JPH034104B2 - - Google Patents
Info
- Publication number
- JPH034104B2 JPH034104B2 JP20831183A JP20831183A JPH034104B2 JP H034104 B2 JPH034104 B2 JP H034104B2 JP 20831183 A JP20831183 A JP 20831183A JP 20831183 A JP20831183 A JP 20831183A JP H034104 B2 JPH034104 B2 JP H034104B2
- Authority
- JP
- Japan
- Prior art keywords
- rust layer
- electrolyte
- resistance
- electrolytic solution
- steel materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 38
- 229910000831 Steel Inorganic materials 0.000 claims description 22
- 239000010959 steel Substances 0.000 claims description 22
- 239000003792 electrolyte Substances 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 18
- 239000008151 electrolyte solution Substances 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 7
- 238000011156 evaluation Methods 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 229910000870 Weathering steel Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- -1 potassium ferricyanide Chemical compound 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000276 potassium ferrocyanide Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- XOGGUFAVLNCTRS-UHFFFAOYSA-N tetrapotassium;iron(2+);hexacyanide Chemical compound [K+].[K+].[K+].[K+].[Fe+2].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-] XOGGUFAVLNCTRS-UHFFFAOYSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/20—Investigating the presence of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Environmental Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
(産業上の利用分野)
本発明は、さび層により耐食性を向上させてい
る鋼構造物上に生成したさび層の鋼材保護性を評
価する装置に関する。
さび層により耐食性を向上させている鋼材とし
て耐候性鋼などが挙げられるが、これらの鋼材
は、自然環境中で乾湿の繰り返えしを受け、鋼材
表面に耐食性に寄与する保護さび層が形成する。
耐候性鋼は、我国において使用されはじめてから
10余年経過しているが、最近さび安定化処理とも
関連して現場において簡便にさびの保護性を評価
する技術の必要性がクローズアツプされてきた。
(従来技術)
従来鋼材の保護さび層を定性的に評価する方法
として、フエロシアン化カリ、またはフエリシア
ン化カリと腐食によつて溶出した鉄イオンとの反
応を利用したフエロキシル試験、さび層断面を顕
微境で観察する方法などがあつたが、定量的かつ
非破壊的に短時間で簡便にこれを評価する測定シ
ステムは無かつた。
(発明の目的)
本発明は前記の事情に鑑み、鋼材表面に形成し
たさび層中のイオン伝導性に基づく抵抗成分を、
さびが付着した鋼材を交流間接電解することによ
り、電気化学的に測定することを特徴とする装置
である。
(発明の構成・作用)
本発明者らは、これまでさび層を有する鋼材を
試料とし、鋼材の腐食速度の逆数に比例する腐食
抵抗と、さび層中のイオン伝導性に基づく抵抗成
分であるさび層の抵抗との関係を、電気化学的測
定法の1つである分極抵抗法によつて、0.1M−
Na2SO4溶液中で測定したところ、第1図のよう
に両者に相関関係があることを見い出した。この
ことは、さび層の抵抗を測定することにより、さ
び層の鋼材保護性を評価し得ることを意味してい
る。これをもとに本発明を完成したものである。
第2図に本発明の装置の構成図を示す。
図中の1は検出子外壁、2は電解電極、3は電
解液保持槽、4はさび層、5は金属素地であり、
1,2,3により検出子30が構成され、開口部
31が設けられている。また、6は高周波電源、
7は電流測定装置、8は電圧測定装置、9は測定
データーの解析装置であり、これらにより被測定
物の交流間接電解と、その時得られる電流信号・
電圧信号の測定・解析を行い、さび層の抵抗値が
算出・表示されるようになつている。
この場合、印加する交流電気信号は電流規制、
電圧規制、あるいはどちらも規制しない状態で、
