JPS61130866A - Decision for deterioration in low-alloy steel - Google Patents

Decision for deterioration in low-alloy steel

Info

Publication number
JPS61130866A
JPS61130866A JP25160284A JP25160284A JPS61130866A JP S61130866 A JPS61130866 A JP S61130866A JP 25160284 A JP25160284 A JP 25160284A JP 25160284 A JP25160284 A JP 25160284A JP S61130866 A JPS61130866 A JP S61130866A
Authority
JP
Japan
Prior art keywords
steel
alloy steel
low
embrittlement
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25160284A
Other languages
Japanese (ja)
Other versions
JPH0566541B2 (en
Inventor
Tomoko Sato
倫子 佐藤
Masayuki Suzuki
雅行 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25160284A priority Critical patent/JPS61130866A/en
Publication of JPS61130866A publication Critical patent/JPS61130866A/en
Publication of JPH0566541B2 publication Critical patent/JPH0566541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To realize a method which is excellent both in the reproducibility of measurement and accuracy of deciding on the deterioration and handy, by immersing a low-alloy steel to be measured into a aqueous solution of an aromatic compound having a hydroxide group (or carboxylic group) and a nitro group in a molecule to perform an electrochemical measurement. CONSTITUTION:When a low-alloy steel such as Cr-Mo steel and Cr-Mo-V steel is brought into contact with a specified acid solution, the corrosion rate under the natural potential changes corresponding to the degree of embrittlement due to heat histeresis of steel. The acid solution herein used shall be a solution in which one or more than one kind of aromatic compounds (e.g. 2, 4, 6 trinitrophenol, 2, 4-dinitro benzoate) having at least one of a hydroxide group or carboxylic group in a molecule and a nitro group. Then, the low-alloy steel is immersed into the solution as test electrode and the polarization resistance Rp and the time constant tau in the potential response when an electric pulse is applied are measured thereby enabling the decision on the degree of embrittlement of the steel.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は金属材料の組織変化を電気化学的性質の変化と
して評価する方法に係わり、特に高温雰。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for evaluating structural changes in metal materials as changes in electrochemical properties, particularly in a high temperature atmosphere.

囲気における長期使用により脆化をきたした金属材料の
劣化の程度を非破壊的に検出する方法に関わる。
It relates to a method for non-destructively detecting the degree of deterioration of metal materials that have become brittle due to long-term use in an enclosed environment.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

鉄鋼材料をはじめとする金属材料は、その使用目的に応
じて必要な機械的性質を得るべく、種々の熱処理を施し
次うえで使用に供せられる。しかしながら数百度程度の
比較的高温雰囲気で使用される材料にあっては、その温
度覆歴により経時的変化をきたし、当初の機械的性質が
劣化していくという現象が認められる。このような機械
的性質の劣化は、過大な熱応力のくシ返しによる熱疲労
や、定常応力によるクリープ変形等に起因する場合が多
いが、他方、長期間にわ次って高温に保持されるために
生じる種々の組織変化に基づく場合もある5例えば蒸気
タービンロータは高温域で運転されるため鉄鋼中の不純
物元素であるリンが結晶粒界に偏析し粒界強度を弱める
ために材料の靭性値が著しく低下する(焼戻し脆化)、
このような金属組織の変化を調べる最も直持的な手法は
顕微鏡観察やシャルピー衝撃試験等による評価である。
Metal materials such as steel materials are subjected to various heat treatments in order to obtain the necessary mechanical properties depending on the purpose of use, and then used. However, with materials used in relatively high-temperature environments of around several hundred degrees Celsius, there is a phenomenon in which changes occur over time due to the temperature history, and the original mechanical properties deteriorate. This deterioration of mechanical properties is often caused by thermal fatigue due to repeated excessive thermal stress or creep deformation due to steady stress. For example, steam turbine rotors are operated in high temperature ranges, so phosphorus, an impurity element in steel, segregates at grain boundaries and weakens the grain boundary strength. The toughness value decreases significantly (tempering embrittlement),
The most direct method for investigating such changes in metallographic structure is evaluation through microscopic observation, Charpy impact test, etc.

