性を試験するための装置であり、容器30と、含水電解質材料6と、電極12と、外部回路7と、通電手段8と、ラバーヒータ34(第1加熱要素)と、ホットプレート35(第2加熱要素)と、温度コントローラ36とを備えている。
(First embodiment)
<Corrosion resistance tester>
As shown in FIGS. 1 to 3, the corrosion resistance test apparatus 100 according to the present embodiment is an apparatus for testing the corrosion resistance of the coated metal material 1, and includes a container 30, a water-containing electrolyte material 6, an electrode 12, and The external circuit 7, the energizing means 8, the rubber heater 34 (first heating element), the hot plate 35 (second heating element), and the temperature controller 36 are provided.

<被覆金属材>
図2,図3に示すように、被覆金属材1は、金属製基材としての表面に化成皮膜3が形成された鋼板2の上に表面処理膜としての樹脂塗膜、すなわち、本実施形態では電着塗膜4が設けられたものである。
<Coated metal material>
As shown in FIGS. 2 and 3, the coated metal material 1 is a resin coating film as a surface treatment film on a steel plate 2 having a chemical conversion film 3 formed on the surface as a metal base material, that is, the present embodiment. In, the electrodeposition coating film 4 is provided.

図2,図3に示すように、被覆金属材1には、含水電解質材料6が配置される測定部分4Aに含まれる形で、相離れた2箇所(複数)に電着塗膜4及び化成皮膜3を貫通して鋼板2に達する人工傷5が加えられている。人工傷5による鋼板2の露出部の径(以下、「人工傷5の径」と称することがある。)は、後述する耐食性試験において、電着塗膜4へのイオンの移動及び水の浸透を促進させ、人工傷5における腐食を効果的に進行させる観点から、好ましくは0.1mm以上5mm以下(露出面の面積が0.01mm以上25mm以下)、より好ましくは0.3mm以上2mm以下、特に好ましくは0.5mm以上1.5mm以下とすることができる。また、2箇所の人工傷5間の距離は、後述する耐食性試験方法の耐食性評価ステップにおいて、カソードサイトの電着塗膜4の膨れの確認の容易さの観点から、2cm以上であることが好ましく、3cm以上であることがさらに好ましい。 As shown in FIG. 2 and FIG. 3, in the coated metal material 1, the electrodeposition coating film 4 and the chemical conversion coating 4 are formed at two places (plurality) apart from each other in a form included in the measurement portion 4A in which the hydrous electrolyte material 6 is arranged. An artificial scratch 5 that penetrates the film 3 and reaches the steel plate 2 is added. The diameter of the exposed portion of the steel plate 2 due to the artificial scratch 5 (hereinafter, may be referred to as "the diameter of the artificial scratch 5") is determined by the migration of ions and the penetration of water into the electrodeposition coating film 4 in the corrosion resistance test described later. From the viewpoint of effectively promoting corrosion in the artificial scratch 5, and preferably 0.1 mm or more and 5 mm or less (the area of the exposed surface is 0.01 mm 2 or more and 25 mm 2 or less), and more preferably 0.3 mm or more and 2 mm. It is particularly preferable that the length is 0.5 mm or more and 1.5 mm or less. Further, the distance between the two artificial scratches 5 is preferably 2 cm or more from the viewpoint of easy confirmation of swelling of the electrodeposition coating film 4 on the cathode site in the corrosion resistance evaluation step of the corrosion resistance test method described later. It is more preferably 3 cm or more.

<容器>
図1,図2に示すように、容器30は、被覆金属材1の電着塗膜4上に載置されている。容器30は、平坦な底面32Aを有しており、当該底面32Aを形成する底部32と、当該底部32における底面32Aと反対側に延設された絶縁性の本体31とを備えている。
<Container>
As shown in FIGS. 1 and 2, the container 30 is placed on the electrodeposition coating film 4 of the coated metal material 1. The container 30 has a flat bottom surface 32A, and includes a bottom portion 32 that forms the bottom surface 32A, and an insulative main body 31 that extends on the opposite side of the bottom portion 32 from the bottom surface 32A.

容器30は、図1,図4に示すように、平面視長円形の部材であり、底面32Aに略垂直な方向に容器30、すなわち容器30の本体31及び底部32を貫通する2つ(複数)の貫通孔11を備えた円筒部材である。そして、貫通孔11は、底面32Aに設けられた開口部11Aを備えている。貫通孔11内には、含水電解質材料6が収容され、含水電解質材料6は電着塗膜4の表面に接触している。すなわち、2つの貫通孔11は、電着塗膜4に接する底面32Aにおいて開口する含水電解質材料保持部を構成している。そして、容器30を被覆金属材1の電着塗膜4上に載置した状態で、開口部11Aにより定義される被覆金属材1の領域が測定部分4Aとなる。 As shown in FIGS. 1 and 4, the container 30 is a member having an oval shape in a plan view, and two (a plurality of) containers 30 penetrating the container 30, that is, the main body 31 and the bottom portion 32 of the container 30 in a direction substantially perpendicular to the bottom surface 32A. ) Is a cylindrical member having a through hole 11. The through hole 11 has an opening 11A provided on the bottom surface 32A. The water-containing electrolyte material 6 is accommodated in the through hole 11, and the water-containing electrolyte material 6 is in contact with the surface of the electrodeposition coating film 4. That is, the two through holes 11 form a water-containing electrolyte material holding portion that opens at the bottom surface 32</b>A in contact with the electrodeposition coating film 4. Then, in the state where the container 30 is placed on the electrodeposition coating film 4 of the coated metal material 1, the region of the coated metal material 1 defined by the opening 11A becomes the measurement portion 4A.

底部32は、例えばシリコーン樹脂製のシート状のシール材であり、容器30を被覆金属材1上に載置したときに、容器30と電着塗膜4との密着性を向上させるためのものである。そうして、容器30と電着塗膜4との間からの含水電解質材料6の漏れを効果的に抑制することができる。 The bottom portion 32 is, for example, a sheet-like sealing material made of silicone resin, and is for improving the adhesion between the container 30 and the electrodeposition coating film 4 when the container 30 is placed on the coated metal material 1. Is. Thus, leakage of the hydrous electrolyte material 6 between the container 30 and the electrodeposition coating film 4 can be effectively suppressed.

図4に示すように、容器30の本体31は、底部32側の台座部302と、台座部302において底部32と反対側に延設された延設部301とを備えている。台座部302は、平面視、延設部301よりも大径であり、台座部302から延設部301の移行部には段差部303が設けられている。台座部302の底部32側には、溝部304が形成されている。溝部304は、貫通孔11の各々の開口部11A近傍における貫通孔11周りに配置されており、当該溝部304内にリング型の磁石33が収容される。これにより、容器30を被覆金属材1の電着塗膜4上に載置したときに、容器30は、磁石33の吸着力により、被覆金属材1に吸着固定される。そうして、容器30の位置ずれを効果的に抑制することができ、後述する耐食性試験の信頼性を向上させることができる。なお、磁石33は、溝部304に収容された後、例えば、エポキシ樹脂等で封止されることが望ましい。これにより、溝部304からの磁石33の抜けや、含水電解質材料6の貫通孔11から溝部304への漏れ等を抑制することができる。 As shown in FIG. 4, the main body 31 of the container 30 includes a pedestal portion 302 on the bottom portion 32 side and an extension portion 301 extending on the pedestal portion 302 on the side opposite to the bottom portion 32. The pedestal portion 302 has a larger diameter than the extension portion 301 in plan view, and a step portion 303 is provided at a transition portion from the pedestal portion 302 to the extension portion 301. A groove 304 is formed on the bottom portion 32 side of the pedestal portion 302. The groove 304 is arranged around the through hole 11 in the vicinity of each opening 11A of the through hole 11, and the ring-shaped magnet 33 is housed in the groove 304. Thereby, when the container 30 is placed on the electrodeposition coating film 4 of the coated metal material 1, the container 30 is attracted and fixed to the coated metal material 1 by the attraction force of the magnet 33. Thus, the displacement of the container 30 can be effectively suppressed, and the reliability of the corrosion resistance test described later can be improved. It should be noted that the magnet 33 is preferably sealed with, for example, epoxy resin after being housed in the groove 304. This can prevent the magnet 33 from falling out of the groove 304, leakage of the hydrous electrolyte material 6 from the through hole 11 to the groove 304, and the like.

また、容器30の本体31は、2つの貫通孔11間の絶縁性を確保する観点から、例えばアクリル樹脂、エポキシ樹脂等の樹脂材料製やセラミック製等とすることができる。そして、容器30の軽量化及び低コスト化の観点からは、特にアクリル樹脂、エポキシ樹脂等の樹脂材料製とすることが望ましい。 Further, the main body 31 of the container 30 can be made of a resin material such as an acrylic resin or an epoxy resin or a ceramic material from the viewpoint of ensuring insulation between the two through holes 11. From the viewpoint of reducing the weight and cost of the container 30, it is particularly preferable to use a resin material such as acrylic resin or epoxy resin.

貫通孔11の径は、人工傷5の径よりも大きいことが望ましい。そして、容器30は、貫通孔11が人工傷5と同心状になるように、電着塗膜4上に載置されることが望ましい。当該構成により、人工傷5全体を含水電解質材料6で覆いつつ、耐食性試験に必要十分量の含水電解質材料6を収容することができる。なお、上述のごとく、人工傷5の径が0.1mm以上5mm以下の場合は、貫通孔11の径は、例えば0.5mm以上40mm以下、好ましくは0.5mm以上35mm以下とすることができる。本構成により、人工傷5全体を含水電解質材料6で覆いつつ、耐食性試験に必要十分量の含水電解質材料6を収容することができる。 The diameter of the through hole 11 is preferably larger than the diameter of the artificial scratch 5. The container 30 is preferably placed on the electrodeposition coating film 4 so that the through hole 11 is concentric with the artificial scratch 5. With this structure, it is possible to cover the entire artificial scratch 5 with the hydrous electrolyte material 6 and accommodate a sufficient amount of the hydrous electrolyte material 6 for the corrosion resistance test. As described above, when the diameter of the artificial scratch 5 is 0.1 mm or more and 5 mm or less, the diameter of the through hole 11 can be, for example, 0.5 mm or more and 40 mm or less, preferably 0.5 mm or more and 35 mm or less. .. With this configuration, it is possible to cover the entire artificial scratch 5 with the hydrous electrolyte material 6 and accommodate a sufficient amount of the hydrous electrolyte material 6 for the corrosion resistance test.

