JP2013185872A - Electrochemical measuring probe and coating film evaluation method - Google Patents

Electrochemical measuring probe and coating film evaluation method Download PDF

Info

Publication number
JP2013185872A
JP2013185872A JP2012049481A JP2012049481A JP2013185872A JP 2013185872 A JP2013185872 A JP 2013185872A JP 2012049481 A JP2012049481 A JP 2012049481A JP 2012049481 A JP2012049481 A JP 2012049481A JP 2013185872 A JP2013185872 A JP 2013185872A
Authority
JP
Japan
Prior art keywords
sponge
probe
coating film
measurement
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012049481A
Other languages
Japanese (ja)
Other versions
JP5902002B2 (en
Inventor
Keisuke Sai
啓介 佐井
Toyohito Nakaoka
豊人 中岡
Hideki Matsuda
英樹 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2012049481A priority Critical patent/JP5902002B2/en
Publication of JP2013185872A publication Critical patent/JP2013185872A/en
Application granted granted Critical
Publication of JP5902002B2 publication Critical patent/JP5902002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrochemical measuring probe and a coating film evaluation method, which prevent leakage of an electrolytic solution on a non-flat part and allow for highly accurate measurement.SOLUTION: A counter electrode 15 and a reference electrode 16 are inserted in the inside of a probe 1 filled with an electrolytic solution 14. A tip of the probe 1, which contacts a measuring object, is provided with a sponge 13 holding the electrolytic solution 14, and side faces of the sponge 13 are exposed. The sponge 13 preferably has a 30% compression stress of 3.0 to 4.7 kPa, a pore diameter of 130 to 200 μm, and a water retention rate of 1150 to 1300%. The electrolytic solution 14 preferably contains a surface active agent and water-soluble polymer, and has a viscosity of 30 to 1000 mPa s.

Description

本発明は、構造物に設けられる塗膜等の電気絶縁性を有する被膜の劣化状態を検査するために用いられる電気化学測定用プローブ及び塗膜評価方法に関する。   The present invention relates to an electrochemical measurement probe and a coating film evaluation method used for inspecting a deterioration state of a coating film having electrical insulation properties such as a coating film provided on a structure.

屋外に設置される建造物や機器等の構造物を保護するために、塗膜や酸化膜等の保護膜が設けられるが、これらの保護膜は、水分、塩分、塵埃、光線、汚染物質等の影響を受けて経時的に劣化する。保護膜の劣化、例えば剥離や割れなどの欠陥が生じると、保護膜の下の構造物が露出し、外部環境に暴露される結果、鋼材が腐食する原因になることがある。構造物のメンテナンスを的確に行うため、必要に応じて、例えば定期的に、保護膜の劣化状態を検査して、塗装の塗替えや修繕等を検討することが望ましい。
従来、例えば特許文献1には、防食被膜の劣化状態を把握するため、交流インピーダンス法を用いて被膜の防食機能を把握する電気化学的測定方法及び装置が記載されている。
In order to protect structures such as buildings and equipment installed outdoors, protective films such as paint films and oxide films are provided. These protective films are water, salt, dust, light rays, pollutants, etc. Deteriorated over time under the influence of Deterioration of the protective film, for example, defects such as peeling or cracking, may expose the structure under the protective film and cause the steel material to corrode as a result of exposure to the external environment. In order to accurately perform the maintenance of the structure, it is desirable to periodically examine the deterioration state of the protective film, for example, as necessary, and to consider repainting or repairing of the coating.
Conventionally, for example, Patent Document 1 describes an electrochemical measurement method and apparatus for grasping the anticorrosion function of a film using an alternating current impedance method in order to grasp the deterioration state of the anticorrosion film.