これらはいずれも確実な評価法ではあるが、測定用の試
験片を採取しなければならないという大きな欠点がある
Although these are reliable evaluation methods, they have a major drawback in that they require the collection of test pieces for measurement.

このため近年金属組織の変化f、′i!気化学的に検出
する破懐評価法の開発が進められてきた。これら従来の
電気化学的手法はすべて被測定物を試験極とし、Jfi
な電解液を接触させて、同じく電解液中に浸漬した参照
極と対極を用いて分極特性を測定し、分極時の適当なパ
ラメータ(分極曲線の極大値あるいは極小値の電流密度
、着目電位における電流ピークの有無、臨界孔食電位、
再不動態化電位、不動態保持電流密度、着目電位範囲に
流れる電気量、通常の掃引と逆掃引時のパラメータの比
、等)あるいは該パラメータの新材との比較から金属組
織の変化を検出しようとするものである。しかしながら
分極特性の測定は一般に再現性に乏しく、従来法ではこ
の欠点を補うべくさまざまな改良が施されているにもか
かわらず測定値のバラツキが大きく金属の経年劣化度合
との対応が不十分であるという問題点があった。また電
気化学的測定に際しては電解液の選定が評価の際の根本
的問題となるが、従来、溶液の開発は十分に行なわれて
おらずこの点も経年劣化度合の判定精度を悪くする原因
となっていた。
For this reason, changes in the metallographic structure in recent years f,′i! Progress has been made in the development of a vapor-chemically detected evaluation method. All of these conventional electrochemical methods use the object to be measured as a test electrode, and Jfi
The polarization characteristics are measured using a reference electrode and a counter electrode that are also immersed in the electrolyte, and the appropriate parameters during polarization (current density at the maximum or minimum value of the polarization curve, current density at the maximum or minimum value of the polarization curve, Presence or absence of current peak, critical pitting potential,
Detect changes in metallographic structure by comparing repassivation potential, passivation current density, amount of electricity flowing in the target potential range, ratio of parameters during normal sweep and reverse sweep, etc.), or by comparing these parameters with new materials. That is. However, measurements of polarization characteristics generally have poor reproducibility, and although various improvements have been made to compensate for this shortcoming, conventional methods have large variations in measured values and do not adequately correspond to the degree of aging of metals. There was a problem. In addition, when performing electrochemical measurements, the selection of an electrolytic solution is a fundamental issue during evaluation, but solutions have not been sufficiently developed in the past, and this point is also a cause of deteriorating the accuracy of determining the degree of aging. It had become.

〔発明の目的〕[Purpose of the invention]

発明者は上記従来法の欠点に鑑み、高温で使用される金
属材料の金属組織の変化による機械的特性の劣化を電気
化学的測定により非破壊的(検出する手法について研究
した結果、測定の再現性。
In view of the above-mentioned drawbacks of the conventional method, the inventor conducted research on a method for non-destructively detecting the deterioration of mechanical properties due to changes in the metal structure of metal materials used at high temperatures by electrochemical measurement, and as a result, he succeeded in reproducing the measurement. sex.

劣化判定精度ともにすぐれ、かつ簡便な方法を見い出し
fc、本発明はこの方法を提供すあものである。
It is an object of the present invention to find a simple method that is both excellent in deterioration determination accuracy and fc, and to provide this method.