<含水電解質材料>
含水電解質材料6は、容器30の貫通孔11の各々に収容されている。そして、電着塗膜4の相離れた2つの測定部分4Aの各々に接触しており、測定部分4Aに設けられた人工傷5内に浸入している。
<Hydrolyte material>
The water-containing electrolyte material 6 is housed in each of the through holes 11 of the container 30. Then, it is in contact with each of the two measurement portions 4A of the electrodeposition coating film 4 which are separated from each other, and penetrates into the artificial wound 5 provided in the measurement portion 4A.

含水電解質材料6は、例えば水、支持電解質及び望ましくは粘土鉱物を含有してなる泥状物であり、導電材として機能する。 The water-containing electrolyte material 6 is, for example, a muddy material containing water, a supporting electrolyte, and preferably clay mineral, and functions as a conductive material.

支持電解質(塩)としては、例えば、塩化ナトリウム、硫酸ナトリウム、塩化カルシウム、リン酸カルシウム、塩化カリウム、硝酸カリウム、酒石酸水素カリウム及び硫酸マグネシウムから選択される少なくとも一つの塩を採用することができ、特に好ましくは塩化ナトリウム、硫酸ナトリウム及び塩化カルシウムから選択される少なくとも一つの塩を採用することができる。含水電解質材料6における支持電解質の含有量は、好ましくは1質量%以上20質量%以下、より好ましくは3質量%以上15質量%以下であること、特に好ましくは5質量%以上10質量%以下である。 As the supporting electrolyte (salt), for example, at least one salt selected from sodium chloride, sodium sulfate, calcium chloride, calcium phosphate, potassium chloride, potassium nitrate, potassium hydrogen tartrate and magnesium sulfate can be adopted, and particularly preferably At least one salt selected from sodium chloride, sodium sulfate and calcium chloride can be employed. The content of the supporting electrolyte in the hydrous electrolyte material 6 is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 15% by mass or less, and particularly preferably 5% by mass or more and 10% by mass or less. is there.

粘土鉱物は、含水電解質材料6を泥状にするとともに、電着塗膜4へのイオンの移動及び水の浸透を促進させ、腐食の進行を促すためのものである。粘土鉱物としては、例えば、層状ケイ酸塩鉱物又はゼオライトを採用することができる。層状ケイ酸塩鉱物としては、例えば、カオリナイト、モンモリロナイト、セリサイト、イライト、グローコナイト、クロライト及びタルクから選択される少なくとも一つを採用することができ、特に好ましくはカオリナイトを採用することができる。含水電解質材料6における粘土鉱物の含有量は、好ましくは1質量%以上70質量%以下、より好ましくは10質量%以上50質量%以下、特に好ましくは20質量%以上30質量%以下である。 The clay mineral serves to make the water-containing electrolyte material 6 into a mud shape, promote the movement of ions into the electrodeposition coating film 4 and the penetration of water, and promote the progress of corrosion. As the clay mineral, for example, layered silicate mineral or zeolite can be adopted. As the layered silicate mineral, for example, at least one selected from kaolinite, montmorillonite, sericite, illite, glowconite, chlorite, and talc can be adopted, and kaolinite is particularly preferably adopted. be able to. The content of the clay mineral in the hydrous electrolyte material 6 is preferably 1% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less, and particularly preferably 20% by mass or more and 30% by mass or less.

含水電解質材料6は、水、支持電解質及び粘土鉱物以外の添加物を含有してもよい。このような添加物としては、具体的には例えば、アセトン、エタノール、トルエン、メタノール等の有機溶剤等が挙げられる。含水電解質材料6が有機溶剤を含有する場合は、有機溶剤の含有量は、水に対して体積比で5%以上60%以下であることが好ましい。その体積比は、10%以上40%以下であること、20%以上30%以下であることがさらに好ましい。 The hydrous electrolyte material 6 may contain additives other than water, a supporting electrolyte and a clay mineral. Specific examples of such additives include organic solvents such as acetone, ethanol, toluene, and methanol. When the water-containing electrolyte material 6 contains an organic solvent, the content of the organic solvent is preferably 5% or more and 60% or less with respect to water. More preferably, the volume ratio is 10% or more and 40% or less, and 20% or more and 30% or less.

<電極、外部回路及び通電手段>
電極12は、外部回路7の両端に設けられている。そして、貫通孔11内の含水電解質材料6に埋没状態に設けられ、含水電解質材料6に接触している。
<Electrode, external circuit and energizing means>
The electrodes 12 are provided at both ends of the external circuit 7. The water-containing electrolyte material 6 in the through hole 11 is embedded in the water-containing electrolyte material 6 and is in contact with the water-containing electrolyte material 6.

電極12は、中央に孔12aを有するリング状の有孔電極であり、該孔12aが人工傷5に相対し該人工傷5と同心になるように、電着塗膜4と平行に配置されている。これにより、電極12が人工傷5を囲むように配置されるから、人工傷5周りの電着塗膜4に電圧が安定して印加され、通電時における該電着塗膜4へのイオンの移動及び水の浸透が効率良く行なわれる。また、人工傷5において発生する水素ガスは電極12の孔12aを通って抜けるため、電極12と電着塗膜4の間に水素ガスが滞留することは避けられ、すなわち、通電性が悪化することが避けられる。 The electrode 12 is a ring-shaped perforated electrode having a hole 12a in the center, and is arranged in parallel with the electrodeposition coating film 4 so that the hole 12a faces the artificial scratch 5 and is concentric with the artificial scratch 5. ing. As a result, the electrode 12 is arranged so as to surround the artificial scratch 5, so that the voltage is stably applied to the electrodeposition coating 4 around the artificial scratch 5, and the ions on the electrodeposition coating 4 are energized when energized. Efficient movement and water penetration. Further, since hydrogen gas generated in the artificial scratch 5 escapes through the hole 12a of the electrode 12, it is possible to avoid hydrogen gas from staying between the electrode 12 and the electrodeposition coating film 4, that is, the electrical conductivity deteriorates. Can be avoided.

外部回路7は、2つの電極12間を接続する配線であり、被覆金属材1の2箇所の測定部分4Aを含水電解質材料6及び電極12を介して電気的に接続している。 The external circuit 7 is a wiring that connects the two electrodes 12, and electrically connects the two measurement portions 4A of the coated metal material 1 via the hydrous electrolyte material 6 and the electrodes 12.

通電手段8は、外部回路7、電極12及び含水電解質材料6を介して鋼板2に通電する直流の定電流源からなる。通電手段8としては、例えば、ガルバノスタットを採用することができる。そして、後述する耐食性試験において、人工傷5における腐食を促進させる観点から、電流値は好ましくは10μA以上10mA以下、より好ましくは100μA以上5mA以下、特に好ましくは500μA以上2mA以下に制御される。 The energizing means 8 is composed of a DC constant current source for energizing the steel sheet 2 via the external circuit 7, the electrode 12 and the hydrous electrolyte material 6. As the energizing means 8, for example, a galvanostat can be adopted. Then, in the corrosion resistance test described below, the current value is controlled to preferably 10 μA or more and 10 mA or less, more preferably 100 μA or more and 5 mA or less, and particularly preferably 500 μA or more and 2 mA or less from the viewpoint of promoting corrosion in the artificial scratch 5.

<ラバーヒータ、ホットプレート及び温度コントローラ>
ラバーヒータ34は、貫通孔11の外周を覆うように、容器30の外周部に配置されており、貫通孔11内の含水電解質材料6を加温・温度調整するためのものである。具体的には、図1,図4に示すように、容器30の本体31の台座部302の段差部303上に、延設部301の外周面301Aを覆うように、ラバーヒータ34が配置される。ラバーヒータ34は、例えば粘着テープ等を用いて外周面301Aに接着固定される。
<Rubber heater, hot plate and temperature controller>
The rubber heater 34 is arranged on the outer peripheral portion of the container 30 so as to cover the outer periphery of the through hole 11, and is for heating and adjusting the temperature of the water-containing electrolyte material 6 in the through hole 11. Specifically, as shown in FIGS. 1 and 4, the rubber heater 34 is arranged on the step portion 303 of the pedestal portion 302 of the main body 31 of the container 30 so as to cover the outer peripheral surface 301A of the extension portion 301. It The rubber heater 34 is adhesively fixed to the outer peripheral surface 301A using, for example, an adhesive tape or the like.

ホットプレート35は、被覆金属材1の容器30が配置される側と反対側、すなわち鋼板2側に配置されており、被覆金属材1を裏側から加温・温度調整するためのものである。 The hot plate 35 is disposed on the side of the coated metal material 1 opposite to the side where the container 30 is disposed, that is, on the steel plate 2 side, and is for heating and adjusting the temperature of the coated metal material 1 from the back side.

温度コントローラ36は、ラバーヒータ34及びホットプレート35に電気的に接続されおり、ラバーヒータ34及びホットプレート35の温度を制御する。そうして、被覆金属材1及び含水電解質材料6の加温や温度調整を行う構成とすることができる。 The temperature controller 36 is electrically connected to the rubber heater 34 and the hot plate 35, and controls the temperatures of the rubber heater 34 and the hot plate 35. Thus, the coating metal material 1 and the water-containing electrolyte material 6 can be heated or adjusted in temperature.