特開2005−274138号公報JP 2005-274138 A

従来の電気化学的測定方法は、測定対象の構造物の一定面積範囲に通電するため電解液を接触させ、電気抵抗やインピーダンスを測定して構造物が電気的に絶縁されているかどうかの観点から保護膜の性能を評価している。
建材や屋根材などに用いられる塗装鋼板が、塗装後に折り曲げ加工された場合のように、屈曲部や凹凸部等の非平坦部を測定対象としたい場合がある。非平坦部は、折り曲げ等の加工の結果、保護膜により大きな負荷が掛かり、平坦部に比べて劣化がより速く進行することがある。しかしながら、従来の装置では、非平坦部において電解液が漏れやすく、測定が困難であった。
The conventional electrochemical measurement method is based on whether or not the structure is electrically insulated by contacting the electrolytic solution to energize a certain area of the structure to be measured and measuring the electrical resistance and impedance. The performance of the protective film is evaluated.
In some cases, a coated steel sheet used for building materials, roofing materials, and the like is intended to be measured for non-flat portions such as bent portions and uneven portions, such as when bent after coating. As a result of processing such as bending, the non-flat portion is subjected to a greater load on the protective film, and the deterioration may proceed faster than the flat portion. However, in the conventional apparatus, the electrolyte solution easily leaks in the non-flat portion, and measurement is difficult.

本発明は、上記事情に鑑みてなされたものであり、非平坦部における電解液の漏れを防ぎ、高精度に測定が可能な電気化学測定用プローブ及び塗膜評価方法を提供することを課題とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an electrochemical measurement probe and a coating film evaluation method capable of preventing leakage of an electrolyte solution in a non-flat portion and measuring with high accuracy. To do.

前記課題を解決するため、本発明は、電解液を充填したプローブの内部にカウンター電極と参照電極が挿入され、前記プローブが測定対象に接触する先端部には、前記電解液を保持するスポンジが設けられ、前記スポンジの側面が露出されていることを特徴とする電気化学測定用プローブを提供する。
前記スポンジは、30%圧縮応力が3.0〜4.7kPa、気孔径が130〜200μm、保水率が1150〜1300%であることが好ましい。
前記電解液は、界面活性剤を含むことが好ましい。
前記電解液は、水溶性高分子を含み、粘度が30〜1000mPa・sであることが好ましい。
また、本発明は、前記測定対象が金属の表面に塗膜を有する構造物であり、前記電気化学測定用プローブを使用して、交流インピーダンスを測定することにより前記塗膜の劣化を評価することを特徴とする塗膜評価方法を提供する。
前記測定対象の表面が凹部又は凸部を有し、前記凹部又は凸部に前記スポンジを押し当て変形させることにより、前記スポンジを前記構造物に密着させることが好ましい。
In order to solve the above problems, the present invention provides a probe in which a counter electrode and a reference electrode are inserted in a probe filled with an electrolyte solution, and a sponge for holding the electrolyte solution is provided at a tip portion where the probe contacts a measurement object. Provided is an electrochemical measurement probe, characterized in that the side surface of the sponge is exposed.
The sponge preferably has a 30% compressive stress of 3.0 to 4.7 kPa, a pore diameter of 130 to 200 μm, and a water retention of 1150 to 1300%.
The electrolytic solution preferably contains a surfactant.
The electrolytic solution preferably contains a water-soluble polymer and has a viscosity of 30 to 1000 mPa · s.
In the present invention, the measurement object is a structure having a coating film on a metal surface, and the deterioration of the coating film is evaluated by measuring an alternating current impedance using the electrochemical measurement probe. A method for evaluating a coating film is provided.
It is preferable that the surface of the measurement target has a concave portion or a convex portion, and the sponge is brought into close contact with the structure by pressing and deforming the sponge against the concave portion or the convex portion.

本発明によれば、非平坦部に対してもスポンジが容易に追従でき、電解液の漏れを防いで、高精度の測定が可能になる。   According to the present invention, the sponge can easily follow the non-flat portion, and the electrolyte can be prevented from leaking, thereby enabling high-precision measurement.