〔発明の概要〕[Summary of the invention]

本発明は、Cr−Mo鋼、Cr−Mo−V鋼等の低合金
鋼をある種の酸性溶液に接触させた場合、その自然電位
での腐食速度が鋼の熱履歴による脆化度合に対応して変
化するという発見に基づくものである。ここで、このよ
うな変化を生じさせる酸性溶液とは、分子内に水酸基ま
たはカルボキシル基の少  )なくとも一方とニトロ基
を有する芳香族化合物を単独であるいは二種類以上溶解
した溶液であり、このような化合物としては0−ニトロ
フェノール、m(Dニトロフェノール、P−ニトロフェ
ノール、2、.4−ジニトロフェノール% 2,4.6
−ドリニトロフエノール(ピッリン酸)、ト!Jニトロ
レゾルシン等のニトロフェノール類や、2.4−ジニト
ロ安息香酸、3.5−ジニトロ安息香酸%2.5−ジニ
トロ安息香酸、3.4−ジニトロ安息香酸、〇−二トロ
安息香駿、m−ニトロ安息香酸、P−ニトロ安息香酸等
が挙げられる。またこれらの溶液の濃度はpHが3.5
以下になるように調整することが好ましい。
The present invention shows that when low alloy steel such as Cr-Mo steel and Cr-Mo-V steel is brought into contact with a certain type of acidic solution, the corrosion rate at its natural potential corresponds to the degree of embrittlement due to the steel's thermal history. It is based on the discovery that the Here, the acidic solution that causes such a change is a solution in which one or more aromatic compounds having at least one of a hydroxyl group or a carboxyl group and a nitro group are dissolved in the molecule. Such compounds include 0-nitrophenol, m(D nitrophenol, P-nitrophenol, 2,.4-dinitrophenol% 2,4.6
-Dolinitrophenol (pyrinic acid), to! Nitrophenols such as J nitroresorcin, 2.4-dinitrobenzoic acid, 3.5-dinitrobenzoic acid%2.5-dinitrobenzoic acid, 3.4-dinitrobenzoic acid, 〇-nitrobenzoic acid, m -nitrobenzoic acid, P-nitrobenzoic acid, and the like. In addition, the concentration of these solutions is such that the pH is 3.5.
It is preferable to adjust as follows.

一般に各種低合金鋼で、金属組織の変化に基づく金属材
料の機械的特性の劣化とともに材料の機械的特性の劣化
ととも釦材料の腐食性が変化することはよく知られてい
る事実である。これは偏析物等の作用によって局部腐食
性が増大し念シ、不動態皮膜が弱くなることによってお
こる7ノ一ド分極挙動の変化に基づくものと考えられる
It is generally a well-known fact that in various low alloy steels, the mechanical properties of the metal material deteriorate due to changes in the metal structure, and the corrosivity of the button material changes as the mechanical properties of the material deteriorate. This is thought to be due to changes in the seven-node polarization behavior caused by increased local corrosion due to the action of segregated substances and the weakening of the passive film.

しかし一般にアノード分極挙動は電極表面の微妙な変化
をうけやすく再現性に乏しい。そのためこれまで自然浸
漬電位における腐食速度の差から低合金鋼の脆化度合を
判定しようという試みは行われていない。
However, in general, anode polarization behavior is susceptible to subtle changes in the electrode surface and has poor reproducibility. Therefore, no attempt has been made to determine the degree of embrittlement of low-alloy steel from the difference in corrosion rate at natural immersion potential.

これに対して本発明の基礎となっている自然浸漬電位に
おける腐食速度の脆化度合による変化は上記の腐食性の
変化とは異なる機構に基づいている。以下この点に関し
詳細に説明する。
On the other hand, the change in corrosion rate depending on the degree of embrittlement at the natural immersion potential, which is the basis of the present invention, is based on a mechanism different from the above-mentioned change in corrosivity. This point will be explained in detail below.

