JPH0224551A - Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor - Google Patents

Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor

Info

Publication number
JPH0224551A
JPH0224551A JP17279288A JP17279288A JPH0224551A JP H0224551 A JPH0224551 A JP H0224551A JP 17279288 A JP17279288 A JP 17279288A JP 17279288 A JP17279288 A JP 17279288A JP H0224551 A JPH0224551 A JP H0224551A
Authority
JP
Japan
Prior art keywords
embrittlement
degree
measured
alloy steel
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17279288A
Other languages
Japanese (ja)
Inventor
Kiyoshi Saito
潔 斎藤
Kazunari Omura
大村 和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17279288A priority Critical patent/JPH0224551A/en
Publication of JPH0224551A publication Critical patent/JPH0224551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To judge the degree of embrittlement of low-alloy steel or the like due to thermal hysteresis efficiently and with high precision and high sensitivity by a method wherein an electrolytic solution made up of a mixed water solution of an aromatic compound and inorganic salt is brought into contact with a test specimen and a spontaneous potential generated thereby is measured. CONSTITUTION:A mixed water solution of an aromatic compound and inorganic salt being used as an electrolytic solution 15; this electrolytic solution 15 is brought into contact with a test specimen 11, which is low-alloy steel or the like; a spontaneous potential generated thereby is measured by an electrometer 21; and the degree of embrittlement of the test specimen 11 due to thermal hysteresis is detected from said spontaneous potential. The electrolytic solution 15 is the mixed water solution of the aromatic compound, such as a picric acid, and the inorganic salt, such as sodium hydroxide containing a hydroxyl group, for instance, and the aromatic compound has at least either the hydroxyl group or a caboxyl group and a nitro group in a molecule. According to this method, a time for measurement can be shortened to about a half of the one required in a conventional testing method of dielectric polarization.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は低合金鋼等の被計測物の脆化度検出方法および
その検出装置に係り、特に、低合金鋼の電気化学的特性
変化から経年脆化を非破壊的に測定する低合金鋼等の被
計測物の脆化度検出方法およびその検出装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method and apparatus for detecting the degree of embrittlement of a measured object such as low alloy steel, and particularly relates to an electrical The present invention relates to a method and apparatus for detecting the degree of embrittlement of objects to be measured such as low alloy steel, which non-destructively measures aging embrittlement from changes in chemical properties.

(従来の技術) 高温で使用される低合金鋼は、高温で化学的に安定で、
充分な機械的強度を有し、かつ金属組織が高温で安定し
ていることが要求される。これらの低合金鋼は蒸気ター
ビンなどの機器に適用されるが、長期間高温状態で使用
される蒸気タービンなどの機器では、低合金鋼内で組織
変化が起り、低合金鋼は経年的な材質劣化が顕著になり
易い。
(Conventional technology) Low alloy steel used at high temperatures is chemically stable at high temperatures,
It is required to have sufficient mechanical strength and have a stable metal structure at high temperatures. These low-alloy steels are used in equipment such as steam turbines, but in equipment such as steam turbines that are used in high-temperature conditions for long periods of time, structural changes occur within the low-alloy steel, and low-alloy steel deteriorates over time. Deterioration tends to be noticeable.

材質劣化の中で特に問題になるのがいわゆる焼戻し脆化
である。この焼戻し脆化は、低合金鋼中に含まれるp、
3n、AS、3b等から特にリン(P)の不純物元素が
結晶粒界に偏析し、粒界強度を弱めることによって引き
起こされると考えられている。
A particular problem in material deterioration is so-called tempering embrittlement. This temper embrittlement is caused by p contained in low alloy steel,
It is thought that this is caused by impurity elements, especially phosphorus (P) from 3n, AS, 3b, etc., which segregate at grain boundaries and weaken the grain boundary strength.

一方、低合金鋼に焼戻し脆化が生ずると低合金#1機器
のじん性が低下し、破損事故を引き起す危険性が大きい
。このため、低合金鋼の品質評価や事故発生防止の観点
から、低合金鋼の経年焼戻し脆化を測定する脆化度検出
技術が種々開発されている。
On the other hand, when tempering embrittlement occurs in low alloy steel, the toughness of low alloy #1 equipment decreases, increasing the risk of causing a breakage accident. Therefore, from the viewpoint of quality evaluation of low alloy steel and accident prevention, various embrittlement degree detection techniques have been developed to measure the aging tempering embrittlement of low alloy steel.