本発明の電気化学測定用プローブの一例を示す(a)組立図、(b)部品断面図、(c)組立断面図及び(d)シリンジ先端側の端面図である。It is (a) assembly drawing which shows an example of the probe for electrochemical measurements of this invention, (b) Parts sectional drawing, (c) Assembly sectional drawing, and (d) End view of syringe front end side. 折り曲げ加工した塗装鋼板の一例を示す側面図である。It is a side view which shows an example of the coated steel plate which carried out the bending process. 測定対象物の構造及び等価回路の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of an object to be measured, and an equivalent circuit. 測定結果の一例を示すグラフである。It is a graph which shows an example of a measurement result.

以下、好適な実施の形態に基づき、図面を参照して本発明を説明する。
図1に、本形態例の電気化学測定用プローブ1の一例を示す。このプローブ1は、外筒となるシリンダ11内にピストン12を挿入したシリンジ10と、シリンダ11の先端部11aに設けられたスポンジ13と、シリンジ10の内部に充填された電解液14と、電解液を充分に含んだスポンジ13及び電解液14を介して測定対象物に通電するためのカウンター電極15と、電位の基準とする参照電極16を備える。電極15,16は、ピストン12に保持され、電極先端部15a,16aは、ピストン12の先端部12aに設けられた凹部12bに収容されている。
The present invention will be described below based on preferred embodiments with reference to the drawings.
FIG. 1 shows an example of an electrochemical measurement probe 1 according to this embodiment. The probe 1 includes a syringe 10 in which a piston 12 is inserted into a cylinder 11 serving as an outer cylinder, a sponge 13 provided at a tip portion 11a of the cylinder 11, an electrolyte solution 14 filled in the syringe 10, an electrolysis A counter electrode 15 for energizing an object to be measured through a sponge 13 and an electrolyte solution 14 sufficiently containing a liquid, and a reference electrode 16 as a reference for potential are provided. The electrodes 15 and 16 are held by the piston 12, and the electrode tip portions 15 a and 16 a are accommodated in a recess 12 b provided at the tip portion 12 a of the piston 12.

ピストン12は、シリンダ11の基端部11b(先端部11aの反対)側から挿入されており、ピストン12を押し込むことにより電解液14をスポンジ13に向けて押圧し、スポンジ13内と電極先端部15a,16aを収容する凹部12bが電解液14に満たされた状態とすることができる。電極先端部15a,16aは、ピストン12の先端部12aより奥まった位置に配置されており、ピストン12の先端部12aがスポンジ13に接触するまでピストン12を押し込んでも、電極先端部15a,16aがスポンジ13に突き当たることはない。シリンダ11は、先端部11aが胴部11cよりも小径であり、スポンジ13も、シリンダ11の胴部11cに収容される部分13cに比べて先端面13aが小径になっている。スポンジ13は、シリンダ11内に接着等で固定しても、固定しなくてもよい。   The piston 12 is inserted from the base end portion 11b (opposite the tip end portion 11a) side of the cylinder 11, and the electrolyte solution 14 is pressed toward the sponge 13 by pushing the piston 12, and the inside of the sponge 13 and the tip end portion of the electrode are pressed. The recess 12b for accommodating 15a, 16a can be filled with the electrolyte solution 14. The electrode tip portions 15a and 16a are disposed at a position deeper than the tip portion 12a of the piston 12. Even if the piston 12 is pushed in until the tip portion 12a of the piston 12 contacts the sponge 13, the electrode tip portions 15a and 16a It does not hit the sponge 13. The cylinder 11 has a tip portion 11a having a smaller diameter than the body portion 11c, and the sponge 13 also has a tip surface 13a having a smaller diameter than the portion 13c accommodated in the body portion 11c of the cylinder 11. The sponge 13 may or may not be fixed in the cylinder 11 by adhesion or the like.