本構成によれば、含水電解質材料6及び被覆金属材1を適度に加温することができるから、後述する耐食性試験において、電着塗膜4へのイオンの移動及び水の浸透を促進させ、人工傷5における腐食を効果的に進行させて、より短期間且つ信頼性の高い耐食性試験が可能となる。また、所望の試験時間に亘って含水電解質材料6及び被覆金属材1の温度を一定に保つことができるから、種々の温度条件における耐食性試験を精度よく行うことができる。 According to this configuration, since the water-containing electrolyte material 6 and the coating metal material 1 can be appropriately heated, in the corrosion resistance test described below, the migration of ions to the electrodeposition coating film 4 and the penetration of water are promoted, Corrosion in the artificial scratch 5 is effectively progressed, and a corrosion resistance test having a shorter period and higher reliability can be performed. Moreover, since the temperature of the hydrous electrolyte material 6 and the coating metal material 1 can be kept constant over a desired test time, the corrosion resistance test under various temperature conditions can be performed accurately.

なお、被覆金属材1及び含水電解質材料6の加温・温度調整は両者とも行う構成としてもよいし、いずれか一方のみ行う構成とすることもできる。被覆金属材1及び含水電解質材料6の温度分布を均一とする観点からは、両者とも加温・温度調整を行うことが望ましい。具体的には、ラバーヒータ34及び/又はホットプレート35の温度を温度コントローラ36で制御することにより、被覆金属材1及び/又は含水電解質材料6の温度を好ましくは30℃以上100℃以下、より好ましくは50℃以上100℃以下、特に好ましくは50℃以上80℃以下とすることができる。 It should be noted that both the heating and temperature adjustment of the coated metal material 1 and the water-containing electrolyte material 6 may be performed both, or only one of them may be performed. From the viewpoint of making the temperature distributions of the coated metal material 1 and the hydrous electrolyte material 6 uniform, it is desirable to perform heating and temperature adjustment for both. Specifically, by controlling the temperature of the rubber heater 34 and/or the hot plate 35 with the temperature controller 36, the temperature of the coated metal material 1 and/or the water-containing electrolyte material 6 is preferably 30° C. or higher and 100° C. or lower, It is preferably 50° C. or higher and 100° C. or lower, and particularly preferably 50° C. or higher and 80° C. or lower.

<耐食性試験方法>
上記耐食性試験装置100を用いた被覆金属材1の耐食性試験方法の一例をステップ順に説明する。
<Corrosion resistance test method>
An example of the corrosion resistance test method for the coated metal material 1 using the corrosion resistance test apparatus 100 will be described in the order of steps.

−人工傷を加えるステップ−
被覆金属材1の相離れた2箇所に電着塗膜4及び化成皮膜3を貫通して鋼板2に達する人工傷5を加える。人工傷5を付ける道具の種類は特に問わない。人工傷5の大きさや深さにばらつきを生じないように、すなわち、定量的に傷を付けるために、例えば、ビッカース硬さ試験機を用い、その圧子によって所定荷重で傷を付けることが好ましい。
-Step of adding artificial scratch-
Artificial scratches 5 that penetrate the electrodeposition coating film 4 and the chemical conversion coating 3 and reach the steel plate 2 are added to two positions apart from each other on the coated metal material 1. The type of tool for attaching the artificial scratch 5 is not particularly limited. In order to prevent variations in the size and depth of the artificial scratch 5, that is, to make a quantitative scratch, it is preferable to use, for example, a Vickers hardness tester and to make a scratch with a predetermined load using the indenter.

−処理ステップ−
被覆金属材1の電着塗膜4の上に、貫通孔11が2箇所の人工傷5各々を囲むように容器30を立て、貫通孔11の中に泥状の含水電解質材料6を所定量入れる。このとき、外部回路7の両端に設けられたリング状の電極12が含水電解質材料6に埋没した状態になるようにする。なお、貫通孔11は人工傷5と同心に設けることが好ましい。また、電極12は、孔12a部分が電着塗膜4の表面と平行になるように、且つ人工傷5と同心になるように設けることが好ましい。
-Processing step-
A container 30 is erected on the electrodeposition coating film 4 of the coated metal material 1 so that the through holes 11 surround each of the two artificial scratches 5, and a predetermined amount of the mud-containing water-containing electrolyte material 6 is placed in the through holes 11. Put in. At this time, the ring-shaped electrodes 12 provided at both ends of the external circuit 7 are set to be embedded in the hydrous electrolyte material 6. The through hole 11 is preferably provided concentrically with the artificial scratch 5. Further, it is preferable that the electrode 12 is provided so that the hole 12a portion is parallel to the surface of the electrodeposition coating film 4 and is concentric with the artificial scratch 5.

以上により、貫通孔11内に収容された含水電解質材料6が電着塗膜4の表面に接触し、且つ人工傷5内に浸入した状態になる。そして、上記2箇所の人工傷5が、該人工傷5に接触する含水電解質材料6及び電極12を介して外部回路7で電気的に接続された状態になる。 As described above, the water-containing electrolyte material 6 contained in the through hole 11 comes into contact with the surface of the electrodeposition coating film 4 and enters the artificial scratch 5. Then, the artificial scratches 5 at the two locations are electrically connected to each other by the external circuit 7 through the hydrous electrolyte material 6 and the electrode 12 that are in contact with the artificial scratches 5.

−保持ステップ−
次の通電ステップ前に、含水電解質材料6を貫通孔11内に収容して電着塗膜4の表面上に配置した状態で、好ましくは1分以上1日以下、より好ましくは10分以上120分以下、特に好ましくは15分以上60分以下保持することにより、含水電解質材料6を電着塗膜4へ浸透させることが望ましい。
-Holding step-
Before the next energization step, the hydrous electrolyte material 6 is housed in the through holes 11 and arranged on the surface of the electrodeposition coating film 4, preferably for 1 minute or more and 1 day or less, more preferably 10 minutes or more 120 It is desirable to allow the hydrous electrolyte material 6 to penetrate into the electrodeposition coating film 4 by holding it for 5 minutes or less, particularly preferably for 15 minutes or more and 60 minutes or less.

一般に、塗膜を備えた被覆金属材では、例えば塩水などの腐食因子が塗膜に浸透し、基材に到達することで腐食が開始する。従って、被覆金属材の腐食過程は、腐食が発生するまでの過程と腐食が進展する過程とに分けられ、それぞれ腐食が開始するまでの期間(腐食抑制期間)と腐食が進展する速度(腐食進展速度)とを求めることにより評価することができる。 Generally, in a coated metal material provided with a coating film, a corrosion factor such as salt water penetrates into the coating film and reaches the base material to start corrosion. Therefore, the corrosion process of the coated metal material is divided into the process until the corrosion occurs and the process where the corrosion progresses, and the period until the corrosion starts (corrosion inhibition period) and the rate at which the corrosion progresses (corrosion progress It can be evaluated by determining

通電ステップ前に保持ステップを設けることにより、電着塗膜4へのイオンの移動及び水の浸透、特に図3中ドット模様で示すように、人工傷5周りの電着塗膜4へのイオンの移動及び水の浸透を予め促すことができる。そうすると、被覆金属材1の電極12近傍において、擬似的に腐食抑制期間終了後の状態を作り出すことができる。そうして、次の通電ステップにおける化成皮膜3及び鋼板2の腐食をよりスムーズに進行させ、腐食進展速度を示す電着塗膜4の塗膜膨れの進行を促すことができ、試験時間の短縮化を図ることができる。また、いわば腐食抑制期間が終了した状態で通電を行うから、腐食進展速度を精度よく測定することができ、耐食性試験の信頼性を向上させることができる。 By providing the holding step before the energization step, the migration of ions into the electrodeposition coating film 4 and the permeation of water, especially the ions in the electrodeposition coating film 4 around the artificial scratch 5 as shown by the dot pattern in FIG. Movement and water penetration can be promoted in advance. Then, in the vicinity of the electrode 12 of the coated metal material 1, a state after the end of the corrosion suppression period can be artificially created. Then, the corrosion of the chemical conversion coating 3 and the steel sheet 2 in the next energization step can be more smoothly progressed, and the progress of coating swelling of the electrodeposition coating 4 showing the corrosion progress rate can be promoted, and the test time can be shortened. Can be promoted. In addition, since the power is supplied in a state where the corrosion suppression period ends, so to speak, the rate of corrosion progress can be measured accurately, and the reliability of the corrosion resistance test can be improved.

なお、当該保持ステップ及び次の通電ステップにおいて、温度コントローラ36を用いて、ラバーヒータ34及びホットプレート35の温度を上述の温度範囲に調整・保持することが望ましい。これにより、電着塗膜4へのイオンの移動及び水の浸透を促進させ、人工傷5における腐食を効果的に進行させて、より短期間且つ信頼性の高い耐食性試験が可能となる。 In the holding step and the next energization step, it is desirable to use the temperature controller 36 to adjust and hold the temperatures of the rubber heater 34 and the hot plate 35 within the above temperature range. As a result, the migration of ions to the electrodeposition coating film 4 and the penetration of water are promoted, the corrosion in the artificial scratches 5 is effectively advanced, and a corrosion resistance test with a shorter period and higher reliability becomes possible.

−通電ステップ−
通電手段8を作動させ、外部回路7によって被覆金属材1の鋼板2に電極12、含水電解質材料6及び電着塗膜4を介して通電する。この通電は、電流値が上述の範囲の定電流値となるように定電流制御することが好ましい。
-Energization step-
The energizing means 8 is operated to energize the steel plate 2 of the coated metal material 1 through the electrode 12, the water-containing electrolyte material 6 and the electrodeposition coating film 4 by the external circuit 7. This energization is preferably controlled by constant current so that the current value is a constant current value within the above range.

上記通電により、上記2箇所の人工傷5のうちの通電手段8の負極側に接続された一方(図3の左側)では、含水電解質材料6から電子eが鋼板2に流入する。そして、この一方の人工傷5がアノードサイトになる。 By the energization, one of the two artificial scratches 5 connected to the negative electrode side of the energizing means 8 (on the left side in FIG. 3), the electron e flows from the hydrous electrolyte material 6 into the steel plate 2. Then, this one artificial scratch 5 becomes an anode site.

鋼板2に流入したeは鋼板2を通って他方の人工傷5(図3の右側)に移動し、該他方の人工傷5において含水電解質材料6に放出される。そして、この他方の人工傷5がカソードサイトになる。 The e flowing into the steel plate 2 moves to the other artificial scratch 5 (on the right side in FIG. 3) through the steel plate 2 and is released to the hydrous electrolyte material 6 at the other artificial scratch 5. Then, the other artificial scratch 5 becomes a cathode site.