正弦波、矩形波、三角波などのいずれかを用い
る。また、電流信号・電圧信号の測定・解析に
は、それぞれを別個に測定後、電気回路的に演算
する方法やホイートストンブリツヂを用いる方法
などがある。使用する周波数は100ヘルツ以上の
適当な値を選定するが、通常数キロヘルツ程度の
周波数が最良の結果をもたらす。
このような周波数の交流を用いて電解する理由
は次の原理にもとづいている。すなわち2個の検
出子と被測定物とからなる電気化学的な系は、第
3図に示されるような等価回路で記述される。こ
こで、破線枠10は検出子内の電極と電解液との
界面に生ずるインピーダンスを表わすもので、
R1,R2はこの界面で起こる電気化学反応速度の
逆数に比例する反応抵抗、C1,C2はこの界面に
吸着などによつて生ずる容量成分で電気二重層容
量と呼ばれるものである。破線枠13は5の金属
層、破線枠12は金属/さび層界面に生ずるイン
ピーダンスを表わし、R3,R4およびC3,C4はそ
れぞれこの界面における反応抵抗と電気二重層容
量である。そして破線枠11は、検出子内の電解
液およびさび層中のイオン伝導性にもとづくイン
ピーダンスであり、通常電解液の抵抗よりさび層
の抵抗の方が、はるかに大きな値を示すため、近
似的にR5とR6はさび層の抵抗と考えることがで
きる。
さて、端子14と15に交流電気信号を印加す
ると、破線枠10および12のC1,C2,C3,C4
による容量性インピーダンスは非常に小さい値と
なり、この時得られる応答信号は、さび層の抵抗
(R5+R6)によるものと近似的に等しくなる。こ
のように、交流間接電解を行うと、その時の応答
信号を解析することにより、さび層中のイオン伝
導にもとづくさび層の抵抗値が測定できるのであ
る。
また本発明明の装置では、検出子の部分に電解
液を入れて測定するわけであるが、測定対象が水
平になつている場合には、電解液を直接に電解液
保持槽中に入れて測定することができるが、測定
対象がかならずしも水平状でないこともある。
そのため、スポンジ、海綿などを用いて、電解
液を毛管現象を利用して電解液保持槽内に保ち、
あらゆる状況の試料の測定を可能とした。また、
その際に電解液保持槽の後部に電解液保留槽を設
け、ここから電解液を補充する構成とした。
(発明の効果)
本発明は、上記のように交流間接電解を行うの
で、測定に要する時間も短く、また測定対象とな
る鋼構造物に直接リード線を接合する必要もない
ため、現場でさびの鋼材保護性を簡便かつ定量的
に評価しうるという効果を有する。このことは耐
候性鋼製構造物など裸で使用されている鋼材上に
生成したさび層が、腐食に対する鋼材保護性を有
しているか否かを、その場で非破壊的に評価でき
ることになり、構造物の寿命予測、あるいは補修
の必要性判断などに際して重量な情報が得られ
る。
(実施例)
第4図に使用した検出子部分の構成を示す。図
中16は、スポンジを用いて電解液を毛管現象に
より保持できるよう工夫された電解液保持槽、1
7は白金黒製電解電極、18はシリコンゴム製の
検出子外壁、19は電解液保留槽、20はポリプ
ロピレン製電解液保留槽外壁、21は電解液押出
器、22は電解電極からのリード線であり、1
9,20,21により電解液補充装置が構成され
ている。
この検出子の長さは、電解液押出器を完全に押
し入れた状態で90mm、電解液保持槽開口部内径が
6mm、電解液補充装置外径が20mm、同内径が13mm
である。
なお本実施例では、電極材料として白金黒を用
いたが、「電気化学」(コロナ社、S48年8月73
頁)に記載されるように、電解液に不溶性の金
属、カーボン等の材料を用いてもよい。
第4図の検出子を用いて、5KHz、50mvの正弦
波を交流電気信号として電解電極に印加し、その
時得られる電気信号および電圧信号をそれぞれ別
個に測定して、電気回路的に演算する手法によつ
て、耐候性鋼のさび層の抵抗を測定した結果を第
1表に示した。なおこの耐候性鋼は準工業地帯に
10年以上暴露されたものであり、試料毎に成分が
異なるため、そのさび層の防食性が異なり、腐食
速度も異なつている。
腐食速度は暴露試験片の重量減から求めた値で
あり、本発明装置によるさび層の抵抗が高い程、
腐食速度は小さく、抵抗が低いほど腐食速度は大
きい。
第1表には、分極抵抗法によつて測定されたさ
び層の抵抗と腐食抵抗の比較のため示してある。
本発明装置で測定したさび層の抵抗は分極抵抗
法で測定した場合の約2倍になつているが、両者
の関係はよく一致している。
(Industrial Application Field) The present invention relates to an apparatus for evaluating the protective properties of a rust layer formed on a steel structure whose corrosion resistance is improved by the rust layer. Examples of steel materials that have improved corrosion resistance with a rust layer include weather-resistant steel, but these steel materials undergo repeated drying and wetting in the natural environment, resulting in the formation of a protective rust layer on the surface of the steel material that contributes to corrosion resistance. do.