本形態例のプローブ1では、スポンジ13の先端面13aがシリンジ10の先端部(詳しくはシリンダ11の先端部11a)から突出し、スポンジ13の側面13bが露出されている。すなわち、スポンジ13は、プローブ1の先端で容易に変形することができる。これにより、測定対象が非平坦部を有する場合でも、測定対象の凹部や凸部にスポンジ13を押し当て、変形させることにより、スポンジ13の先端面13aを非平坦部の形状に追従させて測定対象に密着させることができる。スポンジ13が測定対象の表面に接触する面積は、スポンジ13の先端面13aの面積にほぼ等しく一定であり、変形の程度によらず、ほぼ同等の計測条件で電気化学的測定を行うことができる。   In the probe 1 according to this embodiment, the distal end surface 13a of the sponge 13 protrudes from the distal end portion of the syringe 10 (specifically, the distal end portion 11a of the cylinder 11), and the side surface 13b of the sponge 13 is exposed. That is, the sponge 13 can be easily deformed at the tip of the probe 1. Thereby, even when the measurement target has a non-flat portion, the tip 13a of the sponge 13 is made to follow the shape of the non-flat portion by pressing and deforming the sponge 13 against the concave or convex portion of the measurement target. It can be brought into close contact with the object. The area where the sponge 13 is in contact with the surface of the measurement object is substantially equal to the area of the tip surface 13a of the sponge 13 and can be electrochemically measured under substantially the same measurement conditions regardless of the degree of deformation. .

例えば測定対象が、折り曲げ加工された塗装鋼板の屈曲部23である場合(図2参照)、屈曲部23の高さHはスポンジ13の直径より小さいが、屈曲部23の幅Wはスポンジ13の直径より大きいことがある。本形態例のプローブ1によれば、このような屈曲部23に対してもスポンジ13を変形させ、その先端面13aを屈曲部23の一定面積範囲(スポンジ13の先端面13aの面積程度)に密着させることが可能である。先端面13aの周囲360°にわたってスポンジ13を突出させることが好ましい。スポンジ13の先端面13aを突出させる長さLは、測定対象の有する凹凸の高さの数倍程度であればよく、スポンジ13の全長とする必要はないが、例えば1〜5mm又はそれ以上の長さにおいて、シリンジ10の先端部から突出させることが好ましい。
仮に、スポンジ13の先端面13aがシリンジ10の先端部から突出しておらず、スポンジ13の側面13b全体が、シリンダ11や他の部材によって覆われていた場合には、シリンダ11や他の部材によってスポンジ13の変形が制限されるため、隙間が開きやすく、スポンジ13の先端面13aを非平坦部に密着させるのは容易でない。
For example, when the measurement target is a bent portion 23 of a coated steel sheet that has been bent (see FIG. 2), the height H of the bent portion 23 is smaller than the diameter of the sponge 13, but the width W of the bent portion 23 is the width of the sponge 13. May be larger than diameter. According to the probe 1 of the present embodiment, the sponge 13 is also deformed with respect to such a bent portion 23, and the tip surface 13a thereof is in a certain area range of the bent portion 23 (about the area of the tip surface 13a of the sponge 13). It is possible to adhere. The sponge 13 is preferably projected over 360 ° around the distal end surface 13a. The length L by which the tip end surface 13a of the sponge 13 protrudes may be about several times the height of the unevenness of the measurement target, and does not have to be the entire length of the sponge 13, but is, for example, 1 to 5 mm or more. It is preferable that the length protrudes from the tip of the syringe 10.
If the tip surface 13a of the sponge 13 does not protrude from the tip of the syringe 10 and the entire side surface 13b of the sponge 13 is covered by the cylinder 11 or other member, the cylinder 11 or other member Since the deformation of the sponge 13 is limited, the gap is easily opened, and it is not easy to make the tip surface 13a of the sponge 13 adhere to the non-flat portion.

スポンジ13の先端面13aを測定対象20に接触させたとき、スポンジ13に含まれている電解液14の漏れを抑制するため、電解液14に増粘剤となる水溶性高分子を含有させ、高粘度に調整することが好ましい。電解液14の粘度は、例えば30〜1000mPa・sが好ましい。   In order to suppress leakage of the electrolyte solution 14 contained in the sponge 13 when the tip surface 13a of the sponge 13 is brought into contact with the measurement target 20, the electrolyte solution 14 contains a water-soluble polymer that serves as a thickener, It is preferable to adjust to high viscosity. The viscosity of the electrolytic solution 14 is preferably, for example, 30 to 1000 mPa · s.