Cr−Mo鋼、Cr −M o−V鋼等の低合金鋼上、
エツチング性が強く金属表面の酸化皮膜を溶解除去しう
るような溶液、さらに詳しくは分子内に水酸基ま次はカ
ルボキシル基の少なくとも一方とニトロ基金有する芳香
族化合物の水溶液に接触させると、鋼中に含まれる種々
の不純物元素の偏析物が直接溶液に触れ、電極反応に際
して敏感にその活性を示すようになる。Cr−Mo鋼、
Cr −Mo −’I鋼等の低合金鋼の場合、不純物元
素として含まれるPが結晶粒界に偏析して部層し脆化が
起こることは衆知の通シであるが、偏析したリン化鉄は
水素過電圧が小さく、従って、脆化している材料はどカ
ソード反応である水素の還元反応がさかんKなると考え
られる。この関係は第1図においてカソード分極曲線C
(非脆化材)とC′(脆化材)で表わされる。またこの
場合、アノード溶解反応は偏析物の影IPヲそれほどう
けないと考えられるので。
On low alloy steels such as Cr-Mo steel and Cr-Mo-V steel,
When brought into contact with a solution that has strong etching properties and can dissolve and remove the oxide film on the metal surface, more specifically, an aqueous solution of an aromatic compound that has at least one of a hydroxyl group, a carboxyl group, and a nitro group in its molecule, The segregated substances of various impurity elements contained therein come into direct contact with the solution and sensitively exhibit their activity during electrode reactions. Cr-Mo steel,
In the case of low-alloy steels such as Cr-Mo-'I steel, it is well known that P contained as an impurity element segregates at grain boundaries and causes embrittlement. Iron has a small hydrogen overvoltage, and therefore, it is thought that the reduction reaction of hydrogen, which is a cathode reaction, will be more active in the brittle material. This relationship can be seen in the cathode polarization curve C in Figure 1.
(non-embrittleable material) and C' (embrittleable material). Furthermore, in this case, it is considered that the anode dissolution reaction is not affected by the segregated IP to a great extent.

非脆化材・脆化材ともにここでは便宜的に同一の7ノ一
ド分極曲線Aで表わす、従って腐食電流密度は材料の脆
化に伴ない10゜rrから10゜rrへと増大する。こ
のように発明者らが見い出した腐食速度と脆化度との対
応関係は水素発生反応に関するカソード分極曲線の変化
に基づくと考えられるものであり、通常鋼の熱劣化に見
られるように偏析物が原因して局部腐食性が増大たり、
不動態化しにくくなるようなアノード分極曲線の変化に
基づく腐食性の変化とは原理的に異なる。更に1以上の
ような機構からも類推されることであるが、本発明で用
いる溶液に吸着性物質、特に界面活性剤が共存するとア
ノード反応支配型の混成反応になったり、偏析物の水素
発生反応活性が低下するために上記のようなカソード分
極挙動の変化が腐食速度の変化として、7充分検出でき
ず、脆化度の判定が困離であることもわかった。
For convenience, both the non-embrittling material and the embrittling material are represented by the same 7-node polarization curve A. Therefore, the corrosion current density increases from 10°rr to 10°rr as the material becomes embrittled. The correlation between the corrosion rate and the degree of embrittlement found by the inventors is thought to be based on the change in the cathode polarization curve related to the hydrogen generation reaction. Local corrosion increases due to
This is fundamentally different from a corrosive change based on a change in the anode polarization curve that makes passivation difficult. Furthermore, as can be inferred from the mechanism described above, if adsorbent substances, especially surfactants, coexist in the solution used in the present invention, a hybrid reaction dominated by the anode reaction may occur, and hydrogen generation from the segregated substances may occur. It was also found that due to the decrease in reaction activity, the above-mentioned change in cathode polarization behavior could not be sufficiently detected as a change in corrosion rate, making it difficult to determine the degree of embrittlement.

本発明において、自然浸漬電位における腐食速度を求め
るために測定するパラメータとして、分極抵抗几p、電
気パルスを印加したときの電位応答の時定数τ、電解液
中に溶は出した鉄イオン濃度C,e、浸食深さ等がある
が、測定の容易さからいって、前二者すなわち分極抵抗
几pと時定数τを用いる事ができる。
In the present invention, the parameters to be measured to determine the corrosion rate at natural immersion potential are polarization resistance (p), time constant (tau) of potential response when an electric pulse is applied, and iron ion concentration (C) dissolved in the electrolyte. .