従来から広く利用されている低合金鋼の脆化度検出方法
としてシャルビ衝撃試験による方法がある。この検出方
法は、試料を衝撃破壊させた時の吸収エネルギ値の減少
程度、あるいは衝撃値−試験温度曲線の高温側への移動
、すなわち衝撃値の遷移温度の1帽りさらに、衝撃破損
した試験片破面の延性破面面積の仝破面面積に対する割
合を計測することにより延性破面率を求め、この温度依
存性から延性破面率50%に対応する温度をもって定義
される破面遷移温度の上芹巖(ΔFATT)によって脆
化度を検出している。
A conventional and widely used method for detecting the degree of embrittlement of low-alloy steel is the Charvi impact test. This detection method detects the degree of decrease in the absorbed energy value when the sample is subjected to impact fracture, or the shift to the high temperature side of the impact value-test temperature curve, that is, the transition temperature of the impact value. The ductile fracture ratio is determined by measuring the ratio of the ductile fracture surface area of one fracture surface to the non-fracture surface area, and from this temperature dependence, the fracture surface transition temperature is defined as the temperature corresponding to the ductile fracture ratio of 50%. The degree of embrittlement is detected by ΔFATT.

しかし、この試験方法は、検査対象である低合金414
製’1品から測定試験片を切り出して行なう破壊試験で
ある。このため、低合金鋼の脆化度検査後に、低合金鋼
製製品の再使用ができなくなり、メンテナンスを目的と
する定期点検等にシャルビ衝撃試験よる検査方法を連用
することができない。
However, this test method
This is a destructive test in which a measurement test piece is cut out from a single manufactured product. For this reason, after the embrittlement test for low alloy steel has been completed, the product made of low alloy steel cannot be reused, and the inspection method based on the Charvy impact test cannot be repeatedly used for periodic inspections for the purpose of maintenance.

使方、低合金鋼の脆化度を非破壊的に検査する方法が、
特開昭60−14155号公報等に開示されている。こ
の非破壊検査方法は、低合金鋼の焼戻し脆化を電気化学
的手法の応用により測定るものであり、第7図に示すよ
うに構成されている。
How to use: A method for non-destructively testing the degree of embrittlement of low-alloy steel.
It is disclosed in Japanese Patent Application Laid-Open No. 14155/1983. This nondestructive testing method measures the temper embrittlement of low alloy steel by applying an electrochemical method, and is configured as shown in FIG. 7.

第7図に示された低合金鋼の脆化度検査装置は、電解セ
ル1内に電解液2を入れ、この電解12内に測定される
低合金tA3を陽極として浸漬させ、陰極側に対極4を
浸す。符号5は照合電極であり、符号6は塩橋、符号7
および8は電圧計および電流計である。
The low alloy steel embrittlement testing device shown in FIG. Soak 4. 5 is a reference electrode, 6 is a salt bridge, and 7 is a reference electrode.
and 8 are a voltmeter and an ammeter.

そし−C1この検査装置は、低合金鋼3を陽極として浸
すことにより分極曲線を測定する過程で得られる再不働
態電流の大きさを電流計8にて測定することにより、低
合金鋼3の焼戻し脆化の程度、すなわち脆化度を評価し
ている。
So-C1 This inspection device measures the magnitude of the repassivation current obtained in the process of measuring the polarization curve by immersing the low alloy steel 3 as an anode with an ammeter 8. The degree of embrittlement, that is, the degree of embrittlement, is evaluated.

このときの分極曲線は第8図に示すように表ねされ、自
然電位aから掃引を開始し、この掃引は最大活性電流点
すを経過して不働態領域に至るまで行ない、この不動@
領域のfM引反転点Cで一端掃引を停止する。
The polarization curve at this time is expressed as shown in Fig. 8, and the sweep starts from the self-potential a, and this sweep continues until the maximum active current point A reaches the passive region.
The sweep is stopped once at the fM reversal point C of the region.

次に、掃引方向を反転させ、逆掃引を開始すると、電流
(茫度)が急激に減少して最小部d、eに至る。この最
小部で定義される電流が再不働態電流である。低合金鋼
の検査対象に焼戻し脆化が起っていない場合には、最小
部dに示すように再不動態化電流i6は零またはその近
傍値になる。
Next, when the sweep direction is reversed and a reverse sweep is started, the current (intensity) decreases rapidly and reaches minimum parts d and e. The current defined by this minimum part is the repassivation current. When temper embrittlement has not occurred in the low alloy steel to be inspected, the repassivation current i6 becomes zero or a value close to it, as shown in the minimum part d.

これに対し、焼戻し脆化が住じている場合には、最小部
eに示すように、再不動態化電流I は人きな電流値ど
なる。
On the other hand, when tempering embrittlement exists, the repassivation current I becomes a small current value, as shown in the minimum part e.

従来の低合金鋼の脆化度検出方法は、このように、再不
働態化電流の大小を検出づることによって、低合金鋼の
脆化の程度、すなわち脆化度を評価するものである。
The conventional method for detecting the degree of embrittlement of low alloy steel evaluates the degree of embrittlement, that is, the degree of embrittlement, of low alloy steel by detecting the magnitude of the repassivation current.

