JPH02157642A - Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material - Google Patents

Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material

Info

Publication number
JPH02157642A
JPH02157642A JP63311953A JP31195388A JPH02157642A JP H02157642 A JPH02157642 A JP H02157642A JP 63311953 A JP63311953 A JP 63311953A JP 31195388 A JP31195388 A JP 31195388A JP H02157642 A JPH02157642 A JP H02157642A
Authority
JP
Japan
Prior art keywords
electrode
measured
metal
gel
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63311953A
Other languages
Japanese (ja)
Inventor
Hideaki Takahashi
秀明 高橋
Tetsuo Shoji
哲雄 庄子
Yoshihisa Saito
斎藤 喜久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Original Assignee
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP63311953A priority Critical patent/JPH02157642A/en
Publication of JPH02157642A publication Critical patent/JPH02157642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To rapidly and exactly evaluate the deterioration degree of a metallic material by measuring the current and impedance between a 1st electrode which is brought into contact with an electrolyte gel and a 2nd electrode which is brought into contact with a metal to be measured and determining and evaluating the deterioration degree of the metal to be measured. CONSTITUTION:An outside cylinder 27 is so set as to bring its open end into contact with the material 31 to be measured and the positive electrode 32 is brought into contact with the metallic material 31. The negative electrode 29 and the positive electrode 32 are, therefore, electrically connected via the electrolyte gel 30 and the metallic material 31. Further, the reference electrode 28, the negative electrode 29 and the positive electrode 32 are all connected to a potentiostat. A voltage is impressed between the two electrodes and the density of the current flowing from the positive electrode 32 to the negative electrode 29 via the material 31 and the electrolyte gel 30 is measured and the peak current density is extrapolated to the basic curve based on the previously obtd. dynamic data. The deterioration of the metallic material to be measured by the secular change is determined and evaluated in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば火力発電ボイラや化学ブラントの熱
交換管あるいは蒸気タービン部材として使用される金属
材料の靭性及びクリープ性等の劣化度を、電気化学的手
法により非破壊的に定量評価する金属材料の劣化度評価
手段に係り、特に現場における全姿勢測定を可能とした
電気化学計測用ジェル電極に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention aims to evaluate the degree of deterioration of the toughness and creep property of metal materials used as, for example, thermal power boilers, heat exchange tubes for chemical blunts, or steam turbine components. The present invention relates to a means for evaluating the degree of deterioration of metal materials that quantitatively evaluates them non-destructively using an electrochemical method, and particularly relates to gel electrodes for electrochemical measurements that enable measurement of all postures in the field.

(従来の技術) 周知のように、例えば火力発電用ボイラの加熱器管や、
化学プラントの熱交換管として使用される金属材料は、
高温高圧下で長期間使用されるため、経年的な材質劣化
を生じることが知られており、この劣化度を精度よく検
出して余寿命を予81することが重要な課題となってい
る。
(Prior art) As is well known, for example, heater tubes of boilers for thermal power generation,
Metal materials used as heat exchange tubes in chemical plants are
It is known that material deterioration occurs over time due to long-term use under high temperature and high pressure, and it is an important issue to accurately detect the degree of deterioration and predict the remaining life.

この金属材料の材質劣化現象は、微視金属組織の変化、
つまり、炭化物の凝集1分散及び粗大化。
This material deterioration phenomenon of metallic materials is caused by changes in the microscopic metal structure,
In other words, carbide agglomeration, dispersion and coarsening.

不純物の濃縮または金属間化合物の生成等が、主として
結晶粒界で生じるためであるとされている。
This is said to be due to the concentration of impurities or the formation of intermetallic compounds mainly occurring at grain boundaries.

ここで、上記金属材料の材質劣化を検出し判別する手段
としては、従来より、例えばクリープ破断試験やシャル
ピー衝撃試験等のように、材料試験に基づく力学的計測
による評価法や、光学顕微鏡及び電子顕微鏡を用いたり
微少部X線分析を行なう等の金属組織学的な評価法が用
いられている。
Here, conventional methods for detecting and determining material deterioration of the metal materials include evaluation methods based on mechanical measurements based on material tests, such as creep rupture tests and Charpy impact tests, and evaluation methods using optical microscopy and electronic Metallographic evaluation methods such as using a microscope or performing microscopic X-ray analysis are used.

ところが、力学的計測の場合には、信頼性の高いデータ
が得られる反面、測定を行なうための試験片を実際の金
属部材から切り出してくる必要があり、測定作業が困難
になるという問題を有している。そこで、金属材料の劣
化度を非破壊的に評価する手段として、金属組織学的に
組織または析出物を薄いフィルムに転写し、実験室で観
察・分析し解析するレプリカ転写法が考えられている。
However, in the case of mechanical measurement, although highly reliable data can be obtained, it is necessary to cut out the test piece from the actual metal member for measurement, which poses the problem of making the measurement work difficult. are doing. Therefore, as a means of non-destructively evaluating the degree of deterioration of metal materials, a replica transfer method is being considered in which the structure or precipitates are transferred metallographically to a thin film and then observed and analyzed in the laboratory. .