また、電解液14の粘度が高いと、電解液14がたれにくくはなるが、塗膜の剥離や割れなどの欠陥部に浸透しにくくなるため、電解液に界面活性剤を含有させて、表面張力を低下させることが好ましい。電解液としては、アルカリ金属(Na、K等)の塩化物や硫酸塩等の塩類を電解質とし、水や極性有機溶媒等の溶媒に溶解させた溶液が挙げられる。電解液に界面活性剤を添加する場合、陽イオン(カチオン)界面活性剤、陰イオン(アニオン)界面活性剤、両性界面活性剤、非イオン(ノニオン)界面活性剤などの選択肢があり、適宜選択して用いることができる。   In addition, when the viscosity of the electrolytic solution 14 is high, the electrolytic solution 14 is difficult to sag, but it is difficult to penetrate into a defective portion such as peeling or cracking of the coating film. It is preferable to reduce the tension. Examples of the electrolytic solution include a solution in which a salt such as an alkali metal chloride (Na, K, etc.) or a sulfate is used as an electrolyte and dissolved in a solvent such as water or a polar organic solvent. When adding a surfactant to the electrolyte, there are options such as a cationic (cationic) surfactant, an anionic (anionic) surfactant, an amphoteric surfactant, and a nonionic surfactant. Can be used.

スポンジ13の材質としては、PVA(ポリビニルアセタール)、PU(ポリウレタン)、セルロース等が挙げられる。PVAスポンジは、親水性が高く、微細気孔によって毛細管現象が生じ、吸水性、保水性に優れるため好ましい。
スポンジ13は、適度な硬さと空隙を有することが好ましく、例えば、30%圧縮応力が3.0〜4.7kPa、気孔径が130〜200μm、保水率が1150〜1300%であることが好ましい。スポンジ13は硬すぎると図2のような加工部に沿った変形がしにくいが、柔らかすぎても過剰な変形に伴う液モレが生じる。非平坦部への密着性(追従性)の観点から、30%圧縮応力等を、所定の上限と下限の範囲内とすることが好ましい。また、スポンジ13の空隙の大きさは、小さすぎると測定対象への電解液14の供給が不十分になりやすく、大きすぎると電解液14が漏れやすいので、スポンジ13から測定対象への電解液14の染み出しを最適化するには、気孔径、保水率等を調整し、さらに電解液を充分に含んでスポンジ13が電気的な抵抗とならないような所定の上限と下限の範囲内とすることが好ましい。
本形態例のプローブは、液モレや液ダレがないため、屋根板や鋼矢板等、加工部が狭い間隔で設けられている部材において、非平坦部を有する加工部の測定だけでなく、加工部間の、平坦だが狭い一般部(狭隘部)の測定においても、測定対象の下から上向きに、あるいは横から横向きに、プローブを測定対象に当てて測定することができる。
Examples of the material of the sponge 13 include PVA (polyvinyl acetal), PU (polyurethane), and cellulose. PVA sponge is preferable because it has high hydrophilicity, causes capillary action due to fine pores, and is excellent in water absorption and water retention.
The sponge 13 preferably has moderate hardness and voids. For example, it is preferable that the 30% compression stress is 3.0 to 4.7 kPa, the pore diameter is 130 to 200 μm, and the water retention is 1150 to 1300%. If the sponge 13 is too hard, it is difficult to deform along the processed portion as shown in FIG. 2, but if it is too soft, liquid leakage due to excessive deformation occurs. From the viewpoint of adhesion (followability) to the non-flat portion, it is preferable that 30% compression stress or the like is within a predetermined upper limit and lower limit. In addition, if the size of the gap of the sponge 13 is too small, the supply of the electrolyte solution 14 to the measurement target tends to be insufficient, and if the size is too large, the electrolyte solution 14 tends to leak. In order to optimize the seepage of 14, the pore diameter, water retention rate, etc. are adjusted, and the electrolyte 13 is sufficiently contained so that the sponge 13 does not become an electrical resistance and falls within the predetermined upper and lower limits. It is preferable.
Since the probe of this embodiment does not have liquid leakage or liquid dripping, in a member provided with a narrow interval between the processing parts such as a roof plate and a steel sheet pile, not only the measurement of the processing part having a non-flat part but also the processing Even in the measurement of a flat but narrow general part (narrow part) between the parts, the measurement can be performed by applying the probe to the measurement object from below the measurement object upward or from side to side.