(発明が解決しようとする課題) 従来のイバ合金鋼の脆化度検出′lj法では、再不1l
lIl態化電流を計測するまでに、自然電位aから活性
態領域を経てアノード分極曲線を計測するので、トータ
ルの計測時間が長くなり、定期検査等で被検査物が多い
場合には、検査効率が悪いという問題があった。
(Problem to be solved by the invention) In the conventional method for detecting the degree of embrittlement of Iba alloy steel,
Before measuring the II state current, the anode polarization curve is measured from the natural potential a through the active region, so the total measurement time is longer, and when there are many objects to be inspected during periodic inspections, the inspection efficiency may be reduced. The problem was that it was bad.

また、低合金鋼3は活性!5領域を経由する時点で検査
表面に溶解が生じる。検査表面の溶解は、その金属組織
に対応して不均一に生じるため、検査表面に微細な凹凸
が生じ、この凹凸が不動態被膜の形成厚さを不均一にす
る。
Also, low alloy steel 3 is active! Dissolution occurs on the test surface at the time of passing through the five regions. Dissolution of the inspection surface occurs non-uniformly in accordance with its metallographic structure, resulting in fine irregularities on the inspection surface, and these irregularities make the thickness of the passive film formed non-uniform.

従来の低合金鋼の脆化度検出方法は、結晶粒界に偏析し
た不純物元素であるリン(P)の作用で不1?ll態被
膜の形成が阻害された部分に流れる電流の大きさによっ
てPの偏析状態およびこの偏析に伴う脆化度を検知する
ものである。このため、Pの偏析以外に不働態被膜の形
成に影響を及ぼす因子があることによって低合金鋼の脆
化度検出技術が低下する場合が考えられる。
The conventional method for detecting the degree of embrittlement of low-alloy steel is that it is difficult to detect embrittlement due to the action of phosphorus (P), an impurity element segregated at grain boundaries. The state of P segregation and the degree of embrittlement associated with this segregation are detected by the magnitude of the current flowing through the portion where the formation of the ll-state film is inhibited. Therefore, it is conceivable that the technology for detecting the degree of embrittlement of low-alloy steel may deteriorate due to factors other than the segregation of P that affect the formation of the passive film.

また、低合金鋼の脆化度を非破壊で検出する装置には、
電解セル1を用いてこのセル1内に電解12を貯えるが
、電解セル1は構造上電解液量を多くとれない。このた
め、活性態領域で溶出した鉄イオン等の腐食生成物によ
って電解液の特性が悪化し、脆化度検出精度が低下する
等の問題があった。
In addition, equipment for non-destructively detecting the degree of embrittlement of low-alloy steel includes:
An electrolytic cell 1 is used to store an electrolyte 12 in the cell 1, but the electrolytic cell 1 cannot store a large amount of electrolyte due to its structure. For this reason, there have been problems such as the characteristics of the electrolyte being deteriorated by corrosion products such as iron ions eluted in the active region, and the accuracy of detecting the degree of embrittlement being lowered.

本発明は上述した事情を考癒してなされたもので低合金
鋼等の被計測物の脆化度を、電解液に浸漬した状態での
自然電位を計測することにより、短M間のうちに高精度
でかつ感度よく測定することができる低合金鋼等の被計
測物の脆化度検出方法およびその検出装置を提供するに
ある。
The present invention has been made in consideration of the above-mentioned circumstances, and the degree of embrittlement of the object to be measured, such as low alloy steel, can be determined within a short period of time by measuring the natural potential while immersed in an electrolytic solution. An object of the present invention is to provide a method for detecting the degree of embrittlement of a measured object such as low alloy steel, which can be measured with high accuracy and sensitivity, and a detection device therefor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る被計測物の脆化度検出方法は上述した課題
を解決するために、芳香族化合物と無機塩との混合水溶
液を電解液に使用し、この電解液を低合金鋼等の被計測
物に接触させて自然電位を測定し、この自然電位から被
計測物の熱履歴による脆化度を検出することを特徴とす
る方法である。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the method for detecting the degree of embrittlement of a measured object according to the present invention uses a mixed aqueous solution of an aromatic compound and an inorganic salt as an electrolytic solution. This method is characterized by bringing an electrolytic solution into contact with an object to be measured such as low alloy steel, measuring the natural potential, and detecting the degree of embrittlement due to the thermal history of the object from this natural potential.

また、本発明に係る被計測物の脆化度検出装置は、上述
した課題を解決するために、低合金鋼等の被計測物に電
解セルを液密に設け、上記電解セル内に満される電解液
を電解セルの開口部を介して前記被計測物に接触させる
とともに、前記電解セルの電解液中に照合電極をlll
1設し、上記照合電極と被計測物との間の電位を自然電
位として測定する電位検出器を設けたものである。
In addition, in order to solve the above-mentioned problems, the device for detecting the degree of embrittlement of a measured object according to the present invention has an electrolytic cell provided in a liquid-tight manner on the measured object such as low alloy steel, and the electrolytic cell is filled with liquid. The electrolytic solution is brought into contact with the object to be measured through the opening of the electrolytic cell, and a reference electrode is placed in the electrolytic solution of the electrolytic cell.
A potential detector is provided for measuring the potential between the reference electrode and the object to be measured as a natural potential.