Weathering steel has been around since it was first used in Japan.
More than 10 years have passed, but recently the need for a technology to easily evaluate rust protection in the field has been brought to the fore in relation to rust stabilization treatments. (Prior technology) Conventional methods for qualitatively evaluating the protective rust layer of steel materials include the ferroxyl test, which utilizes potassium ferrocyanide, or the reaction between potassium ferricyanide and iron ions eluted through corrosion, and the microscopic examination of the cross-section of the rust layer. Although there were methods to observe the condition at the site, there was no measurement system that could quantitatively, nondestructively, and easily evaluate this in a short period of time. (Object of the invention) In view of the above-mentioned circumstances, the present invention has been developed to reduce the resistance component based on the ionic conductivity in the rust layer formed on the surface of the steel material.
This is a device that electrochemically measures rusty steel by subjecting it to indirect alternating current electrolysis. (Structure and operation of the invention) The present inventors have so far used steel materials with a rust layer as samples, and found that the corrosion resistance is proportional to the reciprocal of the corrosion rate of the steel material, and the resistance component is based on the ionic conductivity in the rust layer. The relationship between the resistance of the rust layer and the resistance of the rust layer was determined by the polarization resistance method, which is an electrochemical measurement method.
When measured in a Na 2 SO 4 solution, it was found that there is a correlation between the two as shown in Figure 1. This means that by measuring the resistance of the rust layer, the ability of the rust layer to protect steel materials can be evaluated. Based on this, the present invention was completed. FIG. 2 shows a block diagram of the apparatus of the present invention. In the figure, 1 is the outer wall of the detector, 2 is the electrolytic electrode, 3 is the electrolyte holding tank, 4 is the rust layer, and 5 is the metal base.
1, 2, and 3 constitute a detector 30, and an opening 31 is provided. In addition, 6 is a high frequency power supply,
7 is a current measurement device, 8 is a voltage measurement device, and 9 is a measurement data analysis device. These devices measure the AC indirect electrolysis of the object to be measured and the current signal obtained at that time.