アノードサイトでは、eが供給されるから、電気防食と同じ原理で、鋼板2のFeがイオンになって含水電解質材料6に溶解する(Fe → Fe2++2e)ものの、被覆金属材1の腐食は進まない。 At the anode site, since e is supplied, Fe of the steel plate 2 becomes ions and dissolves in the water-containing electrolyte material 6 (Fe → Fe 2+ +2e ) according to the same principle as that of the electrocorrosion. Corrosion does not progress.

これに対して、カソードサイトでは、アノードサイトから電子が移動してくるから、含水電解質材料6の水、溶存酸素及び当該電子eの反応によりOHを生ずる(HO+1/2O+2e → 2OH)。また、含水電解質材料6の電離した水素イオンと当該電子eの反応により水素が発生する(2H+2e → H)。OH及び水素の生成はカソード反応(還元反応)である。また、水の電気分解による水素も発生する。 On the other hand, at the cathode site, since electrons move from the anode site, OH is generated by the reaction of water in the water-containing electrolyte material 6, dissolved oxygen and the electron e (H 2 O+1/2O 2 +2e −). → 2OH ). Further, hydrogen is generated by the reaction between the ionized hydrogen ions of the water-containing electrolyte material 6 and the electron e (2H + +2e →H 2 ). The production of OH and hydrogen is a cathode reaction (reduction reaction). Also, hydrogen is generated by electrolysis of water.

そして、カソードサイトでは、OHの発生に伴ってアルカリ化が進むから、化成皮膜3が溶解するとともに、鋼板2の腐食が進む(水和酸化鉄の生成)。そうして、電着塗膜4の鋼板2に対する付着力が低下する。そして、上述の水素ガスの発生によって、電着塗膜4の膨れを生じ、鋼板2の腐食が人工傷5の部位から周囲に進展していく。このようにカソードサイトでは、カソード反応の進行に伴い電着塗膜4の膨れが進展するから、後述する耐食性評価ステップにおいて、このカソードサイトの電着塗膜4の膨れの大きさを評価することにより、被覆金属材1の耐食性を評価することができる。 Then, at the cathode site, alkalinization proceeds with the generation of OH , so that the chemical conversion film 3 dissolves and corrosion of the steel sheet 2 proceeds (generation of hydrated iron oxide). Then, the adhesion of the electrodeposition coating film 4 to the steel plate 2 is reduced. The generation of hydrogen gas causes the electrodeposition coating film 4 to swell, and the corrosion of the steel plate 2 progresses from the site of the artificial scratch 5 to the surroundings. As described above, since the swelling of the electrodeposition coating film 4 progresses with the progress of the cathode reaction at the cathode site, the degree of swelling of the electrodeposition coating film 4 at this cathode site should be evaluated in the corrosion resistance evaluation step described later. Thus, the corrosion resistance of the coated metal material 1 can be evaluated.

なお、通電ステップにおける通電時間は、塗膜膨れの十分な広がりを得る観点から、例えば、0.5時間以上24時間以下とすればよい。その通電時間は、好ましくは1時間以上10時間以下、より好ましくは1時間以上5時間以下とする。 The energizing time in the energizing step may be, for example, 0.5 hours or more and 24 hours or less from the viewpoint of obtaining a sufficient spread of the coating film swell. The energization time is preferably 1 hour or more and 10 hours or less, more preferably 1 hour or more and 5 hours or less.

また、上記外部回路7による通電では、カソードサイトにおいて、含水電解質材料6に電圧が加わることにより、含水電解質材料6中の陽イオン(Na等)が電着塗膜4を通って鋼板2に向かって移動する。そして、この陽イオンに引きずられて水が電着塗膜4に浸透していく。一方、アノードサイトにおいても、含水電解質材料6の陰イオン(Cl等)が電着塗膜4を通って鋼板2に向かって移動し、これに引きずられて水が電着塗膜4に浸透していく。 Further, in the energization by the external circuit 7, a voltage is applied to the hydrous electrolyte material 6 at the cathode site, so that cations (Na + etc.) in the hydrous electrolyte material 6 pass through the electrodeposition coating film 4 and reach the steel sheet 2. Move towards. Then, the water is attracted to the cations and permeates the electrodeposition coating film 4. On the other hand, also at the anode site, anions (Cl or the like) of the water-containing electrolyte material 6 move toward the steel plate 2 through the electrodeposition coating film 4 and are dragged by this, and water permeates into the electrodeposition coating film 4. I will do it.

このように、アノードサイト及びカソードサイトにおいて、上記通電により、人工傷5周りの電着塗膜4へのイオン及び水の浸透が促進されるから、電気の流れが速やかに安定した状態になる。よって、カソードサイトにおける人工傷5からその周囲への腐食の進展が安定したものになる。 Thus, at the anode site and the cathode site, the above-mentioned energization promotes the penetration of ions and water into the electrodeposition coating film 4 around the artificial scratch 5, so that the flow of electricity quickly becomes stable. Therefore, the progress of corrosion from the artificial scratch 5 at the cathode site to its surroundings becomes stable.

−耐食性評価ステップ−
上述の如く、カソードサイトにおける腐食の進展は、電着塗膜4の膨れの進展、つまり、塗膜膨れ範囲の拡大となって現れる。従って、上記通電開始から所定時間を経過した時点での塗膜膨れの広がり程度をみることによって、被覆金属材1の耐食性、特に腐食進展速度を評価することができる。
-Corrosion resistance evaluation step-
As described above, the development of corrosion at the cathode site appears as the development of swelling of the electrodeposition coating film 4, that is, the expansion of the coating film swelling range. Therefore, the corrosion resistance of the coated metal material 1, in particular, the rate of corrosion progress can be evaluated by observing the extent of swelling of the coating film after a predetermined time has elapsed from the start of energization.

なお、塗膜膨れの広がりの程度は、耐食性試験後に、電着塗膜4に粘着テープを貼り、電着塗膜4の膨れた部分を剥がし、露出した鋼板2の露出面の径(以下、「剥離径」という。)を測定することによって知ることができる。 In addition, the extent of spread of the coating film swell can be determined by applying an adhesive tape to the electrodeposition coating film 4 after the corrosion resistance test, peeling off the swelled portion of the electrodeposition coating film 4, and exposing the exposed surface of the steel plate 2 (hereinafter, referred to as It can be known by measuring the "peeling diameter").

具体的に、図5は、後述する耐食性試験の比較例3の供試材1のアノードサイト及びカソードサイトの外観写真を示している。なお、外観写真(剥離前)は、試験後の被覆金属材1の表面の写真であり、外観写真(剥離後)は、試験後、被覆金属材1の表面から膨れ上がった電着塗膜4を粘着テープで剥離した後の写真である。アノードサイトでは、人工傷5の形成を確認することができるものの、電着塗膜4の膨れは観察できない。一方、カソードサイトでは、人工傷5と、当該人工傷5の周りに形成された電着塗膜4の膨れが観察される。 Specifically, FIG. 5 shows appearance photographs of the anode site and the cathode site of the sample material 1 of Comparative Example 3 in the corrosion resistance test described later. The appearance photograph (before peeling) is a photograph of the surface of the coated metal material 1 after the test, and the appearance photograph (after peeling) is the electrodeposition coating film 4 swelled from the surface of the coated metal material 1 after the test. 2 is a photograph after peeling with a pressure-sensitive adhesive tape. At the anode site, formation of the artificial scratch 5 can be confirmed, but swelling of the electrodeposition coating film 4 cannot be observed. On the other hand, at the cathode site, the artificial scratch 5 and the swelling of the electrodeposition coating film 4 formed around the artificial scratch 5 are observed.

被覆金属材1の耐食性を実腐食試験(塩水噴霧試験)と関連付けて評価する場合は、当該耐食性試験による腐食進展速度(単位時間当たりの塗膜膨れ径の広がり量)と、実腐食試験での腐食進展速度との関係を予め求めておき、当該耐食性試験結果に基づいて、それが実腐食試験においてどの程度の耐食性に相当するかをみることができる。 When the corrosion resistance of the coated metal material 1 is evaluated in association with the actual corrosion test (salt spray test), the corrosion progress rate (expansion amount of coating film swelling diameter per unit time) by the corrosion resistance test and the actual corrosion test The relationship with the corrosion progress rate is obtained in advance, and based on the result of the corrosion resistance test, it is possible to see how much the corrosion resistance corresponds to in the actual corrosion test.

<実験例>
−耐食性試験−
供試材(被覆金属材)として、塗装条件、すなわちリン酸亜鉛による化成処理時間及び電着塗装の焼付条件が異なる表1に示す7種類を準備した。供試材1〜7はいずれも金属製基材が鋼板2であり、電着塗膜4の厚さは10μmである。なお、表1に示す塗装条件A〜Gの詳細は表2に示している。
<Experimental example>
-Corrosion resistance test-
As the test materials (coated metal materials), seven kinds shown in Table 1 were prepared, which differed in coating conditions, that is, chemical conversion treatment time with zinc phosphate and baking conditions for electrodeposition coating. In each of the test materials 1 to 7, the metal base material is the steel plate 2, and the thickness of the electrodeposition coating film 4 is 10 μm. The details of the coating conditions A to G shown in Table 1 are shown in Table 2.

各供試材について、図1〜図4に示す態様の耐食性試験装置を用いて耐食性試験を行った。なお、容器30の本体31は、アクリル樹脂製であり、その各寸法は、以下の人工傷5間の距離、電極12のサイズ等に合わせた仕様とした。また、磁石33は厚さ3mm、高さ7mmのリング型ネオジム磁石を使用した。磁石33は、溝部304に収容した後、エポキシ樹脂で封止した。そうして、図1,図2に示すように、シリコーン樹脂製の底部32を、磁石33が収容された溝部304を覆うように設けた。 A corrosion resistance test was performed on each of the test materials by using the corrosion resistance test apparatus of the embodiment shown in FIGS. The main body 31 of the container 30 is made of acrylic resin, and the dimensions of the main body 31 are set according to the distance between the artificial scratches 5 and the size of the electrode 12 described below. As the magnet 33, a ring-type neodymium magnet having a thickness of 3 mm and a height of 7 mm was used. The magnet 33 was housed in the groove 304 and then sealed with epoxy resin. Then, as shown in FIGS. 1 and 2, the bottom portion 32 made of silicone resin is provided so as to cover the groove portion 304 in which the magnet 33 is accommodated.