また、金属材料の微視金属組織変化がさらに進展した場
合、応力との相乗によって粒界に沿って微少亀裂や空隙
が発生し、材料破損の芽となることが知られていること
から、この微視金属組織変化の進展を精度よく検知する
ことも重要な研究課題となっている。
Furthermore, it is known that if microscopic metallographic changes in a metal material progress further, microcracks and voids will occur along the grain boundaries due to the synergy with stress, and this will become the bud of material failure. Accurately detecting the progress of microscopic metallographic changes is also an important research topic.

以上の現状に対して、電気抵抗法、渦電流法及び硬さ計
測法等の物理的検出方法や、レプリカ転写法を応用した
種々の組織解析法が提案されているが、前者は計n1値
がばらつき易く局所的な異常を検出する能力に欠けると
いう問題を有しており、後者は局所の微視組織変化を検
出する能力に優れている反面、定量解析が難しく迅速性
に劣るという問題を有している。
In response to the above-mentioned current situation, various physical detection methods such as electrical resistance method, eddy current method, hardness measurement method, and various tissue analysis methods applying replica transfer method have been proposed, but the former has a total n1 value. The latter has the problem that it tends to vary and lacks the ability to detect local abnormalities, and while the latter has an excellent ability to detect local microstructural changes, it has the problem that quantitative analysis is difficult and less rapid. have.

(発明が解決しようとする課8) 以上のように、従来の金属材料の劣化度評価手段では、
計測作業、解析作業及び正確性等の種々の面に対して、
満足のいくものではないという問題を有している。
(Issue 8 to be solved by the invention) As described above, with the conventional means for evaluating the degree of deterioration of metal materials,
For various aspects such as measurement work, analysis work and accuracy,
The problem is that it is not satisfactory.

そこで、この発明は上記事情を考慮してなされたもので
、迅速かつ容易でしかも正確に金属材料の劣化度を評価
することができるとともに、現場における全姿勢n1定
を可能とし計」1作業性を向上させた極めて良好な金属
材料の劣化度評価のための電気化学計測用ジェル電極を
提供することを目的とする。
Therefore, this invention was made in consideration of the above circumstances, and it is possible to quickly, easily and accurately evaluate the degree of deterioration of metal materials, and it also makes it possible to maintain n1 constant in all postures at the site, resulting in a total work efficiency of 1. The purpose of the present invention is to provide a gel electrode for electrochemical measurement for extremely good evaluation of the degree of deterioration of metal materials with improved performance.

(課題を解決するための手段) すなわち、この発明に係る金属材料の劣化度評価のため
の電気化学計測用ジェル電極は、電解質溶液に吸水性材
料を加えてジェル化した電解質ジェルを被測定金属に接
触させ、この電解質ジェルに接触される第1の電極と被
測定金属に接触される第2の電極との間に直流電圧を印
加して、第1の電極と第2の電極との間を流れる電流や
第1及び第2の電極間インピーダンスを計測し、この電
流密度値あるいはインピーダンスと、予め試験された例
えばシャルピー衝撃試験における衝撃値及びクリープ破
断試験における破断時間等の力学的特性との相関関係か
ら得られる基準曲線を用いて、被測定金属の劣化度を定
量評価するようにしたものである。
(Means for Solving the Problems) That is, the gel electrode for electrochemical measurement for evaluating the degree of deterioration of metal materials according to the present invention uses an electrolyte gel obtained by adding a water-absorbing material to an electrolyte solution to form a gel on a metal to be measured. A DC voltage is applied between the first electrode that is in contact with the electrolyte gel and the second electrode that is in contact with the metal to be measured, and the voltage between the first electrode and the second electrode is The current flowing through the electrode and the impedance between the first and second electrodes are measured, and the current density value or impedance is compared with the mechanical properties tested in advance, such as the impact value in the Charpy impact test and the rupture time in the creep rupture test. The standard curve obtained from the correlation is used to quantitatively evaluate the degree of deterioration of the metal to be measured.

(作用) 上記のような構成によれば、金属材料の微視組織変化に
よる炭化物や金属間化合物(例えばシグマ相)の析出状
態を電気化学的に測定して、予め試験した金属材料の力
学的諸特性との相関関係から金属材料の靭性及びクリー
プ性等の劣化度を、非破壊的に定量評価するようにして
いるので、迅速かつ容易でしかも正確に金属材料の劣化
度を評価することができる。そして、電解質溶液に吸水
性材料を加えてジェル化した電解質ジェルを被測定金属
に接触させるようにしているので、現場における全姿勢
測定が可能となり、計測作業性を向上させることができ
る。
(Function) According to the above configuration, the precipitation state of carbides and intermetallic compounds (for example, sigma phase) due to changes in the microstructure of the metal material is electrochemically measured, and the mechanical properties of the metal material tested in advance are determined. Since the degree of deterioration of metal materials such as toughness and creep resistance is quantitatively evaluated in a non-destructive manner based on the correlation with various properties, it is possible to quickly, easily and accurately evaluate the degree of deterioration of metal materials. can. Since the electrolyte gel, which is made by adding a water-absorbing material to the electrolyte solution and is made into a gel, is brought into contact with the metal to be measured, it is possible to measure all postures at the site, and the measurement work efficiency can be improved.