(作用) 本発明は、低合金鋼等の被計測物を、芳香族化合物と無
機塩との混合水溶液で形成される電解液に接触させた場
合、その自然電位が低合金t14等の経年脆化度に対応
して変化する点に着目したものであり、この自然電位測
定づることによって低合金鋼の脆化度を高精度でかつ感
度よく反復して測定することかできものである。
(Function) In the present invention, when an object to be measured such as low-alloy steel is brought into contact with an electrolytic solution formed of a mixed aqueous solution of an aromatic compound and an inorganic salt, the natural potential of the object to be measured such as low-alloy T14 is This method focuses on the point that changes depending on the degree of embrittlement, and by measuring this self-potential, it is possible to repeatedly measure the degree of embrittlement of low-alloy steel with high precision and sensitivity.

その際、低合金鋼等の被計測物の計測時間は、も従来の
分極試験方法に較べ半分程度に短縮でき、=tm能率を
向上させることができる。さらに、本発明では、分極電
流を測定する必要がないので、ポテンショスタットや電
解セル内に対極を必要とせず、計測装置の簡素化を図る
ことができる。
In this case, the measurement time of the object to be measured such as low alloy steel can be reduced to about half compared to the conventional polarization test method, and =tm efficiency can be improved. Furthermore, in the present invention, since it is not necessary to measure the polarization current, there is no need for a counter electrode in the potentiostat or the electrolytic cell, and the measuring device can be simplified.

(実施例〉 以下、本発明の一実施例について添付図面を参照して説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明に係る低合金#f等の被計灘物の脆化度
検出装置を示す原理図である。この脆化度検出装置10
はCrMO鋼、CrMoV鋼等の低合金鋼の被計測物1
1に電解セル12がパツキン等のシール材13を介して
液密に設けられる。電解セル12は、被計測物11の検
査表面に向って間口する開口部14を備えている。
FIG. 1 is a principle diagram showing an apparatus for detecting the degree of embrittlement of objects to be measured such as low alloy #f according to the present invention. This embrittlement degree detection device 10
is a measurement object 1 made of low alloy steel such as CrMO steel and CrMoV steel.
1, an electrolytic cell 12 is provided in a liquid-tight manner via a sealing material 13 such as packing. The electrolytic cell 12 includes an opening 14 that opens toward the inspection surface of the object 11 to be measured.

電解セル12の内部には雪解液75が満されており、こ
の電解液15は電解セル12の開口部14を通して被計
測物11の検査表面に接触している。電解液15は、ピ
クリン酸笠の芳6族化合物と水酸基を含む水酸化ナトリ
ウム等の無機塩との混合水溶液であり、芳香族化合物は
分子内に水酸基およびカルボキシル基の少なくとも一方
とニトロ暴とを有するものである。このような芳香族化
合物としては、例えばO−ニトロフェノール、mニトロ
フェノール、P−ニトロフェノール、2゜4−ジニトロ
安息香酸、2.5〜ジニトロ安息香酸、3.4−ジニト
ロ安息香酸、0−ジニトロ安息香酸、m−二トロ安息香
酸、P−ニトロ安息香酸等がある。また、水酸基を含む
無機塩としては、水酸化カリウム、水酸化ナトリウム、
水酸化アンモニウム等がある。
The interior of the electrolytic cell 12 is filled with a snowmelt solution 75, and this electrolytic solution 15 is in contact with the inspection surface of the object to be measured 11 through the opening 14 of the electrolytic cell 12. The electrolytic solution 15 is a mixed aqueous solution of a hexa-aromatic compound of picric acid and an inorganic salt such as sodium hydroxide containing a hydroxyl group. It is something that you have. Examples of such aromatic compounds include O-nitrophenol, m-nitrophenol, P-nitrophenol, 2゜4-dinitrobenzoic acid, 2.5-dinitrobenzoic acid, 3.4-dinitrobenzoic acid, 0- Examples include dinitrobenzoic acid, m-nitrobenzoic acid, and p-nitrobenzoic acid. In addition, examples of inorganic salts containing hydroxyl groups include potassium hydroxide, sodium hydroxide,
Examples include ammonium hydroxide.

電解液15の濃度は好ましくはpf−1が3.5以下に
なるように調整される。pHが3.5を超えると、低合
金鋼の被計測物11に電解液15を接触させたとき、そ
の表面に酸化物や水酸化物等の沈澱皮膜が発生し易くな
り、脆化度の再現性ある判定が困難になるためである。
The concentration of the electrolytic solution 15 is preferably adjusted so that pf-1 is 3.5 or less. If the pH exceeds 3.5, when the electrolytic solution 15 is brought into contact with the measured object 11 made of low-alloy steel, a precipitated film of oxides, hydroxides, etc. is likely to be formed on the surface of the measured object 11, and the degree of embrittlement may be reduced. This is because reproducible judgment becomes difficult.