The voltage signal is measured and analyzed, and the resistance value of the rust layer is calculated and displayed. In this case, the applied AC electrical signal is current regulated,
With voltage regulation or neither regulation,
Use a sine wave, square wave, triangular wave, etc. Furthermore, methods for measuring and analyzing current and voltage signals include a method of measuring each signal separately and then performing calculations using an electric circuit, and a method of using a Wheatstone bridge. The frequency to be used is selected to be an appropriate value of 100 hertz or more, but a frequency of several kilohertz usually gives the best results. The reason for electrolysis using alternating current at such a frequency is based on the following principle. That is, an electrochemical system consisting of two detectors and an object to be measured is described by an equivalent circuit as shown in FIG. Here, the broken line frame 10 represents the impedance generated at the interface between the electrode and the electrolyte in the detector,
R 1 and R 2 are reaction resistances proportional to the reciprocal of the electrochemical reaction rate occurring at this interface, and C 1 and C 2 are capacitance components generated at this interface due to adsorption, etc., and are called electric double layer capacitance. A broken line frame 13 represents the metal layer 5, a broken line frame 12 represents the impedance generated at the metal/rust layer interface, and R 3 , R 4 and C 3 , C 4 are the reaction resistance and electric double layer capacitance at this interface, respectively. The broken line frame 11 is the impedance based on the ionic conductivity in the electrolyte and the rust layer in the detector, and since the resistance of the rust layer usually shows a much larger value than the resistance of the electrolyte, it is approximated. R5 and R6 can be considered as the resistance of the rust layer. Now, when an AC electric signal is applied to terminals 14 and 15, C 1 , C 2 , C 3 , C 4 in broken line frames 10 and 12
The capacitive impedance due to this becomes a very small value, and the response signal obtained at this time is approximately equal to that due to the resistance (R 5 +R 6 ) of the rust layer. In this way, when AC indirect electrolysis is performed, the resistance value of the wedge layer based on the ion conduction in the rust layer can be measured by analyzing the response signal at that time. In addition, in the device of the present invention, the electrolyte is poured into the detector part for measurement, but if the object to be measured is horizontal, the electrolyte can be directly poured into the electrolyte holding tank. However, the object to be measured may not always be horizontal. Therefore, the electrolyte is kept in the electrolyte holding tank using capillary action using a sponge, sponge, etc.
This makes it possible to measure samples in any situation. Also,
At this time, an electrolyte storage tank was provided at the rear of the electrolyte storage tank, and the electrolyte was replenished from there. (Effects of the Invention) Since the present invention performs AC indirect electrolysis as described above, the time required for measurement is short, and there is no need to directly connect lead wires to the steel structure to be measured. This method has the effect of making it possible to easily and quantitatively evaluate the protection properties of steel materials. This means that it is possible to non-destructively evaluate on the spot whether the rust layer that forms on bare steel materials such as weather-resistant steel structures has the ability to protect the steel materials from corrosion. , important information can be obtained when predicting the lifespan of structures or determining the necessity of repairs. (Example) FIG. 4 shows the configuration of the detector part used. In the figure, 16 is an electrolyte holding tank designed to hold the electrolyte by capillary action using a sponge.
7 is an electrolytic electrode made of platinum black, 18 is an outer wall of the detector made of silicone rubber, 19 is an electrolytic solution storage tank, 20 is an outer wall of an electrolytic solution storage tank made of polypropylene, 21 is an electrolytic solution extruder, and 22 is a lead wire from the electrolytic electrode. and 1
9, 20, and 21 constitute an electrolyte replenishment device. The length of this detector is 90 mm when the electrolyte extruder is fully pushed in, the inner diameter of the electrolyte holding tank opening is 6 mm, the outer diameter of the electrolyte replenisher is 20 mm, and the inner diameter of the same is 13 mm.
It is. In this example, platinum black was used as the electrode material.
Materials such as metals and carbon that are insoluble in the electrolytic solution may be used as described in (Page 1). A method of applying a 5KHz, 50mV sine wave as an AC electric signal to the electrolytic electrode using the detector shown in Figure 4, measuring the electric signal and voltage signal obtained at that time separately, and calculating them using an electric circuit. Table 1 shows the results of measuring the resistance of the rust layer of weathering steel. Furthermore, this weathering steel is used in semi-industrial areas.
The samples have been exposed for more than 10 years, and each sample has different components, so the corrosion resistance of the rust layer differs, and so does the rate of corrosion. The corrosion rate is a value determined from the weight loss of the exposed test piece, and the higher the resistance of the rust layer by the device of the present invention, the higher the resistance.
The corrosion rate is small, and the lower the resistance, the higher the corrosion rate. Table 1 provides a comparison of the rust layer resistance and corrosion resistance measured by the polarization resistance method. Although the resistance of the rust layer measured by the apparatus of the present invention is approximately twice that measured by the polarization resistance method, the relationship between the two is in good agreement.