(実施例) 以下、この発明の一実施例を説明するに先立ち、この発
明に使用される金属材料の劣化度評価の原理について、
簡単に述べておくことにする。例えば火力発電プラント
のボイラ加熱器等に用いられているステンレス鋼管は、
高温高圧、で燃焼ガスに晒されるなど厳しい条件で使用
されているため、設計耐用年限に達しないうちに取り換
えられる事例の多い部材として知られている。
(Example) Before explaining an example of the present invention, the principle of evaluating the degree of deterioration of metal materials used in the present invention will be explained below.
I will briefly explain this. For example, stainless steel pipes used in boiler heaters of thermal power plants, etc.
Because they are used under harsh conditions, such as being exposed to combustion gas at high temperatures and pressures, they are known as components that are often replaced before they reach their designed service life.

このステンレス鋼管の劣化度を計測する場合、従来では
、上述したように、外観観察や組織観察またはクリープ
試験等を行なっているが、計測作業、解析作業及び正確
性等の種々の面に対して、満足のいくものではないとい
う問題を有している。
Conventionally, when measuring the degree of deterioration of stainless steel pipes, external appearance observation, structure observation, creep test, etc. are performed as mentioned above, but various aspects such as measurement work, analysis work, and accuracy are performed. , has the problem of being unsatisfactory.

そこで、この発明の発明者らは、上記従来の試験結果と
電気化学的計測方法との相関性を検討した結果、1規定
の水酸化カリウム溶液中におけるアノード分極測定で現
われるアノード活性ピーク電流密度Npが、金属組織学
的、材料力学的な性質変化と良い相関が有ることを明ら
かにした。この検出機構は、長時間使用によって微視組
織に出現する炭化物やシグマ相(金属間化合物)が水酸
化カリウム溶液中に溶解するときに生ずるアノード反応
電流を検出しているもので、この検出機構を用いた劣化
度評価方法が、この発明と同−発明者及び同一出願人に
てすでに特許出願されている(特願昭63−11970
8号)。
Therefore, as a result of examining the correlation between the above conventional test results and electrochemical measurement methods, the inventors of the present invention found that the anode activity peak current density Np that appears in anode polarization measurement in a 1N potassium hydroxide solution. It was revealed that there is a good correlation with changes in metallographic and material mechanical properties. This detection mechanism detects the anode reaction current that occurs when carbides and sigma phases (intermetallic compounds) that appear in the microstructure due to long-term use dissolve in potassium hydroxide solution. A patent application has already been filed for a method for evaluating the degree of deterioration using the present invention by the same inventor and applicant (Patent application No.
No. 8).

すなわち、第2図において、11はガラス製の電解槽で
、アルカリ性の電解質溶液12が封入されている。この
電解質溶液12内には、ホルダー13に支持された金属
試料(オーステナイト・ステンレス鋼) 14と、該金
属試料14に対向した電極15とが浸漬されている。
That is, in FIG. 2, reference numeral 11 denotes a glass electrolytic cell, in which an alkaline electrolyte solution 12 is sealed. A metal sample (austenitic stainless steel) 14 supported by a holder 13 and an electrode 15 facing the metal sample 14 are immersed in this electrolyte solution 12 .

そして、上記金属試料14及び電極15は、それぞれポ
テンショのスタット1Bに接続されて、電圧値の計測及
び電圧の印加等が行なわれるようになされている。また
、上記電解質溶液12内には、プローブ17の一端が浸
漬され、その他端は水槽18内の電解液19に浸漬され
ている。さらに、上記電解液19内には、寒天塩橋20
の一端が浸漬され、その他端は水槽21内のKCL飽和
溶液22に浸漬されている。そして、このKCL飽和溶
液22内には、ボテンシcI会スタット1Bに接続され
たKCL照合電極23が浸漬されており、これによって
金属試料14と電極15との間を流れる電流が計測され
る。
The metal sample 14 and the electrode 15 are each connected to a potentiometer stat 1B so that voltage values can be measured and voltages can be applied. Further, one end of the probe 17 is immersed in the electrolyte solution 12, and the other end is immersed in the electrolyte solution 19 in the water tank 18. Further, in the electrolyte 19, agar salt bridge 20
One end is immersed, and the other end is immersed in a KCL saturated solution 22 in a water tank 21. A KCL reference electrode 23 connected to the potentiometer cI stat 1B is immersed in this KCL saturated solution 22, so that the current flowing between the metal sample 14 and the electrode 15 is measured.

なお、上記ボテンシ!!會スタットIBには、関数発生
器(ポテンシャル・プログラマ−)24が接続され、こ
の関数発生器24には、AC/DC(交流/直流)変換
器25を介してプロッター2Bが接続されている。
In addition, the above Botenshi! ! A function generator (potential programmer) 24 is connected to the stat IB, and a plotter 2B is connected to the function generator 24 via an AC/DC (alternating current/direct current) converter 25.