電解液15は注入口(給排口)16を介して電解セル1
2内に注入され、この注入時に電解セル12内の流体は
排出口17から排出され、オーバーフローされる。符号
18は注入口16や排出口17に設けられたバルブであ
る。
The electrolytic solution 15 is supplied to the electrolytic cell 1 through an injection port (supply/discharge port) 16.
During this injection, the fluid in the electrolytic cell 12 is discharged from the outlet 17 and overflows. Reference numeral 18 indicates a valve provided at the inlet 16 and the outlet 17.

また、電解セル12内に貯溜された電解液15の中に照
合電+4i20が挿入され、この照合電極20は被計測
物11とともにエレクl−ロメータ21等の電位検出器
に接続され、このエレクトロメータ21にて自然電位を
計測している。エレクトロメータ21からの出力は]−
前記録計などのレコーダ22に記録される。
Further, a reference electrode +4i20 is inserted into the electrolytic solution 15 stored in the electrolytic cell 12, and this reference electrode 20 is connected together with the object to be measured 11 to a potential detector such as an electrometer 21. The natural potential was measured at 21. The output from the electrometer 21 is ]-
It is recorded on a recorder 22 such as a front recorder.

次に、低合金鋼の脆化度測定方法を説明する。Next, a method for measuring the degree of embrittlement of low alloy steel will be explained.

低合金鋼として06M071m鋼等の被計測物11を用
いる。この被計測物11の表面を例えば#600のエメ
リベーパで機械研磨し、純水洗浄した侵、被計測物11
に電解セル12を液密に取付【ノる。電解セル12内に
は注入口16を通して電解液15を注入し、この電解液
15が排出口17からオーバーフローしたところでバル
ブ18を閉じる。
The object 11 to be measured is made of 06M071m steel or the like as a low alloy steel. The surface of the object to be measured 11 is mechanically polished using, for example, a #600 emery vapor and washed with pure water.
Install the electrolytic cell 12 in a liquid-tight manner. Electrolytic solution 15 is injected into electrolytic cell 12 through injection port 16, and when electrolytic solution 15 overflows from discharge port 17, valve 18 is closed.

そして、被計測物11と照合電極20間の電位をエレク
トロメータ21で計測することにより被計測物11の自
然電位Emを測定し、その出力をレコーダ22にて記録
する。
Then, by measuring the potential between the object to be measured 11 and the reference electrode 20 with the electrometer 21, the natural potential Em of the object to be measured 11 is measured, and the output thereof is recorded by the recorder 22.

第2図は、低合金鋼の脆化度測定装置10により計測さ
れた被計測物11の自然電位Emの時間変化を示す。図
中、符号aは被計測物として脆化材を使用したときの自
然電位Emの時間変化曲線を、符号すは非脆化材を用い
たときの自然電位[mの時間変化曲線をそれぞれ示す。
FIG. 2 shows the temporal change in the natural potential Em of the object to be measured 11 measured by the embrittlement degree measuring device 10 for low alloy steel. In the figure, the symbol a indicates the time-varying curve of the natural potential Em when a embrittleable material is used as the object to be measured, and the symbol s indicates the time-varying curve of the natural potential [m] when a non-embrittleable material is used. .

第2図から、被計測物11に脆化材を用いた場合も、非
脆化材を用いた場合にも、最初の数分間は貴方向に電位
が上昇し、その後徐々に卑方向に減少して例えば15分
経過後にはほぼ一定値となる。この関係から15分経過
後の電位を自然電位Fmとして計測するのが望ましい。
From Fig. 2, the potential rises in the noble direction for the first few minutes, and then gradually decreases in the base direction, regardless of whether an embrittleable material or a non-embrittleable material is used for the measured object 11. Then, for example, after 15 minutes have elapsed, the value becomes approximately constant. From this relationship, it is desirable to measure the potential after 15 minutes as the natural potential Fm.

第3図は脆化度の異なる数種類、例えば7種類の脆化材
の自然電位計測結果を示すグラフである。
FIG. 3 is a graph showing the results of measuring the natural potential of several types of embrittlement materials, for example, seven types of embrittlement materials with different degrees of embrittlement.

この図において縦軸は15分経過後の自然電位Emを示
し、横軸は破面遷移温度の非脆化材を基準にした上昇分
ΔFATTであり、脆化度を表わず指標である。第3図
から自然電位Emは脆化度に対応して直線的に変化し、
脆化度が大きくなるほど自然電位Emが貴の方向に移行
するようになっている。したがって、自然電位Emを計
測することによって低合金鋼の脆化度を測定できること
がわかる。その際の計測時間は、電解液15を注入侵約
15分であり、従来の分極計測法の30分程度に較べ、
約1/2に短縮できることがわかった。
In this figure, the vertical axis shows the self-potential Em after 15 minutes, and the horizontal axis shows the increase in fracture surface transition temperature ΔFATT based on the non-embrittlement material, which is an index and does not represent the degree of embrittlement. From Figure 3, the natural potential Em changes linearly in accordance with the degree of embrittlement,
The higher the degree of embrittlement, the more the natural potential Em shifts toward the nobler direction. Therefore, it can be seen that the degree of embrittlement of low alloy steel can be measured by measuring the natural potential Em. The measurement time at that time is 15 minutes for injecting the electrolyte 15, compared to about 30 minutes for the conventional polarization measurement method.
It was found that the time could be reduced to about 1/2.