供試材には、ビッカース硬さ試験機を用いて定量的に、すなわち、荷重(試験力)30kgで鋼板に達する1mm径の人工傷5を2箇所に4cmの間隔をあけて付与した。 The test material was applied quantitatively using a Vickers hardness tester, that is, artificial scratches 5 with a diameter of 1 mm that reach the steel plate with a load (testing force) of 30 kg were applied at two locations at intervals of 4 cm.

比較例1,2の試験では、含水電解質材料6として、水1.3Lに対し、支持電解質としての塩化ナトリウム50gを混合させてなる塩化ナトリウム水溶液を用いた。また、比較例3,4及び参考例1の試験では、含水電解質材料6として、水1.3Lに対し、支持電解質としての塩化ナトリウム50g、及び粘土鉱物としてのカオリナイト500gを混合させてなる模擬泥を用いた。 In the tests of Comparative Examples 1 and 2, as the water-containing electrolyte material 6, an aqueous sodium chloride solution prepared by mixing 50 g of sodium chloride as a supporting electrolyte with 1.3 L of water was used. In addition, in the tests of Comparative Examples 3 and 4 and Reference Example 1, as a water-containing electrolyte material 6, 1.3 L of water was mixed with 50 g of sodium chloride as a supporting electrolyte and 500 g of kaolinite as a clay mineral. I used mud.

電極12としては、外径約32mm、内径約30mmのリング状の有孔電極(白金製)を用いた。 As the electrode 12, a ring-shaped perforated electrode (made of platinum) having an outer diameter of about 32 mm and an inner diameter of about 30 mm was used.

鋼板の下側にホットプレートを配置するとともに、貫通孔周りにラバーヒータを巻き、鋼板及び含水電解質材料6の温度を表1に示す温度に加温・保持した。 A hot plate was arranged below the steel plate, and a rubber heater was wound around the through hole to heat and maintain the temperature of the steel plate and the water-containing electrolyte material 6 at the temperatures shown in Table 1.

通電手段8の電流値は1mAとし、表1に示す通電時間の間、通電を行った。なお、比較例1〜4では、処理ステップ後すぐに通電を行った。参考例1では、処理ステップ後、通電ステップ前に、70℃で30分間保持した。 The current value of the energizing means 8 was set to 1 mA, and energization was performed during the energizing time shown in Table 1. In addition, in Comparative Examples 1 to 4, energization was performed immediately after the processing step. In Reference Example 1, after the treatment step and before the energization step, the sample was held at 70° C. for 30 minutes.

通電終了後、上記耐食性評価ステップに記載の方法で、各供試材について腐食進展速度(塗膜の膨れの進展速度)を測定した。 After the completion of energization, the corrosion progress rate (progression rate of swelling of the coating film) of each test material was measured by the method described in the above corrosion resistance evaluation step.

表1に、参考例1及び比較例1〜4の試験により得られた腐食進展速度(塗膜の膨れの進展速度)を示す。また、試験例1として各供試材について人工傷5に模擬泥を付着させて、温度50℃、湿度98%の環境に暴露する実腐食試験の結果得られた腐食進展速度を示す。さらに、図6に、参考例1の腐食進展速度と試験例1の腐食進展速度との相関を示す。 Table 1 shows the corrosion progress rate (the swelling rate of the coating film) obtained by the tests of Reference Example 1 and Comparative Examples 1 to 4. Further, as Test Example 1, the corrosion progress rate obtained as a result of the actual corrosion test in which simulated mud is adhered to the artificial scratches 5 of each test material and exposed to an environment of a temperature of 50° C. and a humidity of 98% is shown. Further, FIG. 6 shows the correlation between the corrosion progress rate of Reference Example 1 and the corrosion progress rate of Test Example 1.

表1,図6に示すように、参考例1の供試材1〜5,7について、本耐食性試験に係る腐食進展速度と実腐食試験に係る腐食進展速度の相関をみると、その相関性が高い(R=0.96)ことが判る。 As shown in Table 1 and FIG. 6, for the test materials 1 to 5 and 7 of Reference Example 1, the correlation between the corrosion progress rate according to the present corrosion resistance test and the corrosion progress rate according to the actual corrosion test is seen. Is high (R 2 =0.96).

一方、表1に示すように、比較例2,4の試験では、試験例1の腐食進展速度との相関をみると、それぞれR=0.68,0.70で相関性が低いことが判る。また、比較例3では、R=0.86で相関性は比較的高いものの、通電時間が5時間と長いことが判る。なお、比較例1の試験では、供試材2〜7において塗膜膨れは観測されなかった。 On the other hand, as shown in Table 1, in the tests of Comparative Examples 2 and 4, the correlation with the corrosion progress rate of Test Example 1 was R 2 =0.68 and 0.70, and the correlation was low. I understand. In Comparative Example 3, R 2 =0.86, and although the correlation is relatively high, it can be seen that the energization time is as long as 5 hours. In the test of Comparative Example 1, no swelling of the coating film was observed in the test materials 2 to 7.

−含水電解質材料による塗膜の吸水促進性−
焼付条件又は膜厚が異なる各種電着塗膜4の表面に種々の付着物を設けて、その電着塗膜4の9日経過後の吸水量及び9日経過後の膨れ発生率を調べた。図7〜図9に示すように、付着物の種類及び形態は、「水」、「5%NaCl(スプレー)」、「5%CaCl(スプレー)」、「模擬泥」及び「5%NaCl(浸漬)」の5種類である。なお、「模擬泥」の組成は、水:カオリナイト:塩化ナトリウム:硫酸ナトリウム:塩化カルシウム=500:500:25:25:25(質量比)である。
-Water absorption accelerating property of a coating film using a water-containing electrolyte material-
Various deposits were provided on the surface of various electrodeposition coating films 4 having different baking conditions or film thicknesses, and the water absorption amount of the electrodeposition coating film 4 after 9 days and the swelling occurrence rate after 9 days were examined. As shown in FIGS. 7 to 9, the types and forms of the deposits are “water”, “5% NaCl (spray)”, “5% CaCl 2 (spray)”, “simulated mud” and “5% NaCl”. (Immersion)”. The composition of “simulated mud” is water:kaolinite:sodium chloride:sodium sulfate:calcium chloride=500:500:25:25:25 (mass ratio).

図7によれば、水、5%NaCl(スプレー)及び5%CaCl(スプレー)のいずれも、9日経過後でも、吸水量はわずかであり、塗膜の膨れもほとんどみられない。 According to FIG. 7, water, 5% NaCl (spray), and 5% CaCl 2 (spray) all had a small water absorption amount even after 9 days, and almost no swelling of the coating film was observed.

これに対して、図8によれば、模擬泥の場合は、9日経過後の吸水量及び膨れ発生率が、水、5%NaCl(スプレー)及び5%CaCl(スプレー)に比べると、格段に大きくなっている。特に、電着塗膜4の焼付条件が同じ150℃×20分であるケースで比較すると、模擬泥の場合は、当該吸水量及び膨れ発生率が桁違いに大きくなっていることがわかる。 On the other hand, according to FIG. 8, in the case of the simulated mud, the water absorption amount and the swelling occurrence rate after 9 days are significantly higher than those of water, 5% NaCl (spray) and 5% CaCl 2 (spray). Is getting bigger. In particular, comparing the case where the baking conditions of the electrodeposition coating film 4 are the same 150° C.×20 minutes, it can be seen that in the case of the simulated mud, the water absorption amount and the swelling occurrence rate are orders of magnitude higher.

図9によれば、5%NaCl(浸漬)の場合は、当該吸水量及び膨れ発生率が、水、5%NaCl(スプレー)及び5%CaCl(スプレー)よりも大きくなっているが、図8の模擬泥に比べるとかなり低い。 According to FIG. 9, in the case of 5% NaCl (immersion), the water absorption amount and the swelling occurrence rate are larger than those of water, 5% NaCl (spray) and 5% CaCl 2 (spray). It is considerably lower than the simulated mud of 8.

図10は上記5種類について、電着塗膜4の焼付条件が150℃×20分であるケースでの塗膜への水の浸入速度を比較したものである。塗膜への水の浸入速度は、塗膜の吸水量が25μg/mmに到達するまでの時間から計算している。同図によれば、塩水スプレー等に比べて、模擬泥の場合には、塗膜への水の浸入速度が格段に大きいことがわかる。 FIG. 10 is a comparison of the infiltration rates of water into the coating film in the case where the baking conditions of the electrodeposition coating film 4 are 150° C.×20 minutes for the above five types. The infiltration rate of water into the coating film is calculated from the time required for the water absorption of the coating film to reach 25 μg/mm 3 . According to the figure, in the case of the simulated mud, the penetration speed of water into the coating film is significantly higher than that in the salt water spray or the like.

−通電制御について−
本実施形態に係る耐食性試験において、鋼板2に対する通電は、定電流制御方式に限らず、定電圧制御方式にすることもできる。
-About energization control-
In the corrosion resistance test according to the present embodiment, the energization of the steel sheet 2 is not limited to the constant current control method, but may be the constant voltage control method.

なお、図11は1mAの定電流制御による通電の電流プロット(比較例3の供試材1の試験)であり、図12は1mAの電流が流れる程度の定電圧を印加したときの電流プロットである。この定電流制御の耐食性試験及び定電圧制御の耐食性試験において、通電条件を除く、他の試験条件は比較例3の供試材1の試験条件と同じである。 Note that FIG. 11 is a current plot of energization by constant current control of 1 mA (test of the sample material 1 of Comparative Example 3), and FIG. 12 is a current plot when a constant voltage of about 1 mA of current is applied. is there. In the corrosion resistance test under constant current control and the corrosion resistance test under constant voltage control, the other test conditions except the energization conditions are the same as the test conditions for the test material 1 of Comparative Example 3.