上記のような測定装置において、まず、電解質溶液12
中に高純度窒素ガスを送り込み、約30分間バブリング
して十分に脱酸素処理を行なった後、金属試料14と電
極15との間に生じる自然電位(通常約−0,5vある
)を計測する。その後、金属試料14と電極15との間
の電位を上記自然電位から徐々に増加させてい(と、金
属状$414と電極15との間を流れる電流の密度も徐
々に上昇する。
In the measuring device as described above, first, the electrolyte solution 12
High-purity nitrogen gas is sent inside and bubbled for about 30 minutes to sufficiently deoxidize, and then the natural potential (usually about -0.5V) generated between the metal sample 14 and the electrode 15 is measured. . Thereafter, the potential between the metal sample 14 and the electrode 15 is gradually increased from the above-mentioned natural potential (and the density of the current flowing between the metal sample 414 and the electrode 15 is also gradually increased).

そして、この電流密度は、第3図に示すように、金属試
料14と電極15との間の電位が0.1−0.2 Vの
とき最大ピークに達する。これは、耐熱材料の組織に析
出する炭化物及び金属間化合物が、o、1〜0.2 V
の電位で選択的に溶解反応を起すときに生じるアノード
電流が、これら析出物の分布量に比例して増加すること
に起因する。
As shown in FIG. 3, this current density reaches its maximum peak when the potential between the metal sample 14 and the electrode 15 is 0.1-0.2 V. This means that carbides and intermetallic compounds precipitated in the structure of heat-resistant materials are o, 1 to 0.2 V.
This is due to the fact that the anode current generated when a dissolution reaction occurs selectively at a potential of , increases in proportion to the distribution amount of these precipitates.

なお、第3図は、実機材及び新材(N ew)を所定の
温度で一定時間熱処理した人工時効材のアノード分極測
定結果を示している。すなわち、試料シンボル(I!3
−10)は609℃で使用時間10万時間の試料であり
6.試料シンボル(N4−3)は620℃で使用時間3
万5千時間の試料であって、使用時間が長いものほどピ
ーク電流密度が高いことがわかる。
Note that FIG. 3 shows the results of anode polarization measurements of the actual material and the artificially aged material (New), which was heat-treated at a predetermined temperature for a certain period of time. That is, the sample symbol (I!3
-10) is a sample that has been used for 100,000 hours at 609°C.6. Sample symbol (N4-3) is used at 620℃ for 3 hours.
It can be seen that the samples were used for 5,000 hours, and the longer the usage time, the higher the peak current density.

そして、上記アノード活性最大ピーク電流密度lpは、
同一の供試材から切り出した試験片に対して、クリープ
破断試験を施した結果から得られたクリープ損傷率と、
対応関係にあることが実証された。すなわち、第4図は
ピーク電流密度1pとクリープ損傷率との相関関係を示
す基準曲線である。
And the anode active maximum peak current density lp is:
The creep damage rate obtained from the results of a creep rupture test on test pieces cut from the same specimen material,
It has been proven that there is a correspondence relationship. That is, FIG. 4 is a reference curve showing the correlation between the peak current density 1p and the creep damage rate.

このため、測定によって得られたアノード活性最大ピー
ク電流密度!pを、予め多(の材料をクリープ破断試験
して得られたデータから作成した基準曲線に外挿するこ
とにより、対象とする金属試料の経年変化によるクリー
プ損傷の進行状況を、迅速かつ容易でしかも正確に定量
評価することができる。
For this reason, the anode activity maximum peak current density obtained by measurement! By extrapolating p to a reference curve created from data obtained from creep rupture tests on multiple materials, it is possible to quickly and easily determine the progress of creep damage due to aging in a target metal sample. Moreover, accurate quantitative evaluation can be performed.

また、上記アノード活性最大ピーク電流密度1pは、同
一の供試材から切り出した試験片に対して、シャルピー
衝撃試験を施した結果から得られた衝撃値とも対応関係
にあることが実証されており(上記特願昭6’3−11
9708号に記載)、測定されたピーク電流密度Ipを
、予め多くの材料をシャルピー衝撃試験して得られたデ
ータから作成した基準曲線に外挿することにより、対象
とする金属試料の経年変化による靭性の進行状況を定量
評価することができるものである。
Furthermore, it has been demonstrated that the above-mentioned maximum peak current density of anode activity 1p corresponds to the impact value obtained from the results of Charpy impact test on test pieces cut from the same test material. (The above patent application
9708), by extrapolating the measured peak current density Ip to a reference curve created from data obtained from Charpy impact tests on many materials, It is possible to quantitatively evaluate the progress of toughness.

このため、アノード活性最大ピーク電流密度Ipを測定
することにより、金属試料を実機から切り出して破壊試
験することなく、現場で非破壊的に迅速に劣化度を判定
することができるものである。
Therefore, by measuring the anode active maximum peak current density Ip, the degree of deterioration can be determined non-destructively and quickly on site without cutting out a metal sample from an actual machine and conducting a destructive test.