−股に、各種の低合金鋼は、熱履歴を受けることにより
金属組織変化が起って機械的特性の劣化が生じた場合、
種々の電解液中で自然゛属僚が変化することが知られて
いる。この自然電位の変化は、低合金鋼の組織変化によ
ってアノード分極挙動やカソード分極挙動が電解液中で
変化することに起因づると考えられる。
- On the other hand, when various types of low-alloy steel undergo thermal history, metallographic changes occur and mechanical properties deteriorate.
It is known that natural molecules change in various electrolytes. This change in self-potential is thought to be due to changes in anode polarization behavior and cathode polarization behavior in the electrolyte due to changes in the structure of the low alloy steel.

この変化現象を第4図を用いて説明覆る。第4図は低合
金鋼の分極挙動を模式的に表したエバンス([VanS
)図である。熱履歴による劣化を受ける非脆化材(被計
測物)ではアノード分極曲線とカソード分極曲線とは曲
線A、Bで表わされ、自然電位はEITIで示される促
成電位となる。
This change phenomenon will be explained using FIG. Figure 4 is a schematic representation of the polarization behavior of low alloy steel.
). In a non-embrittling material (object to be measured) that undergoes deterioration due to thermal history, the anodic polarization curve and the cathodic polarization curve are represented by curves A and B, and the natural potential is an enhanced potential indicated by EITI.

非脆化材が劣化づると不純物等の偏析により、腐蝕性が
変化し、アノード分極曲線へおよびカソード分極曲線B
はそれぞれA’ 、B’ に移行する。
As the non-embrittling material deteriorates, its corrosivity changes due to the segregation of impurities, resulting in changes in the anodic polarization curve and the cathodic polarization curve B.
move to A' and B', respectively.

このとき、自然電位(混成電位)EmもEm′へ移行す
る。自然電位Ernが真な方向へ移行するか、卑な方向
へ移行するかはアノード曲線A、カソード曲線Bの変化
に依存する。
At this time, the natural potential (mixed potential) Em also shifts to Em'. Whether the natural potential Ern shifts to the true direction or to the base direction depends on changes in the anode curve A and cathode curve B.

第5図は電解液として分子内に水wi基およびカルボキ
シル基の少なくとも一方と二1・0基を右する芳香族化
合物水溶液を用いた例を示す。この場合、劣化した材料
アノード分極曲線AはA′に変化し、カソード分極面1
!JBはほとんど変化しない。
FIG. 5 shows an example in which an aqueous solution of an aromatic compound having at least one of a water group and a carboxyl group and a 21.0 group in the molecule is used as the electrolyte. In this case, the degraded material anode polarization curve A changes to A', and the cathode polarization plane 1
! JB remains almost unchanged.

したがって、非脆化材の自然電位はEmからEm’へと
真な方向に移動する。
Therefore, the natural potential of the non-embrittling material moves in the true direction from Em to Em'.

この場合、7ノ一ド分権曲線Aの変化は、主に炭化物の
凝集粗大化に起因すると考えられる。この種の電解液で
は炭化物変化に敏感であるが、不純物の粒界偏析を検出
できない。
In this case, the change in the seven-node decentralization curve A is considered to be mainly due to the coarsening of the agglomeration of carbides. This type of electrolyte is sensitive to carbide changes, but grain boundary segregation of impurities cannot be detected.

第6図は第5図に示す電解液に水R基を含む無機塩を加
えた混合水溶液の場合の模式図である。
FIG. 6 is a schematic diagram of a mixed aqueous solution obtained by adding an inorganic salt containing a water R group to the electrolytic solution shown in FIG. 5.

無機塩の添加によりアノード分極面GAの変化は少なく
なり、代ってカソード分極曲線Bの変化が大きくなる。
The addition of the inorganic salt reduces the change in the anode polarization plane GA, and instead increases the change in the cathode polarization curve B.

これは、低合金鋼の焼戻し脆化によって結晶粒界に偏析
した不純物元素であるリン(P)の影響で、結晶粒界で
の水素過電圧が小さくなり、水素の還元反応の活発化に
起因すると考えられる。この場合、自然電位Emは脆化
に伴いEmからEm’へと貴方向に変化するので、この
自然電位Emの変化を計測することにより、低合金鋼の
脆化度を判定することができる。
This is due to the effect of phosphorus (P), an impurity element segregated at grain boundaries due to tempering embrittlement of low alloy steel, which reduces the hydrogen overvoltage at grain boundaries and activates the hydrogen reduction reaction. Conceivable. In this case, the natural potential Em changes in the upward direction from Em to Em' due to embrittlement, so the degree of embrittlement of the low alloy steel can be determined by measuring the change in this natural potential Em.