定電流制御の場合、電流値が通電初期において多少ばらつくものの、略1mAに制御されている。このように腐食の加速に直接関与する電流値が安定することにより、腐食の加速再現性が良くなる。すなわち、耐食性試験の信頼性が高くなる。 In the case of constant current control, the current value is controlled to about 1 mA, although it fluctuates to some extent at the beginning of energization. In this way, by stabilizing the current value that is directly involved in the acceleration of corrosion, the acceleration reproducibility of corrosion is improved. That is, the reliability of the corrosion resistance test is increased.

これに対して、定電圧制御の場合、電流値が大きく変動しており、腐食の加速再現性の面で不利になることがわかる。通電開始から7000秒付近までの電流値の変動が大きい期間は、電着塗膜4に水が浸透する期間にあたり、塗膜への水の浸透が定常的に進まないために、電流値が大きく変動しているものと認められる。その後も、電流値は0.5mA〜1.5mAの範囲で変動しており、化成皮膜の劣化や発錆に伴う抵抗値の変動の影響と認められる。なお、本実施形態に係る耐食性試験方法では、通電ステップ前に保持ステップを設けているため、通電開始から7000秒付近までの電流値の変動は抑制され得る。定電圧制御での電流プロット(電流波形)から、腐食が進展する過程における腐食の進行状態ないしは腐食の程度を捉えることが可能になると考えられる。 On the other hand, in the case of the constant voltage control, the current value greatly fluctuates, which is disadvantageous in terms of accelerated reproducibility of corrosion. During the period when the fluctuation of the current value from the start of energization to around 7000 seconds is large, it corresponds to the period when water permeates the electrodeposition coating film 4, and the permeation of water into the coating film does not proceed steadily, so the current value is large. It is recognized as fluctuating. Even after that, the current value fluctuated within the range of 0.5 mA to 1.5 mA, which is considered to be due to the fluctuation of the resistance value due to the deterioration of the chemical conversion film and rusting. In addition, in the corrosion resistance test method according to the present embodiment, since the holding step is provided before the energization step, the fluctuation of the current value from the start of energization to around 7000 seconds can be suppressed. From the current plot (current waveform) under constant voltage control, it is considered possible to grasp the progress state of corrosion or the degree of corrosion in the course of progress of corrosion.

<作用効果>
以上述べたように、本実施形態に係る耐食性試験装置を用いると、試験例1に示すような実腐食試験に比べてより短期間で信頼性の高い耐食性試験が可能となる。特に、含水電解質材料6を収容する複数の貫通孔11を備えた容器30を電着塗膜4上に載置することにより、含水電解質材料6を複数の測定部分4Aの各々に接触するように配置することができる。そうして、貫通孔11が含水電解質材料保持部として機能するから、より簡単な構成で、信頼性の高い耐食性試験が可能となる。さらに、複数の貫通孔11は、1つの容器に設けられているから、所定の測定部分4Aに接触するように含水電解質材料6を配置することが容易となるとともに、含水電解質材料6の配置に位置ずれが生じにくく、耐食性試験の信頼性を高めることができる。
<Effect>
As described above, when the corrosion resistance test apparatus according to the present embodiment is used, it is possible to perform a highly reliable corrosion resistance test in a shorter period compared to the actual corrosion test as shown in Test Example 1. In particular, by placing the container 30 having the plurality of through-holes 11 that accommodates the water-containing electrolyte material 6 on the electrodeposition coating film 4, the water-containing electrolyte material 6 is brought into contact with each of the plurality of measurement portions 4A. Can be placed. Then, since the through hole 11 functions as the water-containing electrolyte material holding portion, a highly reliable corrosion resistance test can be performed with a simpler configuration. Further, since the plurality of through holes 11 are provided in one container, it becomes easy to dispose the hydrous electrolyte material 6 so as to come into contact with the predetermined measurement portion 4A, and at the same time in disposing the hydrous electrolyte material 6. Positional deviation is unlikely to occur and the reliability of the corrosion resistance test can be improved.

なお、好ましくは、測定部分4Aに人工傷5を設けるとともに、粘土鉱物を含有する模擬泥を含水電解質材料6として採用すると、水が塗膜に対して速やかに浸透し、上述の耐食性試験を迅速に且つ安定して行なうことができる。また、通電ステップ前に保持ステップを設け、且つ当該保持ステップ及び通電ステップにおいて、含水電解質材料6及び被覆金属材1を所定の温度に加温して保持することにより、電着塗膜4へのイオンの移動及び水の浸透を予め促すことができる。そうして、腐食進展速度の評価をより短時間で精度よく行うことができる。 In addition, preferably, when the artificial scratch 5 is provided on the measurement portion 4A and the simulated mud containing the clay mineral is adopted as the water-containing electrolyte material 6, water quickly permeates the coating film and the corrosion resistance test described above is performed quickly. In addition, it can be performed stably. Further, a holding step is provided before the energization step, and in the holding step and the energization step, the water-containing electrolyte material 6 and the coating metal material 1 are heated to a predetermined temperature and held, so that the electrodeposition coating film 4 The migration of ions and the penetration of water can be promoted in advance. Then, the corrosion progress rate can be evaluated in a shorter time and with high accuracy.

なお、本実施形態に係る耐食性試験装置は、例えば自動車部材の製造工程等において、塗装工程毎に製造ラインから部品を取り出し、塗膜の品質等を確認する場合等に好適に用いることができる。 The corrosion resistance test apparatus according to the present embodiment can be suitably used, for example, in a manufacturing process of an automobile member or the like, in a case where a part is taken out from the manufacturing line for each coating process and the quality of the coating film is confirmed.

(第2実施形態)
以下、本開示に係る他の実施形態について詳述する。なお、これらの実施形態の説明において、第1実施形態と同じ部分については同じ符号を付して詳細な説明を省略する。
(Second embodiment)
Hereinafter, other embodiments according to the present disclosure will be described in detail. In the description of these embodiments, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.

図1の容器30及び被覆金属材1を覆うように、図13に示すカバー38を設けてもよい。カバー38は、例えば、カバー本体381と、カバー本体381の側面に設けられた切欠き部382と、カバー本体381の上部に設けられた把持部383とを備える。把持部383を持って、外部回路7及び温度コントローラ36の配線等を切欠き部382から取り出しつつ、カバー本体381により容器30及び被覆金属材1の全体を覆うようにカバー38を配置する。本構成により、含水電解質材料6及び被覆金属材1の温度の調整を容易に行うとともに、温度を一定に保つことができるから、耐食性試験の信頼性を向上させることができる。 A cover 38 shown in FIG. 13 may be provided so as to cover the container 30 and the coated metal material 1 of FIG. The cover 38 includes, for example, a cover body 381, a cutout portion 382 provided on a side surface of the cover body 381, and a grip portion 383 provided on an upper portion of the cover body 381. While holding the grip portion 383 and taking out the wiring of the external circuit 7 and the temperature controller 36 from the cutout portion 382, the cover 38 is arranged so as to cover the entire container 30 and the coated metal material 1 by the cover body 381. With this configuration, the temperature of the hydrous electrolyte material 6 and the coating metal material 1 can be easily adjusted and the temperature can be kept constant, so that the reliability of the corrosion resistance test can be improved.

(その他の実施形態)
測定部分4Aは、3箇所以上であってもよい。そして、容器30の貫通孔11は、3個以上設けてもよい。また、測定部分4Aに人工傷5を設けない構成としてもよい。測定部分4Aを3箇所以上設ける場合は、全て又は一部の測定部分4Aに人工傷5を設けてもよいし、設けなくてもよい。
(Other embodiments)
There may be three or more measurement portions 4A. Further, three or more through holes 11 of the container 30 may be provided. Further, the measurement portion 4A may not be provided with the artificial scratch 5. When three or more measurement portions 4A are provided, the artificial scratches 5 may or may not be provided on all or some of the measurement portions 4A.

容器30の外形は、第1実施形態のものに限られず、平面視矩形状等他の形状の部材であってもよい。 The outer shape of the container 30 is not limited to that of the first embodiment, and may be a member having another shape such as a rectangular shape in plan view.

被覆金属材1は、板状でなくてもよく、ブロック状、棒状、球状等であってもよいし、測定部分4Aは、湾曲面や角部に位置していてもよい。この場合、容器30及び貫通孔11の形状、電極12の形状等は、測定部分4Aの形状に合わせて適宜変更され得る。 The coated metal material 1 does not have to have a plate shape, and may have a block shape, a rod shape, a spherical shape, or the like, and the measurement portion 4A may be located on a curved surface or a corner portion. In this case, the shapes of the container 30 and the through hole 11, the shape of the electrode 12, and the like can be appropriately changed according to the shape of the measurement portion 4A.

容器30は、底部32としてのシート状のシール材を有しない構成であってもよい。この場合、例えば、被覆金属材1の電着塗膜4上に測定部分4Aが露出する孔部を有するゴムマットやシリコーン樹脂製のシートを配置し、その上に容器30を載置するようにしてもよい。 The container 30 may not have the sheet-shaped sealing material as the bottom 32. In this case, for example, a rubber mat having a hole for exposing the measurement portion 4A or a sheet made of silicone resin is arranged on the electrodeposition coating film 4 of the coated metal material 1, and the container 30 is placed thereon. Good.

磁石33を設けない構成としてもよいし、設ける場合は、リング状の磁石に限られず、例えば複数のブロック状や円盤状、球状等の磁石を貫通孔11周りに設けるようにしてもよい。また、底部32の一部として磁石シート等を設ける構成としてもよい。 The magnet 33 may not be provided, and when provided, it is not limited to the ring-shaped magnet, and for example, a plurality of block-shaped, disc-shaped, or spherical magnets may be provided around the through hole 11. A magnet sheet or the like may be provided as part of the bottom portion 32.

また、ラバーヒータ34及びホットプレート35を設ける代わりに、装置全体を炉内で加温及び温度調整するようにしてもよい。 Further, instead of providing the rubber heater 34 and the hot plate 35, the entire apparatus may be heated and temperature adjusted in the furnace.