【表】
なおここでいう分極抵抗法とは通常の電流−電
位曲線(分極曲線)を得るにあたつて、鋼材から
切り出した小試片にリード線を付け、所定の面積
以外の周辺を絶縁物で覆い、いわゆる試料電極と
したものを電解液中に浸漬し、基準電極(銀/塩
化銀電極など)を基準にその電位差を計測し、か
つ対極との間で電流を流す方法である。
この時電流を流しはじめた時(電位をかけた
時)からの経時変化を考慮する場合も包含する。
このようにして得た電流−電位曲線の傾きもし
くはその時間変化からいわゆる第1図に示す腐食
抵抗などを得る方法である。
本発明のさび層の鋼材保護評価製置の特徴は以
上の通りであるが、これは上記説明ならびに図示
例に限定されるものではなく、本発明装置の形
状、寸法に関しては、測定対象に応じていかよう
にも変更できるものである。[Table] The polarization resistance method mentioned here is used to obtain a normal current-potential curve (polarization curve) by attaching a lead wire to a small specimen cut from a steel material and insulating the surrounding area except for a predetermined area. In this method, a so-called sample electrode covered with an object is immersed in an electrolytic solution, the potential difference is measured with respect to a reference electrode (silver/silver chloride electrode, etc.), and a current is passed between it and the counter electrode. At this time, it also includes the case where changes over time from the time when the current starts flowing (when the potential is applied) are considered. This is a method of obtaining the so-called corrosion resistance shown in FIG. 1 from the slope of the current-potential curve obtained in this way or its time change. The features of the rust layer protection evaluation equipment for steel materials of the present invention are as described above, but they are not limited to the above explanations and illustrated examples, and the shape and dimensions of the device of the present invention may vary depending on the object to be measured. It can be changed in any way.
第1図は腐食抵抗とさび層との相関関係を示す
図表、第2図は本発明装置の構成の説明図、第3
図は検出子と被測定物であるさび層で覆われた鋼
材とによつて形成される電気化学的系の等価回
路、第4図は実施例に用いた検出子部分の構成の
説明図である。
2;電解電極、3;電解液保持槽、4;さび
層、5;金属素地、6;交流電源、30;検出
子、31;開口部。
Figure 1 is a chart showing the correlation between corrosion resistance and rust layer, Figure 2 is an explanatory diagram of the configuration of the device of the present invention, and Figure 3 is a diagram showing the correlation between corrosion resistance and rust layer.
The figure shows an equivalent circuit of an electrochemical system formed by a detector and a steel material covered with a rust layer, which is the object to be measured. Figure 4 is an explanatory diagram of the configuration of the detector part used in the example. be. 2: Electrolytic electrode, 3: Electrolyte holding tank, 4: Rust layer, 5: Metal base, 6: AC power supply, 30: Detector, 31: Opening.