30%圧縮応力(kPa)は、スポンジを厚さ方向に30%圧縮したときの応力であり、30%圧縮時の荷重Fを、圧縮方向に垂直な断面積Sで除して得た値(F/S)として求めることができる。
気孔径(μm)は、ASTM(Designation:D4404-84)に基づく平均気孔径の測定値であり、具体的には、水銀圧入式ポロシメータを用いて求めることができる。
保水率(%)は、飽和状態までスポンジに含水させたときに水が占める質量百分率であり、乾燥状態でのスポンジの質量Mdryと、飽和状態まで含水させたときの質量Mwetを測定し、(Mwet−Mdry)/Mdry×100の式により求めることができる。
The 30% compression stress (kPa) is the stress when the sponge is compressed 30% in the thickness direction, and is a value obtained by dividing the load F at 30% compression by the cross-sectional area S perpendicular to the compression direction ( F / S).
The pore diameter (μm) is a measured value of an average pore diameter based on ASTM (Designation: D4404-84), and can be specifically obtained using a mercury intrusion porosimeter.
The water retention rate (%) is the mass percentage that water occupies when it is hydrated to the saturated state, and measures the mass Mdry of the sponge in the dry state and the mass Mwet when hydrated to the saturated state. Mwet−Mdry) / Mdry × 100.

また、本発明によれば、金属の表面に塗膜を有する構造物を測定対象として、上述の電気化学測定用プローブを使用して、交流インピーダンスを測定することにより塗膜の劣化を評価することができる。
電気化学的測定の方法は特に限定されず、従来と同様に行うことができる。図3に示すように、測定対象20が鋼材21の表面に塗膜22を有する構造物である場合、図1のスポンジ13から供給される電解液14により塗膜22の表面が覆われる。鋼材21の金属が露出された部分に作用電極(図示せず)を接触させることにより、交流電源から作用電極とカウンター電極15の間で電流を流すことができる。
このとき、電解液14と鋼材21の間に挟まれた塗膜22の電気二重層により静電容量Cが生じる。また、塗膜22の剥離や割れなどの欠陥部24があると、欠陥部24を通じて電流が流れるには、電解液14のバルクの溶液抵抗Rや、欠陥部24における溶液抵抗Rが加わる。また、欠陥部24に錆などの腐食部25が形成されると、金属界面においても反応抵抗R及び電気二重層による静電容量Cが生じる。ただし、このようなRC並列回路においては、通電する電流が高周波電流であると、キャパシタを介した電荷移動が顕著になり、抵抗の寄与は低下する。
Further, according to the present invention, the deterioration of the coating film is evaluated by measuring the AC impedance using the above-described electrochemical measurement probe with the structure having the coating film on the metal surface as the measurement object. Can do.
The method of electrochemical measurement is not particularly limited, and can be performed in the same manner as in the past. As shown in FIG. 3, when the measuring object 20 is a structure having a coating film 22 on the surface of a steel material 21, the surface of the coating film 22 is covered with the electrolytic solution 14 supplied from the sponge 13 of FIG. By bringing a working electrode (not shown) into contact with a portion of the steel material 21 where the metal is exposed, a current can flow between the working electrode and the counter electrode 15 from an AC power supply.
At this time, an electrostatic capacity C 1 is generated by the electric double layer of the coating film 22 sandwiched between the electrolytic solution 14 and the steel material 21. In addition, if there is a defective portion 24 such as peeling or cracking of the coating film 22, in order for a current to flow through the defective portion 24, a bulk solution resistance R 0 of the electrolytic solution 14 or a solution resistance R 1 in the defective portion 24 is added. . Further, when the corroded portions 25, such as rust defect 24 is formed, it occurs the electrostatic capacitance C 2 by reaction resistance R 2 and the electric double layer even in metal interface. However, in such an RC parallel circuit, if the current to be supplied is a high-frequency current, charge transfer through the capacitor becomes significant, and the contribution of resistance decreases.