なお、本発明の一実施例では、2.4.6−ドリニトロ
フエノール等の芳香族化合物と水酸化ナトリウム等の無
機塩との混合水溶液を電解液として用いたが、被計測材
の計測面と電解液とのぬれ性を良くする目的から、上記
電解液にエチルアルコール等のアルコール類を加えたり
、また、界面活性剤としてトリメチルベンゼンスルフォ
ン配ナトリウムやアルキルベンゼンスルフォン酸す]〜
リウム等を加えてもよい。
In one embodiment of the present invention, a mixed aqueous solution of an aromatic compound such as 2.4.6-dolinitrophenol and an inorganic salt such as sodium hydroxide was used as the electrolyte. In order to improve wettability between the electrolyte and the electrolyte, alcohols such as ethyl alcohol are added to the electrolyte, and sodium trimethylbenzenesulfone and alkylbenzenesulfonic acid are used as surfactants.
You may also add lium etc.

また、一実施例では被計測材として低合金鋼を取扱った
例を示したが、合金鋼等であればよく必ずしも低合金鋼
に限定されない。
Further, in one embodiment, an example was shown in which low-alloy steel was used as the material to be measured, but the material to be measured is not necessarily limited to low-alloy steel.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように本発明においては、低合金鋼等の被
計測物に、芳香族化合物と無機塩との混合水溶液からな
る電解液を接触させることにより生ずる自然電位を計測
することにより、低合金鋼等の熱1ill歴による脆化
の程度を高精度かつ高感度に能率よく判定することがで
き、計測時間も従来の分極試験法に較べて半分程度に短
縮でき、計測能率を向上させることができる。
As described above, in the present invention, the self-potential generated by bringing an electrolytic solution made of a mixed aqueous solution of an aromatic compound and an inorganic salt into contact with an object to be measured, such as low-alloy steel, is used to reduce the The degree of embrittlement due to thermal history of alloy steel, etc. can be efficiently determined with high accuracy and sensitivity, and the measurement time can be reduced to about half that of conventional polarization testing methods, improving measurement efficiency. Can be done.

また、本発明は自然電位を測定すればよく、分極電流を
測定する必要がないので。電解セル内に対極や電流計等
が不要となり、計測装置の簡素化を確実に図ることがで
きる。
Further, in the present invention, it is only necessary to measure the natural potential, and there is no need to measure the polarization current. There is no need for a counter electrode, an ammeter, etc. in the electrolytic cell, and the measurement device can be certainly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る被計測物の脆化度検出装置の一実
施例を示す図、第2図は上記脆化度検出装置における自
然電位の時間変化を示す図、第3図は上記脆化度検出装
置における自然電位と脆化度ΔFATTの関係を示す図
、第4図は低合金鋼の分権挙動を模式的に表わしたエバ
ンズ図、第5図は電解液として分子内に水酸基およびカ
ルボキシル基の少なくとも一方とニトロ基とを有する芳
香族化合物の水溶液を用いた場合のエバンズ図、第6図
は第5図の水溶液に水R1)を含む無機塩を加えた電解
液を使用した場合のエバンズ図、第7図は従来の低合金
鋼の脆化度検出装置を示す図、第8図は再不11Il態
化電流密度を測定するための分極曲線を示す図である。 10・・・脆化度検出装置、11・・・被計測物(低合
金鋼)、12・・・電解セル、13・・・シール材、1
4・・・開口部、15・・・電解液、16・・・注入口
、17・・・排出口、20・・・照合電極、21・・・
エレク]−ロメータ(電位検出器)、22・・・レコー
ダ。 代理人弁理士  則 近  憲 缶 周         第  子  丸    健第1図 第 図 oo t− 眺イし度 ΔFATT+’C) 第 図 を流log+i 第5図 電在log 第 図 第 図 第 図 第 図
FIG. 1 is a diagram showing an embodiment of the embrittlement degree detection device for a measured object according to the present invention, FIG. 2 is a diagram illustrating the time change of the natural potential in the embrittlement degree detection device, and FIG. 3 is the above-mentioned A diagram showing the relationship between the self-potential and the degree of embrittlement ΔFATT in a embrittlement degree detection device, Figure 4 is an Evans diagram schematically representing the decentralization behavior of low alloy steel, and Figure 5 is an electrolytic solution with hydroxyl groups and Evans diagram when an aqueous solution of an aromatic compound having at least one carboxyl group and a nitro group is used, and Figure 6 shows the case when an electrolyte solution prepared by adding an inorganic salt containing water R1) to the aqueous solution in Figure 5 is used. 7 is a diagram showing a conventional embrittlement degree detection device for low alloy steel, and FIG. 8 is a diagram showing a polarization curve for measuring the current density for re-11Il transformation. DESCRIPTION OF SYMBOLS 10... Embrittlement degree detection device, 11... Measured object (low alloy steel), 12... Electrolytic cell, 13... Sealing material, 1
4... Opening, 15... Electrolyte, 16... Inlet, 17... Outlet, 20... Reference electrode, 21...
Elec] - meter (potential detector), 22... recorder. Representative Patent Attorney Nori Chika Ken Kanshu Daiko Maru Ken Figure 1 Figure oo t- Degree of view ΔFATT+'C) Figure 5 flow log + i Figure 5 Current log Figure Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】 1、芳香族化合物と無機塩との混合水溶液を電解液に使
用し、この電解液を低合金鋼等の被計測物に接触させて
自然電位を測定し、この自然電位から被計測物の熱履歴
による脆化度を検出することを特徴とする被計測物の脆
化度検出方法。 2、低合金鋼等の被計測物に電解セルを液密に設け、上
記電解セル内に満される電解液を電解セルの開口部を介
して前記被計測物に接触させるとともに、前記電解セル
の電解液中に照合電極を挿設し、上記照合電極と被計測
物との間の電位を自然電位として測定する電位検出器を
設けたことを特徴とする被計測物の脆化度検出装置。
[Claims] 1. A mixed aqueous solution of an aromatic compound and an inorganic salt is used as an electrolyte, and the electrolyte is brought into contact with an object to be measured such as low alloy steel to measure the natural potential. A method for detecting the degree of embrittlement of a measured object, characterized by detecting the degree of embrittlement due to the thermal history of the measured object. 2. An electrolytic cell is liquid-tightly provided on an object to be measured such as low alloy steel, and the electrolytic solution filled in the electrolytic cell is brought into contact with the object to be measured through the opening of the electrolytic cell. A device for detecting the degree of embrittlement of an object to be measured, characterized in that a reference electrode is inserted into an electrolytic solution, and a potential detector is provided for measuring the potential between the reference electrode and the object as a natural potential. .
JP17279288A 1988-07-13 1988-07-13 Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor Pending JPH0224551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17279288A JPH0224551A (en) 1988-07-13 1988-07-13 Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17279288A JPH0224551A (en) 1988-07-13 1988-07-13 Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0224551A true JPH0224551A (en) 1990-01-26