ところで、上述したようなアノード活性最大ピーク電流
密度1pの測定手段では、強アルカリ性の電解質溶液!
2を用いるが、現場の限られた作業環境で強アルカリ溶
液を取り扱うことは非常な危険を伴うことになる。
By the way, in the above-mentioned means of measuring the maximum peak current density of anode activity 1p, a strongly alkaline electrolyte solution is used!
However, handling strong alkaline solutions in the limited work environment of the site is extremely dangerous.

そこで、この発明の発明者らは、種々検討を重ねた結果
、強アルカリ溶液に例えばポリアクリル酸ソーダ等の高
吸水性高分子材料を混合してジェル化させ、この電解質
ジェルを上記電解質溶液12に代えて使用することを考
えた。すなわち、例えば1規定の水酸化カリウム溶液5
017に対して、ポリアクリル酸ソーダを1gの割合い
で混合しジェル化させ、この電解質ジェルを電解質溶液
12に代えて電解槽11内に入れ、上記と同様にしてア
ノード活性最大ピーク電流密度1pを測定した。
Therefore, as a result of various studies, the inventors of the present invention mixed a highly water-absorbing polymeric material such as sodium polyacrylate into a strong alkaline solution to form a gel, and added this electrolyte gel to the electrolyte solution 12. I thought of using it instead. That is, for example, 1N potassium hydroxide solution 5
017 and 1 g of sodium polyacrylate to form a gel, this electrolyte gel was placed in the electrolytic cell 11 instead of the electrolyte solution 12, and the anode active maximum peak current density 1p was adjusted in the same manner as above. It was measured.

その結果、第5図に示すように、新材(N ew)なら
びに試料シンボル(N4−3)のもの共に、印加電圧と
電流密度の分極曲線が、第3図に示したものとよく一致
しており、電解質溶液12をジェル化した電解質ジェル
を用いても、電流密度の測定値が大きく変わることなく
、再現性も良好であることが実証された。
As a result, as shown in Figure 5, the polarization curves of applied voltage and current density for both the new material (New) and the sample symbol (N4-3) matched well with those shown in Figure 3. It was demonstrated that even when an electrolyte gel obtained by gelling the electrolyte solution 12 was used, the measured value of the current density did not change significantly and the reproducibility was good.

そこで、以下、この発明の一実施例について説明する。Therefore, one embodiment of the present invention will be described below.

第1図において、27は外筒で、例えばアクリル樹脂材
料等で一端の開口された円筒形状に形成されている。こ
の外筒27は、その内部に照合電極28及び負電極29
が共に挿入され、アルカリ性溶液に吸水性材料を加えて
ジェル化した電解質ジェル30が充填されている。
In FIG. 1, an outer cylinder 27 is made of, for example, an acrylic resin material and has a cylindrical shape with an open end. This outer cylinder 27 has a reference electrode 28 and a negative electrode 29 inside.
are inserted together, and filled with an electrolyte gel 30 made by adding a water-absorbing material to an alkaline solution and turning it into a gel.

この外筒27は、その開口端部を被測定用の金属材料3
1に接触させるように設定される。また、この金属材料
31には、正電極32が接触される。このため、負電極
29と正電極32とは、電解質ジェル30及び金属材料
31を介して、電気的に接続されたことになる。さらに
、照合電極2B、負電極29及び正電極32は、いずれ
も前記ポテンシヨ・スタット16に接続される。
This outer cylinder 27 has its open end connected to the metal material 3 to be measured.
1. Furthermore, a positive electrode 32 is brought into contact with this metal material 31 . Therefore, the negative electrode 29 and the positive electrode 32 are electrically connected via the electrolyte gel 30 and the metal material 31. Further, the reference electrode 2B, the negative electrode 29 and the positive electrode 32 are all connected to the potentiostat 16.

そして、負電極29と正電極32との間に電圧を印加し
、正電極32から金属材料31及び電解質ジェル30を
介して負電極29に流れる電流密度を測定し、このピー
ク電流密度ipを予め多くの材料を試験して得られた力
学的データから作成した基準曲線に外挿することにより
、対象とする金属試料の経年変化による劣化度を定量評
価することができるものである。
Then, a voltage is applied between the negative electrode 29 and the positive electrode 32, and the current density flowing from the positive electrode 32 to the negative electrode 29 via the metal material 31 and the electrolyte gel 30 is measured. By extrapolating to a reference curve created from mechanical data obtained by testing many materials, it is possible to quantitatively evaluate the degree of deterioration due to aging of the target metal sample.

上記のような構成によれば、電解質ジェル30及び正電
極32を被測定用の金属材料31に接触させることによ
り、ピーク電流密度1pの測定を行なうことができるの
で、現場での取り扱いを便利し得るとともに、全姿勢で
の測定が可能となるものである。
According to the above configuration, by bringing the electrolyte gel 30 and the positive electrode 32 into contact with the metal material 31 to be measured, it is possible to measure a peak current density of 1 p, making it convenient to handle on site. At the same time, measurements can be taken in all postures.