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

〔実施例1〕 分子内にニトロ基とカルボキシル基を有する芳香族化合
物として2.4−ジニトロ安息香醗の水溶液t−調製し
た。溶液のpH1i2.2としfc、この試験液に脆化
度の異なる3種のCr−Mo−V鋼を浸漬してクーロス
タット法により分極抵抗′fLpを求めた。
[Example 1] An aqueous solution of 2,4-dinitrobenzoic acid was prepared as an aromatic compound having a nitro group and a carboxyl group in the molecule. The pH of the solution was set to 1i2.2 fc, and three types of Cr-Mo-V steels having different degrees of embrittlement were immersed in this test solution, and the polarization resistance 'fLp was determined by the Courostat method.

測定に用い友装置は北斗電工製HK−201である。The companion device used for the measurement was HK-201 manufactured by Hokuto Denko.

得られたRp値と脆脆化度との対応関係を第2図に示す
。第2図で横軸は鋼の脆化度合のパラメータである延性
脆性゛遷移温度差ΔFATT、縦軸は分極抵抗Rp値で
ある6図から明らかなようにRp値は脆化の進展と伴に
小さくなることがわかる。
FIG. 2 shows the correspondence between the obtained Rp value and the degree of embrittlement. In Figure 2, the horizontal axis is the ductile-brittle transition temperature difference ΔFATT, which is a parameter of the degree of embrittlement of the steel, and the vertical axis is the polarization resistance Rp value.As is clear from Figure 6, the Rp value changes as the embrittlement progresses. You can see that it becomes smaller.

〔実施例2〕 分子内に水酸基とニトロ基を有する芳香族化合物として
2 、4 、6−1リニトロフエノールpH2、,2に
調製を用い、実施例1と同様忙脆化度の異なる3種のC
r−Mo−V鋼を浸漬して定電気量パルスを印加し、電
位応答の時定数τを測定した。時定数の測定には同じく
クーロスタット装置HK−201を用い念5時定数τと
ΔFATTとの関係を第3図に示す。この場合も脆化が
進むほど時定数は小さくなることがわかる。
[Example 2] As an aromatic compound having a hydroxyl group and a nitro group in the molecule, 2, 4, and 6-1 linitrophenol prepared at pH 2, 2 were used, and three types with different degrees of embrittlement were used as in Example 1. C of
The r-Mo-V steel was immersed, a constant electrical pulse was applied, and the time constant τ of the potential response was measured. The time constant was measured using the same coulostat device HK-201, and the relationship between the time constant τ and ΔFATT is shown in FIG. In this case as well, it can be seen that the more the embrittlement progresses, the smaller the time constant becomes.

以上の実施例に示したように、低合金鋼を試験極として
分極抵抗Rpや電気パルス印加時の応答の時定数τを測
定することにより鋼の脆化度合を判定することができる
As shown in the above examples, the degree of embrittlement of the steel can be determined by measuring the polarization resistance Rp and the time constant τ of the response upon application of an electric pulse using low alloy steel as a test electrode.

〔発明の効果〕〔Effect of the invention〕

以上述べ念ように本発明は、自然浸漬電位にお・ける腐
食速度の違いを分極抵抗又は電気パルスを印加した時の
電位応答の時定数を検出することによシ低合金鋼の脆化
度を判定するものであるが、ここで特定の酸溶液を用い
ることにより、これまでの電気化学的手法とは異なり、
カソード分極挙動の変化を検出するため扁精度に低合金
鋼の脆化度を判定することができる。
As mentioned above, the present invention can detect the difference in corrosion rate at natural immersion potential by detecting the polarization resistance or the time constant of the potential response when an electric pulse is applied. However, by using a specific acid solution, unlike previous electrochemical methods,
Since changes in cathode polarization behavior are detected, the degree of embrittlement of low alloy steel can be determined with precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による低合金鋼の腐食速度の脆化に伴な
う変化の機*t−説明する之めの模式数(Evans図
)で、Aはアノード分極曲線、Cは非脆化材のカソード
分極曲線、C′は脆化材のカソード分極挙動を示す、第
2図、第3図は本発明による測定結果の例を示す図。 第1図 第2図 4F、47r、’C 手 続 補 正 書(自発) 昭和61/i!−2,内 日
Figure 1 shows the mechanism of change in the corrosion rate of low alloy steel according to the present invention due to embrittlement *t - a schematic number (Evans diagram) to explain it, where A is the anode polarization curve and C is the non-embrittlement curve. 2 and 3 are diagrams showing examples of measurement results according to the present invention. Figure 1 Figure 2 4F, 47r, 'C Procedure Amendment (Voluntary) 1986/i! -2, days within