上記実施形態では、表面処理膜として電着塗膜4を備えた構成であったが、被覆金属材1は、表面処理膜として二層以上の多層膜を備えた構成とすることができる。具体的には例えば、電着塗膜4に加え、該電着塗膜4表面上に中塗り塗膜を備えた構成、若しくは該中塗り塗膜上にさらに上塗り塗膜等を備えた構成の多層膜とすることができる。 In the above embodiment, the electrodeposition coating film 4 was provided as the surface treatment film, but the coated metal material 1 may be provided with a multilayer film having two or more layers as the surface treatment film. Specifically, for example, in addition to the electrodeposition coating film 4, a structure in which an intermediate coating film is provided on the surface of the electrodeposition coating film 4, or a configuration in which an overcoating film or the like is further provided on the intermediate coating film It can be a multilayer film.

中塗り塗膜は、被覆金属材1の仕上り性と耐チッピング性を確保するとともに、電着塗膜4と上塗り塗膜との密着性を向上させる役割を有する。また、上塗り塗膜は、被覆金属材1の色、仕上り性及び耐候性を確保するものである。これらの塗膜は、具体的には例えば、ポリエステル樹脂、アクリル樹脂、アルキド樹脂等の基体樹脂と、メラミン樹脂、尿素樹脂、ポリイソシアネート化合物(ブロック体も含む)等の架橋剤とからなる塗料等により形成することができる。 The intermediate coating film has the roles of ensuring the finish and chipping resistance of the coated metal material 1 and improving the adhesion between the electrodeposition coating film 4 and the top coating film. Further, the top coating film ensures the color, finish and weather resistance of the coated metal material 1. These coating films are, for example, paints composed of a base resin such as polyester resin, acrylic resin or alkyd resin, and a crosslinking agent such as melamine resin, urea resin or polyisocyanate compound (including block). Can be formed by.

上記実施形態では、電極12は孔12aを有する有孔電極であったが、孔12aを有しない電極であってもよい。また電極形状は、特に限定されるものではなく、電気化学測定において一般的に用いられる形状の電極を採用することができる。 In the above embodiment, the electrode 12 is a perforated electrode having the hole 12a, but it may be an electrode having no hole 12a. Further, the electrode shape is not particularly limited, and an electrode having a shape generally used in electrochemical measurement can be adopted.

本開示は、簡便な構成で、耐食性試験の信頼性を向上し得る耐食性試験装置をもたらすことができるので、極めて有用である。 The present disclosure is extremely useful because it can provide a corrosion resistance test apparatus that can improve the reliability of the corrosion resistance test with a simple configuration.

1 被覆金属材
2 鋼板(金属製基材)
3 化成皮膜(金属製基材)
4 電着塗膜(表面処理膜)
4A 測定部分
5 人工傷
6 含水電解質材料
7 外部回路
8 通電手段
11 貫通孔(含水電解質材料保持部)
11A 開口部
12 電極
12a 孔
30 容器
31 本体
32 底部
32A 底面
33 磁石
34 ラバーヒータ(第1加熱要素)
35 ホットプレート(第2加熱要素)
36 温度コントローラ
38 カバー
100 耐食性試験装置
301 延設部
302 台座部
304 溝部
381 カバー本体
382 切欠き部
383 把持部
1 Coated metal material 2 Steel plate (metal base material)
3 Chemical conversion film (metal base material)
4 Electrodeposition coating film (surface treatment film)
4A Measurement Part 5 Artificial Wound 6 Hydrous Electrolyte Material 7 External Circuit 8 Energizing Means 11 Through Hole (Hydrohydrate Electrolyte Material Retaining Section)
11A Opening 12 Electrode 12a Hole 30 Container 31 Main Body 32 Bottom 32A Bottom 33 Magnet 34 Rubber Heater (First Heating Element)
35 hot plate (second heating element)
36 Temperature Controller 38 Cover 100 Corrosion Resistance Testing Device 301 Extension Part 302 Pedestal Part 304 Groove Part 381 Cover Main Body 382 Notch Part 383 Gripping Part

Claims (13)

金属製基材に表面処理膜が設けられてなる被覆金属材の耐食性試験装置であって、
上記表面処理膜上に載置され、該表面処理膜に接する底面において開口する含水電解質材料保持部を複数備えた容器と、
上記容器の含水電解質材料保持部の各々に収容され、上記表面処理膜の相離れた複数の測定部分の各々に接触する含水電解質材料と、
上記含水電解質材料保持部の各々に収容された含水電解質材料に接触する複数の電極と、
上記複数の電極間を接続する外部回路と、
上記電極及び上記外部回路を介して上記金属製基材に通電する通電手段とを備えた
ことを特徴とする被覆金属材の耐食性試験装置。
A corrosion resistance test device for a coated metal material, comprising a metal base material and a surface treatment film,
A container, which is placed on the surface-treated film and has a plurality of water-containing electrolyte material holding portions that open at the bottom surface in contact with the surface-treated film,
Accommodated in each of the water-containing electrolyte material holding portion of the container, a water-containing electrolyte material in contact with each of a plurality of separated measurement portion of the surface treatment film,
A plurality of electrodes contacting the water-containing electrolyte material contained in each of the water-containing electrolyte material holding portion,
An external circuit connecting between the plurality of electrodes,
An apparatus for testing corrosion resistance of a coated metal material, comprising: an energizing means for energizing the metal base material via the electrode and the external circuit.
請求項1において、
上記容器の底面は平坦であり、
上記含水電解質材料保持部の各々は、上記底面に設けられた開口部を備え、上記容器を上記底面に垂直な方向に貫通する貫通孔からなる
ことを特徴とする被覆金属材の耐食性試験装置。
In claim 1,
The bottom of the container is flat,
Each of the above-mentioned water-containing electrolyte material holding portions is provided with an opening provided on the bottom surface thereof, and comprises a through hole penetrating the container in a direction perpendicular to the bottom surface.
請求項2において、
上記金属製基材は、鋼板であり、
上記容器は、上記底面側であり且つ上記貫通孔の各々の開口部近傍に配置された磁石を備えている
ことを特徴とする被覆金属材の耐食性試験装置。
In claim 2,
The metal base material is a steel plate,
The said container is equipped with the magnet arrange|positioned at the said bottom face side and each opening vicinity of each said through-hole, The corrosion resistance test apparatus of the coating metal material characterized by the above-mentioned.
請求項1乃至請求項3のいずれか一において、
上記含水電解質材料保持部の外周を覆うように、上記容器の外周部に配置された第1加熱要素と、
上記第1加熱要素に接続され、該第1加熱要素の温度を制御する温度コントローラとを備えた
ことを特徴とする被覆金属材の耐食性試験装置。
In any one of Claim 1 thru|or Claim 3,
A first heating element arranged on the outer peripheral portion of the container so as to cover the outer periphery of the water-containing electrolyte material holding portion,
A corrosion resistance test apparatus for a coated metal material, comprising: a temperature controller connected to the first heating element to control the temperature of the first heating element.
請求項4において、
上記被覆金属材の上記容器が配置される側と反対側に配置された第2加熱要素を備え、
上記温度コントローラにより、上記第1加熱要素及び上記第2加熱要素の温度は30℃以上100℃以下に制御される
ことを特徴とする被覆金属材の耐食性試験装置。
In claim 4,
A second heating element disposed on a side of the coated metal material opposite to a side on which the container is disposed,
The temperature resistance of the said 1st heating element and the said 2nd heating element is controlled to 30 to 100 degreeC by the said temperature controller, The corrosion resistance test apparatus of the coating metal material characterized by the above-mentioned.
請求項1乃至請求項5のいずれか一において、
上記容器は、
上記容器の底面を形成するシリコーン樹脂製の底部と、
上記底部における上記底面と反対側に延設された絶縁性の樹脂材料製の本体とを備えた
ことを特徴とする被覆金属材の耐食性試験装置。
In any one of Claim 1 thru|or 5,
The container is
A bottom made of a silicone resin that forms the bottom of the container,
A corrosion resistance test apparatus for a coated metal material, comprising: a main body made of an insulating resin material and extending on the side opposite to the bottom surface of the bottom portion.
請求項1乃至請求項6のいずれか一において、
上記測定部分の各々は、上記表面処理膜を貫通して上記金属製基材に達する人工傷を含んでおり、
上記通電手段によって、上記人工傷の少なくとも1つがアノードサイトとなり、他の少なくとも1つがカソードサイトとなって上記被覆金属材の腐食が進行するように、上記金属製基材に通電される
ことを特徴とする被覆金属材の耐食性試験装置。
In any one of Claim 1 thru|or Claim 6,
Each of the measurement portions includes an artificial scratch that penetrates the surface-treated film to reach the metal substrate,
At least one of the artificial scratches serves as an anode site and the other at least one serves as a cathode site by the energizing means, so that the metal base material is energized so that corrosion of the coated metal material proceeds. Corrosion resistance tester for coated metal materials.
請求項7において、
上記複数の人工傷間の距離は2cm以上である
ことを特徴とする被覆金属材の耐食性試験装置。
In claim 7,
The distance between the plurality of artificial scratches is 2 cm or more.
請求項7又は請求項8において、
上記カソードサイトの人工傷の径は0.1mm以上5mm以下である
ことを特徴とする被覆金属材の耐食性試験装置。
In claim 7 or claim 8,
A diameter of the artificial scratch on the cathode site is 0.1 mm or more and 5 mm or less, and a corrosion resistance test device for a coated metal material.
請求項1乃至請求項9のいずれか一において、
上記通電手段による通電は10μA以上10mA以下の電流値とする
ことを特徴とする被覆金属材の耐食性試験装置。
In any one of Claim 1 thru|or Claim 9,
The corrosion resistance test apparatus for coated metal material, wherein the current supplied by the current supplying means is a current value of 10 μA or more and 10 mA or less.
請求項1乃至請求項10のいずれか一において、
上記含水電解質材料は、水、支持電解質及び粘土鉱物を含む泥状物である
ことを特徴とする被覆金属材の耐食性試験装置。
In any one of Claim 1 thru|or Claim 10,
The above-mentioned hydrous electrolyte material is a mud-like material containing water, a supporting electrolyte and a clay mineral, and a corrosion resistance test device for a coated metal material.
請求項11において、
上記粘土鉱物は、層状ケイ酸塩鉱物又はゼオライトである
ことを特徴とする被覆金属材の耐食性試験装置。
In claim 11,
The above-mentioned clay mineral is a layered silicate mineral or zeolite, and a corrosion resistance test device for coated metal materials.
請求項1乃至請求項12のいずれか一において、
上記表面処理膜は、樹脂塗膜である
ことを特徴とする被覆金属材の耐食性試験装置。
In any one of Claim 1 thru|or Claim 12,
The said surface treatment film is a resin coating film, The corrosion resistance testing apparatus of the coating metal material characterized by the above-mentioned.
JP2019007371A 2019-01-18 2019-01-18 Corrosion resistance test device of coated metal material Pending JP2020118468A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019007371A JP2020118468A (en) 2019-01-18 2019-01-18 Corrosion resistance test device of coated metal material
US16/729,851 US11566996B2 (en) 2019-01-18 2019-12-30 Corrosion resistance tester for coated metal material
EP20150704.3A EP3686575B1 (en) 2019-01-18 2020-01-08 Corrosion resistance tester for coated metal material
CN202010021192.XA CN111458287B (en) 2019-01-18 2020-01-09 Corrosion resistance test device for coated metal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019007371A JP2020118468A (en) 2019-01-18 2019-01-18 Corrosion resistance test device of coated metal material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020169976A Division JP6813122B2 (en) 2020-10-07 2020-10-07 Corrosion resistance test method for coated metal materials