ここで、電解質ジェルは、電解質溶液に寒天。Here, electrolyte gel is agar agar in electrolyte solution.

ゼラチン及び高吸水ポリマーをジェル化材とじて添加す
ることよって生成され、被測定試料の材質によって選択
される電解液の液性により、これら3種のジェル化材を
使い分けるようにしている。
It is produced by adding gelatin and a super absorbent polymer as a gelling material, and these three types of gelling materials are used depending on the liquid properties of the electrolytic solution selected depending on the material of the sample to be measured.

そこで、寒天をジェル化材として使用した寒天ジェルを
用いて、タービン部材の劣化度計画を行なった場合の実
験例について説明する。通常、タービン軸に用いられて
いるCr −Mo −V鋼は、長時間使用によって焼戻
し脆化が起こる。この現象は、材料に微量含有されてい
るリン、ヒ素等の不純物が結晶粒界に偏析し、結晶粒界
の結合力の低下をもたらすためであるとされている。こ
れまで、上記脆化度を評価する方法としては、シャルピ
ー衝撃試験によって得られる脆性遷移温度(FATT)
の変化から脆化の進行程度を評価する方法がとられてい
た。
Therefore, an experimental example will be described in which the deterioration degree planning of turbine members was performed using agar gel using agar as a gel material. Usually, Cr-Mo-V steel used for turbine shafts undergoes tempering embrittlement after long-term use. This phenomenon is said to be due to the fact that impurities such as phosphorus and arsenic contained in trace amounts in the material segregate at the grain boundaries, resulting in a decrease in the bonding strength of the grain boundaries. Until now, as a method for evaluating the degree of embrittlement, the brittle transition temperature (FATT) obtained by the Charpy impact test has been used.
A method was used to evaluate the degree of embrittlement progression based on changes in .

次に、第6図は、ピクリン酸とドデシルベンゼンスルホ
ン酸ナトリウム溶液を電解質溶液として使用し、履歴の
異なるタービン部材3f!JC,G。
Next, FIG. 6 shows a turbine member 3f with a different history using picric acid and sodium dodecylbenzenesulfonate solution as an electrolyte solution! J.C., G.

Eの試料表面のインピーダンスを、交流インピーダンス
法で測定した結果を示している。第6図中の記号C,G
、Hの順に使用温度が高く脆化が進行していると予想さ
れたものであるが、それぞれの曲線はC,G、Hの順に
低抵抗側にシフトしている。
This shows the results of measuring the impedance of the sample surface of E using the AC impedance method. Symbols C and G in Figure 6
It was expected that the use temperature would be higher in the order of C, H, and embrittlement would progress, but the respective curves shifted to the lower resistance side in the order of C, G, and H.

これに対し、第7図は、上記ピクリン酸とドデシルベン
ゼンスルホン酸ナトリウム溶液を2倍の濃度にし、寒天
でジェル化した電解質ジェルを用いて同様なインピーダ
ンス測定を行なった場合の結果を示している。第6図に
比して、全体のインピーダンスは増加しているが、それ
ぞれの試料C8G、Hの抵抗変化は、第6図と同じ傾向
を示しているのがわかる。
In contrast, Figure 7 shows the results when similar impedance measurements were performed using an electrolyte gel made by doubling the concentration of the above picric acid and sodium dodecylbenzenesulfonate solution and gelling it with agar. . Although the overall impedance has increased compared to FIG. 6, it can be seen that the resistance changes of each sample C8G and H show the same tendency as in FIG. 6.

ここで、インピーダンス測定結果と機械的特性との相関
を検討すると、・第8図に示すように、脆性遷移温度(
FATT)とインピーダンスの逆数であるアドミッタン
スとは、それぞれの周波数fにおいて1本の線で表わさ
れ、インピーダンス測定によって機械的特性変化を推定
することが可能となるものである。なお、インピーダン
ス測定によって金属の劣化度評価を行なうことは、特願
昭63−143570号に記載されている。
Here, when we consider the correlation between the impedance measurement results and mechanical properties, we find that - As shown in Figure 8, the brittle transition temperature (
FATT) and admittance, which is the reciprocal of impedance, are represented by one line at each frequency f, and it is possible to estimate changes in mechanical characteristics by measuring impedance. Note that the evaluation of the degree of deterioration of metal by impedance measurement is described in Japanese Patent Application No. 63-143570.

次に、金属材料の幾何学的変化の検出について説明する
。冷間圧延加工された高張力ft4(HT50)及び同
等の化学組織をもつ未加工の新材(N ew)を寒天で
ゲル化した0、72規定度の硫酸溶液電解質中でインピ
ーダンス測定を行なうと、第9図に示すようなインピー
ダンスの変化が見られる。そして、このことは、電解質
ジェルを用いることによって、塑性変形等の材料の幾何
学的変化、例えば変形や亀裂等が検出し得ることを示し
ている。
Next, detection of geometric changes in metal materials will be described. When impedance measurements are performed on cold rolled high tensile strength FT4 (HT50) and unprocessed new material (New) with the same chemical structure in a sulfuric acid solution electrolyte of 0.72 normality gelled with agar. , a change in impedance as shown in FIG. 9 is observed. This shows that by using electrolyte gel, geometric changes in the material such as plastic deformation, such as deformation and cracks, can be detected.