交流におけるインピーダンスZは、複素数で表現すると、直流回路の電気抵抗に相当する実部Z’(レジスタンスR)と、インダクタやキャパシタによって生じる虚部Z”(リアクタンスX)とにより、Z=Z’+jZ”=R+jXで表される。ここでjは虚数単位である。なお、複素インピーダンスZの逆数はアドミタンスYであり(Y=Z−1)、アドミタンスYの実部をコンダクタンスG(直流回路では電気抵抗の逆数)、アドミタンスYの虚部をサセプタンスBといい、Y=G+jBで表される。また、複素インピーダンスZを極形式で表現すると、Z=|Z|×exp(jθ)で表される。ここで、|Z|はZの絶対値、θは偏角である。交流インピーダンス測定法における測定パラメータとしては、Z’、Z”、|Z|、θ等が挙げられる。 The impedance Z in alternating current can be expressed as a complex number by a real part Z ′ (resistance R) corresponding to the electric resistance of the direct current circuit and an imaginary part Z ″ (reactance X) generated by an inductor or a capacitor, Z = Z ′ + jZ "= R + jX. Here, j is an imaginary unit. The reciprocal of complex impedance Z is admittance Y (Y = Z −1 ), the real part of admittance Y is referred to as conductance G (the reciprocal of electrical resistance in a DC circuit), and the imaginary part of admittance Y is referred to as susceptance B. = G + jB. Further, when the complex impedance Z is expressed in a polar form, it is expressed as Z = | Z | × exp (jθ). Here, | Z | is the absolute value of Z, and θ is the deflection angle. Examples of measurement parameters in the AC impedance measurement method include Z ′, Z ″, | Z |, θ, and the like.

測定装置としては、測定レンジが10Ω〜1000MΩであること、測定周波数が1Hz、10Hz、100Hz、1kHz、10kHz、100kHz等の複数から選択できること、交流電圧が10mV〜1000mVであること、DCバイアス電圧が−1.50〜0.00Vであること、積算回数が5周期(5Cycle)以上であることが好ましい。電源としては、電池や100V電源を使用可能であることが好ましい。測定装置の重量は、なるべく軽くすると携帯式(ポータブル)にすることも容易であり、1.5kg未満が好ましい。測定条件の設定は、汎用的な入力装置の矢印キーやテンキー等を用いるだけで済むようにすることが好ましい。装置を校正するため、例えば1kΩ等、所定の抵抗値を有する校正板を用いることが好ましい。
プローブで電解液を充填する容器(プローブ本体)の構成はシリンジでなくてもよいが、その場合にも、本発明では、容器の先端部に電解液を保持するスポンジを設け、スポンジの先端面が容器の先端部から突出していることが好ましい。
As the measuring device, the measurement range is 10Ω to 1000MΩ, the measurement frequency can be selected from a plurality of 1Hz, 10Hz, 100Hz, 1kHz, 10kHz, 100kHz, etc., the AC voltage is 10mV to 1000mV, the DC bias voltage is It is preferable that it is −1.50 to 0.00V, and the number of integrations is 5 cycles (5 cycles) or more. As the power source, it is preferable that a battery or a 100V power source can be used. If the weight of the measuring device is made as light as possible, it is easy to make it portable (portable), and is preferably less than 1.5 kg. It is preferable to set the measurement conditions only by using an arrow key or a numeric keypad of a general-purpose input device. In order to calibrate the apparatus, it is preferable to use a calibration plate having a predetermined resistance value such as 1 kΩ.
The configuration of the container (probe main body) filled with the electrolyte with the probe may not be a syringe, but in that case, in the present invention, a sponge for holding the electrolyte is provided at the tip of the container, and the tip of the sponge Preferably protrudes from the tip of the container.