Claims (1)
電解液に不溶性の電解電極を備えた電解液保持槽
を有する検出子2個、前記電解電極に交流電気信
号を印加する交流電源およびさび層のイオン伝導
にもとずく抵抗成分の測定・解析装置を主構成と
したさび層の鋼材保護性評価装置。 2 電解液保持槽中の電解液を毛管現象を利用し
て保持した特許請求の範囲第1項記載のさび層の
鋼材保護性評価装置。 3 電解液保持槽に電解液補充装置を付与した特
許請求の範囲第1項記載のさび層の鋼材保護性評
価装置。[Claims] 1. Two detectors each having an opening in contact with the object to be measured and an electrolytic solution holding tank that communicates with the opening and has an electrolytic electrode insoluble in the electrolytic solution inside, and applying an alternating current electric signal to the electrolytic electrode. A rust layer protection property evaluation device for steel materials whose main components include an AC power supply and a resistance component measurement/analysis device based on the ionic conduction of the rust layer. 2. The rust layer protection property evaluation device for steel materials according to claim 1, wherein the electrolyte in the electrolyte holding tank is held using capillarity. 3. The rust layer protection property evaluation device for steel materials according to claim 1, wherein the electrolytic solution holding tank is provided with an electrolytic solution replenishing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20831183A JPS60100751A (en) | 1983-11-08 | 1983-11-08 | Evaluating device for steel material protection of rust layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20831183A JPS60100751A (en) | 1983-11-08 | 1983-11-08 | Evaluating device for steel material protection of rust layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60100751A JPS60100751A (en) | 1985-06-04 |
JPH034104B2 true JPH034104B2 (en) | 1991-01-22 |
Family
ID=16554153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20831183A Granted JPS60100751A (en) | 1983-11-08 | 1983-11-08 | Evaluating device for steel material protection of rust layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60100751A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0650294B2 (en) * | 1988-05-24 | 1994-06-29 | 新日本製鐵株式会社 | Sensor for measuring structure impedance and method for diagnosing anti-corrosion function of coating |
JP2824804B2 (en) * | 1990-04-26 | 1998-11-18 | 東洋エンジニアリング株式会社 | Method and apparatus for measuring corrosion resistance of metal tubes |
JP6495738B2 (en) * | 2015-05-19 | 2019-04-03 | 日鉄住金防蝕株式会社 | Ion permeation resistance measuring apparatus for real structures with good workability on site and ion permeation resistance measuring method using the same |
JP6732236B2 (en) * | 2016-03-28 | 2020-07-29 | 中日本高速道路株式会社 | Method and system for measuring rebar corrosion environment in concrete |
-
1983
- 1983-11-08 JP JP20831183A patent/JPS60100751A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60100751A (en) | 1985-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4861453A (en) | Corrosion detecting probe for steel buried in concrete | |
US6054038A (en) | Portable, hand-held, in-situ electrochemical sensor for evaluating corrosion and adhesion on coated or uncoated metal structures | |
US5188715A (en) | Condensate corrosion sensor | |
Sagüés et al. | Kelvin Probe electrode for contactless potential measurement on concrete–Properties and corrosion profiling application | |
Charoen-Amornkitt et al. | Determination of constant phase element parameters under cyclic voltammetry conditions using a semi-theoretical equation | |
JPS59132354A (en) | Nondestructive cathode separation test method and device forpipe wrap coating | |
JPH034104B2 (en) | ||
JP3849338B2 (en) | Method for evaluating weather resistance of steel and weather resistance measuring apparatus | |
JP6833626B2 (en) | Measuring device and measuring method | |
US3631338A (en) | Method and apparatus for determining galvanic corrosion by polarization techniques | |
GB2313443A (en) | Analysing a surface-treated layer of a cementitious body | |
Sheremet et al. | Standardless electrochemical method for mercury, cadmium, lead and copper determination in aqueous solution | |
Wu et al. | A report on the National Bureau of Standards pH standards | |
JP3678406B2 (en) | In-situ measurement method for corrosion rate of steel structures. | |
JPH07333188A (en) | Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor | |
JPS6379053A (en) | Corrosion test for metal material | |
JPS6091250A (en) | Electrochemical measuring apparatus | |
JPH05232072A (en) | Method and device for evaluating anticorrosion of plating | |
RU2020461C1 (en) | Method of electrochemical determination of rate of corrosion of metal with dielectric coating and device for its accomplishment | |
JPH11270860A (en) | Floor heater with function for detecting deterioration of antifreeze | |
JPH07103930A (en) | Estimating apparatus for crevice corrosion of metal material | |
JP2987373B2 (en) | Method of measuring chlorine in electrolyte | |
JP2001124693A (en) | Method and device for evaluating weather resistance of steel product | |
RU2319954C1 (en) | Electrode | |
Bell et al. | Microelectrode generator–collector systems for electrolytic titration: theoretical and practical considerations |