(発明の効果) したがって、以上詳述したようにこの発明によれば、迅
速かつ容易でしかも正確に金属材料の劣化度を評価する
ことができるとともに、現場における全姿勢測定を可能
とし計測作業性を向上させた極めて良好な金属材料の劣
化度評価のための電気化学計測用ジェル電極を提供する
ことができる。
(Effects of the Invention) Therefore, as detailed above, according to the present invention, it is possible to quickly, easily, and accurately evaluate the degree of deterioration of metal materials, and it is also possible to measure all postures at the site, improving measurement work efficiency. It is possible to provide a gel electrode for electrochemical measurement for extremely good evaluation of the degree of deterioration of metal materials with improved performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る金属材料の劣化度評価のための
電気化学計測用ジェル電極の一実施例を示す側断面図、
第2図はこの発明に使用される劣化度評価の測定原理を
説明するための構成図、第3図は同測定原理における試
料と電極との間の電位とそこを流れる電流との関係を示
す特性曲線図、第4図はピーク電流密度とクリープ損傷
率との相関関係を示す特性曲線図、第5図は電解質溶液
に代えて電解質ジェルを用いた場合の試料と電極との間
の電位とそこを流れる電流との関係を示す特性曲線図、
第6図は電解質溶液を用いて試料表面のインピーダンス
を測定した結果を示す特性図、第7図は電解質ジェルを
用いて試料表面のインピーダンスを測定した結果を示す
特性図、第8図は第7図によるインピーダンス測定結果
と機械的特性との相関関係を示す特性図、第9図は電解
質ジェルを用いて材料の幾何学的変化が測定できること
を説明するための特性図である。 11・・・電解槽、12・・・電解質溶液、13・・・
ホルダー14・・・金属試料、15・・・電極、16・
・・ポテンショ・スタット、17・・・プローブ、1B
・・・水槽、19・・・電解液、20・・・寒天塩橋、
21・・・水槽、22・・・KCL飽和溶液、23、K
 CL照合電極、24・・・関数発生器、25・・・A
C/DC変換器、2B・・・プロッター、27・・・外
筒、28・・・照合電極、29・・・負電極、30・・
・電解質ジェル、31・・・金属材料、32・・・正電
極。
FIG. 1 is a side sectional view showing an embodiment of a gel electrode for electrochemical measurement for evaluating the degree of deterioration of metal materials according to the present invention;
Figure 2 is a configuration diagram for explaining the measurement principle for evaluating the degree of deterioration used in this invention, and Figure 3 shows the relationship between the potential between the sample and the electrode and the current flowing therein in the same measurement principle. Figure 4 is a characteristic curve diagram showing the correlation between peak current density and creep damage rate. Figure 5 is a diagram showing the potential between the sample and electrode when electrolyte gel is used instead of electrolyte solution. A characteristic curve diagram showing the relationship with the current flowing there,
Figure 6 is a characteristic diagram showing the results of measuring the impedance of the sample surface using an electrolyte solution, Figure 7 is a characteristic diagram showing the results of measuring the impedance of the sample surface using electrolyte gel, and Figure 8 is the characteristic diagram showing the results of measuring the impedance of the sample surface using electrolyte gel. FIG. 9 is a characteristic diagram showing the correlation between impedance measurement results and mechanical properties. FIG. 9 is a characteristic diagram for explaining that geometric changes in materials can be measured using electrolyte gel. 11... Electrolytic cell, 12... Electrolyte solution, 13...
Holder 14...metal sample, 15...electrode, 16.
... Potentiostat, 17... Probe, 1B
...water tank, 19...electrolyte, 20...agar salt bridge,
21... Water tank, 22... KCL saturated solution, 23, K
CL reference electrode, 24...Function generator, 25...A
C/DC converter, 2B... Plotter, 27... Outer cylinder, 28... Reference electrode, 29... Negative electrode, 30...
- Electrolyte gel, 31... Metal material, 32... Positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 電解質溶液に吸水性材料を加えてジェル化した電解質ジ
ェルを被測定金属に接触させ、前記電解質ジェルに接触
される第1の電極と前記被測定金属に接触される第2の
電極との間に直流電圧を印加して前記第1の電極と第2
の電極との間を流れる電流をや前記第1及び第2の電極
間インピーダンスを計測し、この電流密度値あるいはイ
ンピーダンスと予め試験された金属材料の力学的特性と
の相関関係から得られる基準曲線を用いて、前記被測定
金属の劣化度を定量評価することを特徴とする金属材料
の劣化度評価のための電気化学計測用ジェル電極。
An electrolyte gel made by adding a water-absorbing material to an electrolyte solution to form a gel is brought into contact with a metal to be measured, and between a first electrode that is in contact with the electrolyte gel and a second electrode that is in contact with the metal to be measured. A DC voltage is applied to connect the first electrode and the second electrode.
A standard curve obtained by measuring the current flowing between the electrodes and the impedance between the first and second electrodes, and the correlation between this current density value or impedance and the mechanical properties of the metal material tested in advance. A gel electrode for electrochemical measurement for evaluating the degree of deterioration of metal materials, characterized in that the degree of deterioration of the metal to be measured is quantitatively evaluated using the gel electrode.
JP63311953A 1988-12-12 1988-12-12 Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material Pending JPH02157642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311953A JPH02157642A (en) 1988-12-12 1988-12-12 Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311953A JPH02157642A (en) 1988-12-12 1988-12-12 Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material