Publications (1)

Publication Number Publication Date
JP2020118468A true JP2020118468A (en) 2020-08-06

Family

ID=69147544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019007371A Pending JP2020118468A (en) 2019-01-18 2019-01-18 Corrosion resistance test device of coated metal material

Country Status (4)

Country Link
US (1) US11566996B2 (en)
EP (1) EP3686575B1 (en)
JP (1) JP2020118468A (en)
CN (1) CN111458287B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009946A1 (en) 2020-07-09 2022-01-13 凸版印刷株式会社 Image-receiving sheet for thermal transfer
JP2022056192A (en) * 2020-09-29 2022-04-08 マツダ株式会社 Coated metal stock corrosion resistance testing method and hydrous material used therefor
JP2022056193A (en) * 2020-09-29 2022-04-08 マツダ株式会社 Coated metal stock corrosion resistance testing method and hydrous material used therefor
EP4354115A1 (en) 2022-10-12 2024-04-17 Mazda Motor Corporation Measurement apparatus for corrosion inspection
EP4354116A2 (en) 2022-10-12 2024-04-17 Mazda Motor Corporation Measurement apparatus for corrosion inspection

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660488B1 (en) * 2017-08-04 2023-03-15 Mazda Motor Corporation Corrosion resistance test method and corrosion resistance test apparatus for coated metal material
CN113281248B (en) * 2021-07-21 2021-10-01 南通好的防腐装备有限公司 A preliminary examination equipment for anticorrosive pipeline processing
CN113588862B (en) * 2021-07-26 2024-03-19 安徽开林新材料股份有限公司 Performance detection equipment for preparing fireproof flame-retardant anticorrosive paint
CN113670806B (en) * 2021-09-18 2023-10-03 无锡威孚力达催化净化器有限责任公司 Device and method for testing urea corrosion resistance of diesel vehicle postprocessor material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543756Y2 (en) * 1974-06-08 1979-02-21
JPS6091250A (en) * 1983-10-25 1985-05-22 Toshiba Corp Electrochemical measuring apparatus
JPH05187991A (en) * 1992-01-17 1993-07-27 Toyota Motor Corp Corrosion amount measuring device
JPH10227730A (en) * 1997-02-14 1998-08-25 Unie Kemii:Kk Manufacture of artificial corrosing
JP2011033596A (en) * 2009-08-06 2011-02-17 Sumitomo Electric Ind Ltd Corrosion testing method
JP2016050916A (en) * 2014-09-02 2016-04-11 マツダ株式会社 Corrosion resistance evaluation method and corrosion resistance evaluation device for pre-painted metal material
WO2017149000A1 (en) * 2016-03-03 2017-09-08 Vetco Gray Scandinavia As Rapid non-destructive evaluation of the degree of sensitization in stainless steels and nickel based alloys

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543756U (en) 1977-06-13 1979-01-11
JPS60173451A (en) 1984-02-20 1985-09-06 Toshiba Corp Instrument for measuring corrosion of metal
JPS6131948A (en) 1984-07-25 1986-02-14 Toshiba Corp Instrument for measuring impedance of coated film
JPH0650294B2 (en) 1988-05-24 1994-06-29 新日本製鐵株式会社 Sensor for measuring structure impedance and method for diagnosing anti-corrosion function of coating
WO1998050788A1 (en) 1997-05-07 1998-11-12 Spellane Peter J Electrochemical test for measuring corrosion resistance
CN1198131C (en) * 2002-08-19 2005-04-20 乐金电子(天津)电器有限公司 Metal corrosion-resisting testing device
JP2007271501A (en) 2006-03-31 2007-10-18 Osaka Gas Co Ltd Method of evaluating corrosion protection for coating
CN1952645B (en) * 2006-08-03 2010-06-16 华宏勋 Binode polarization curve method for measuring electrochemical characteristic and corrosion resistance of metal
WO2009113486A1 (en) * 2008-03-14 2009-09-17 富士フイルム株式会社 Probe guard
JP2014500516A (en) * 2010-12-21 2014-01-09 コーティングス フォーリン アイピー カンパニー, エルエルシー Corrosion resistance evaluation device
JP5830910B2 (en) * 2011-04-12 2015-12-09 Jfeスチール株式会社 Method for evaluating the corrosion resistance of the contents of cans
JP6436688B2 (en) 2014-09-02 2018-12-12 国立大学法人広島大学 Corrosion resistance evaluation method and corrosion resistance evaluation apparatus for painted metal
EP3660488B1 (en) * 2017-08-04 2023-03-15 Mazda Motor Corporation Corrosion resistance test method and corrosion resistance test apparatus for coated metal material
JP6747495B2 (en) * 2018-12-11 2020-08-26 マツダ株式会社 Corrosion resistance test method for coated metal materials
JP6835281B1 (en) * 2020-06-22 2021-02-24 マツダ株式会社 Measuring method and measuring device, and corrosion resistance test method and corrosion resistance test device for coated metal material
JP6835279B1 (en) * 2020-06-22 2021-02-24 マツダ株式会社 Electrode device, corrosion resistance test method for coated metal material, and corrosion resistance test device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS543756Y2 (en) * 1974-06-08 1979-02-21
JPS6091250A (en) * 1983-10-25 1985-05-22 Toshiba Corp Electrochemical measuring apparatus
JPH05187991A (en) * 1992-01-17 1993-07-27 Toyota Motor Corp Corrosion amount measuring device
JPH10227730A (en) * 1997-02-14 1998-08-25 Unie Kemii:Kk Manufacture of artificial corrosing
JP2011033596A (en) * 2009-08-06 2011-02-17 Sumitomo Electric Ind Ltd Corrosion testing method
JP2016050916A (en) * 2014-09-02 2016-04-11 マツダ株式会社 Corrosion resistance evaluation method and corrosion resistance evaluation device for pre-painted metal material
WO2017149000A1 (en) * 2016-03-03 2017-09-08 Vetco Gray Scandinavia As Rapid non-destructive evaluation of the degree of sensitization in stainless steels and nickel based alloys

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009946A1 (en) 2020-07-09 2022-01-13 凸版印刷株式会社 Image-receiving sheet for thermal transfer
JP2022056192A (en) * 2020-09-29 2022-04-08 マツダ株式会社 Coated metal stock corrosion resistance testing method and hydrous material used therefor
JP2022056193A (en) * 2020-09-29 2022-04-08 マツダ株式会社 Coated metal stock corrosion resistance testing method and hydrous material used therefor
EP4354115A1 (en) 2022-10-12 2024-04-17 Mazda Motor Corporation Measurement apparatus for corrosion inspection
EP4354116A2 (en) 2022-10-12 2024-04-17 Mazda Motor Corporation Measurement apparatus for corrosion inspection

Also Published As

Publication number Publication date
US20200232905A1 (en) 2020-07-23
US11566996B2 (en) 2023-01-31
CN111458287A (en) 2020-07-28
EP3686575A1 (en) 2020-07-29
CN111458287B (en) 2023-08-04
EP3686575B1 (en) 2022-03-30

Similar Documents

Publication Publication Date Title
JP2020118468A (en) Corrosion resistance test device of coated metal material
JP6747495B2 (en) Corrosion resistance test method for coated metal materials
CN111033224B (en) Corrosion resistance test method and device for clad metal material
JP6515963B2 (en) Corrosion resistance test method of coated metal material and corrosion resistance test apparatus
JP6733844B1 (en) Corrosion resistance test method for coated metal material and corrosion resistance test apparatus
JP6565980B2 (en) Corrosion resistance test apparatus for coated metal material and corrosion resistance test method for coated metal material
JP6565979B2 (en) Corrosion resistance test apparatus and corrosion resistance test method for coated metal material
JP6835279B1 (en) Electrode device, corrosion resistance test method for coated metal material, and corrosion resistance test device
JP6835281B1 (en) Measuring method and measuring device, and corrosion resistance test method and corrosion resistance test device for coated metal material
JP6835287B1 (en) Corrosion resistance test method for coated metal materials and water-containing materials used in the method
JP6849140B1 (en) Corrosion resistance test equipment and corrosion resistance test method for coated metal materials
JP6835286B1 (en) Corrosion resistance test method for coated metal materials and water-containing materials used in the method
JP6801805B1 (en) Measuring method and measuring device, and corrosion resistance test method and corrosion resistance test device for coated metal material
JP6835280B1 (en) Scratch treatment method and treatment equipment, and corrosion resistance test method and corrosion resistance test equipment for coated metal materials
JP6813122B2 (en) Corrosion resistance test method for coated metal materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200424

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707