Claims (1)

【特許請求の範囲】[Claims] 分子内に水酸基またはカルボキシル基の少なくとも一方
とニトロ基を有する芳香族化合物の水溶液を被測定物で
ある低合金鋼に接触させて、分極抵抗RP又は電気パル
スを印加した時の電位応答の時定数とを測定することに
より該低合金鋼の熱履歴による脆化度を判定する低合金
鋼の劣化判定法。
The time constant of the potential response when an aqueous solution of an aromatic compound having at least one of a hydroxyl group or a carboxyl group and a nitro group in the molecule is brought into contact with a low alloy steel to be measured, and a polarization resistance RP or an electric pulse is applied. A method for determining deterioration of low alloy steel, which determines the degree of embrittlement due to thermal history of the low alloy steel by measuring.
JP25160284A 1984-11-30 1984-11-30 Decision for deterioration in low-alloy steel Granted JPS61130866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25160284A JPS61130866A (en) 1984-11-30 1984-11-30 Decision for deterioration in low-alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25160284A JPS61130866A (en) 1984-11-30 1984-11-30 Decision for deterioration in low-alloy steel

Publications (2)

Publication Number Publication Date
JPS61130866A true JPS61130866A (en) 1986-06-18
JPH0566541B2 JPH0566541B2 (en) 1993-09-22

Family

ID=17225258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25160284A Granted JPS61130866A (en) 1984-11-30 1984-11-30 Decision for deterioration in low-alloy steel

Country Status (1)

Country Link
JP (1) JPS61130866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315549A (en) * 2018-03-19 2018-07-24 北京科技大学 A kind of method of the lower aging two phase stainless steel quality rebuilding of pulse current effect

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315549A (en) * 2018-03-19 2018-07-24 北京科技大学 A kind of method of the lower aging two phase stainless steel quality rebuilding of pulse current effect

Also Published As

Publication number Publication date
JPH0566541B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
Lopez et al. Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steels
US6280603B1 (en) Electrochemical noise technique for corrosion
Isaacs et al. Scanning reference electrode techniques in localized corrosion
Baboian et al. Cyclic Polarization Measurements--Experimental Procedure and Evaluation of Test Data
Kelly et al. Analysis of electrochemical noise for type 410 stainless steel in chloride solutions
JPS61130866A (en) Decision for deterioration in low-alloy steel
JPS6014155A (en) Detection for secular brittleness
JPH06249828A (en) Detection of carbide in low alloy steel by electrochemical polarization method
EP0228644B1 (en) Method for detection of materials degradation of alloy steels after long service operation
JP3486315B2 (en) High temperature damage evaluation method for tempered martensitic steel
JPH0344661B2 (en)
JP6963745B2 (en) Laves phase detection method for high Cr steel
JP4342715B2 (en) Intergranular corrosion diagnostic method for nickel base alloys
JPS5981552A (en) Method for measuring texture change of metallic material electrochemically
JPS61241645A (en) Method for discriminating deterioration of low alloy steel
US4715218A (en) Method of determining degree of embrittlement of low alloy steel
JPS61241646A (en) Method for discriminating deterioration of low alloy steel
JPH07225217A (en) Method for detecting aging deterioration of metal material
JPH02157642A (en) Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
JPH01129154A (en) Method and apparatus for inspecting embrittlement point of metal material
Dean Recent Developments in Standards for Electrochemical Corrosion Testing
JPH0344660B2 (en)
JPH0224551A (en) Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor
Shan et al. Effect of crevice former on the evolution of crevice damage
JPH0342422B2 (en)