Family

ID=15948444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17279288A Pending JPH0224551A (en) 1988-07-13 1988-07-13 Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0224551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185872A (en) * 2012-03-06 2013-09-19 Kansai Paint Co Ltd Electrochemical measuring probe and coating film evaluation method
JP2013238583A (en) * 2012-04-19 2013-11-28 Kansai Paint Co Ltd Electrochemical measurement probe and corrosion evaluation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185872A (en) * 2012-03-06 2013-09-19 Kansai Paint Co Ltd Electrochemical measuring probe and coating film evaluation method
JP2013238583A (en) * 2012-04-19 2013-11-28 Kansai Paint Co Ltd Electrochemical measurement probe and corrosion evaluation method

Similar Documents

Publication Publication Date Title
Lu et al. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel
US5519330A (en) Method and apparatus for measuring degree of corrosion of metal materials
Kwon et al. Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics
CN101762454B (en) Dual-ring electrochemical dynamic potential reactivating evaluating method for diphase stainless steel intercrystalline corrosion sensitivity
Omura et al. Environmental factors affecting hydrogen entry into high strength steel due to atmospheric corrosion
Singbeil et al. Caustic stress corrosion cracking of mild steel
Chen et al. Assessment of sulfide corrosion cracking and hydrogen permeation behavior of ultrafine grain high strength steel
Baboian et al. Cyclic Polarization Measurements--Experimental Procedure and Evaluation of Test Data
Singbeil et al. Effect of sulfide ions on caustic cracking of mild steel
Zhong et al. Hydrogen effect on phase angle shift in electrochemical impedance spectroscopy during corrosion fatigue crack emanation
Fujii et al. Growth characteristics of stress corrosion cracking in high-strength 7075 aluminum alloy in sodium chloride solutions
CN112129817A (en) Method for detecting carbide in steel
CN115931538B (en) Method for measuring influence degree of hydrogen in acidic environment on metal stress corrosion cracking
JPH0224551A (en) Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor
Leiva-García et al. Role of Modern Localised Electrochemical Techniques to Evaluate the Corrosion on Heterogeneous Surfaces
JPH0345790B2 (en)
Hirnyi Anodic hydrogenation of iron in a carbonate–bicarbonate solution
JP3061707B2 (en) Method and apparatus for measuring corrosion of metallic materials
JP2009168684A (en) Embrittlement level determination method for metal
US4715218A (en) Method of determining degree of embrittlement of low alloy steel
JPH02212755A (en) Electrochemical embrittlement detection
JP4342715B2 (en) Intergranular corrosion diagnostic method for nickel base alloys
Huggins-Gonzalez et al. Effect of Loading Profile and Sour Environment on Cracking behavior of C110
JPS6180040A (en) Method for judging deterioration degree of low alloyed steel
Büchler et al. Discussion of the mechanism of accorrosion of cathodically protected pipelines: The effect of the cathodic protection level