Publications (1)

Publication Number Publication Date
JPH02157642A true JPH02157642A (en) 1990-06-18

Family

ID=18023423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311953A Pending JPH02157642A (en) 1988-12-12 1988-12-12 Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material

Country Status (1)

Country Link
JP (1) JPH02157642A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064659U (en) * 1991-03-15 1994-01-21 三菱重工業株式会社 Electrode cell device for AC impedance measurement
JP2005339902A (en) * 2004-05-25 2005-12-08 Toyota Motor Corp Corrosion evaluation device, separator for fuel cell, fuel cell, and vehicle
JP2012216670A (en) * 2011-03-31 2012-11-08 Tdk Corp Compound semiconductor thin film evaluation device, compound semiconductor thin film evaluation method and solar cell manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200153A (en) * 1984-03-23 1985-10-09 Toshiba Corp Metal corrosion measuring apparatus
JPS61108954A (en) * 1984-10-31 1986-05-27 Toshiba Corp Probe for measuring coat film
JPS6224138A (en) * 1985-07-25 1987-02-02 Toshiba Corp Painted film measuring probe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200153A (en) * 1984-03-23 1985-10-09 Toshiba Corp Metal corrosion measuring apparatus
JPS61108954A (en) * 1984-10-31 1986-05-27 Toshiba Corp Probe for measuring coat film
JPS6224138A (en) * 1985-07-25 1987-02-02 Toshiba Corp Painted film measuring probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064659U (en) * 1991-03-15 1994-01-21 三菱重工業株式会社 Electrode cell device for AC impedance measurement
JP2005339902A (en) * 2004-05-25 2005-12-08 Toyota Motor Corp Corrosion evaluation device, separator for fuel cell, fuel cell, and vehicle
JP2012216670A (en) * 2011-03-31 2012-11-08 Tdk Corp Compound semiconductor thin film evaluation device, compound semiconductor thin film evaluation method and solar cell manufacturing method

Similar Documents

Publication Publication Date Title
US6280603B1 (en) Electrochemical noise technique for corrosion
US20190204210A1 (en) Electrochemical Detection of Corrosion and Corrosion Rates of Metal in Molten Salts at High Temperatures
CN109520856A (en) A kind of small sample On Creep Crack Growth test method
JPH0650927A (en) Detecting method for crack or fracture caused by stress corrosion cracking
NO342280B1 (en) Method and apparatus for measuring local corrosion
Aung et al. High temperature electrochemical sensor for in situ monitoring of hot corrosion
Bosch et al. Application of electrochemical impedance spectroscopy for monitoring stress corrosion cracking
JP4676323B2 (en) Method for measuring fracture toughness value of metallic materials
JP3121953B2 (en) Method for detecting carbide in low alloy steel by electrochemical polarization method
JPH02157642A (en) Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
JP3486315B2 (en) High temperature damage evaluation method for tempered martensitic steel
JPS62145157A (en) Method for discriminating material quality deterioration of alloy steel with age
Lee et al. Effect of oxide film on ECT detectability of surface IGSCC in laboratory-degraded alloy 600 steam generator tubing
JPH0345790B2 (en)
Sakamoto et al. Influence of galvanic macro-cell corrosion on the cavitation erosion durability assessment of metallic materials—International cavitation erosion test of Gdańsk
JPS5981552A (en) Method for measuring texture change of metallic material electrochemically
JPH10227784A (en) Creep damage evaluating method for tempered martensite based steel
Na Evaluation of sensitization and corrosive damages of the weldment for SUS 316 stainless steel
JPH01129154A (en) Method and apparatus for inspecting embrittlement point of metal material
JPH01288758A (en) Evaluating method of degree of deterioration of austenitic stainless steel
JP3853250B2 (en) Local corrosion sensor, local corrosion detection method and local corrosion detection apparatus using the local corrosion sensor
JP2002122561A (en) Method and system for diagnosing intergranular corrosiveness of nickel-based alloy
JPS61130866A (en) Decision for deterioration in low-alloy steel
JPH07225217A (en) Method for detecting aging deterioration of metal material
JPS60260839A (en) Electrochemical method for measuring degree of deterioration