以下、実施例をもって本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

(交流インピーダンスの測定例)
塗装鋼板(プレコートメタル)を測定対象として用意し、健全な塗膜を有する平坦な一般部、塗膜を素地までカッターナイフを用いて長さ1mmにわたってカットしたカット部、図2に示すように折り曲げた折り曲げ部の3種類について、交流インピーダンスを測定した。
図4に測定結果を示す。このときの測定パラメータは、インピーダンスの絶対値|Z|であり、参照電極の電位を0Vに調整して測定し、5周期(5Cycle)積算した平均値を用いた。電解液としては、1質量%のNaClと0.2質量%の界面活性剤を水に溶解して調製した水溶液を用いた。一般部と比較すると、折り曲げ部は塗膜の劣化によりインピーダンスが低く、カット部と同様な傾向を示すことを確認することができた。
(AC impedance measurement example)
Prepare a coated steel plate (pre-coated metal) as the object of measurement, flat general part with a healthy coating film, cut part of the coating film cut to a length of 1 mm using a cutter knife, bent as shown in FIG. The AC impedance was measured for three types of bent portions.
FIG. 4 shows the measurement results. The measurement parameter at this time is the absolute value | Z | of the impedance, and the average value obtained by adjusting the potential of the reference electrode to 0 V and measuring and integrating for 5 cycles (5 cycles) was used. As the electrolytic solution, an aqueous solution prepared by dissolving 1% by mass of NaCl and 0.2% by mass of a surfactant in water was used. Compared with the general part, it was confirmed that the bent part had a low impedance due to the deterioration of the coating film and showed the same tendency as the cut part.

(スポンジの選定)
スポンジとして、アイオン株式会社製のポリビニルアセタール(PVA)素材のスポンジの中から硬さや空隙の異なる数種類を試したところ、表1に示す結果が得られた。スポンジが硬すぎる(30%圧縮応力が高い)と変形しにくいが、柔らかすぎても過剰な変形による液モレが発生し、「変形」の評価が「×」となった。また、スポンジ13の空隙の大きさは、小さすぎると測定対象への電解液14の供給が不十分になりやすく、大きすぎると電解液14が漏れやすくなるため、「染み出し」の評価が「×」となった。また、電解液を含んだスポンジ自身が電気的な抵抗になると、計測データに誤差を生じるため、「電気抵抗」の評価を行ったところ、保水率1150%以上であればほぼ問題ないレベルであることが確認できている。表1の中では、No1−2やNo1−3のものが好ましいといえる。
(Selection of sponge)
When several types of sponges having different hardness and voids were tested from sponges made of polyvinyl acetal (PVA) manufactured by Aion Co., Ltd., the results shown in Table 1 were obtained. If the sponge is too hard (30% compressive stress is high), it is difficult to deform, but if it is too soft, liquid leakage due to excessive deformation occurs, and the evaluation of “deformation” is “x”. In addition, if the size of the gap of the sponge 13 is too small, the supply of the electrolyte solution 14 to the measurement object is likely to be insufficient, and if it is too large, the electrolyte solution 14 is liable to leak. × ”. In addition, when the sponge containing the electrolytic solution itself becomes an electrical resistance, an error occurs in the measurement data. Therefore, when the “electrical resistance” is evaluated, the water retention rate is 1150% or more, which is a level with no problem. It has been confirmed. In Table 1, it can be said that the thing of No1-2 or No1-3 is preferable.

Figure 2013185872
Figure 2013185872

「変形」の評価基準:目視でスポンジが測定対象に追従できないもの、または変形しすぎて液漏れを生じるものを「×」とした。
「染み出し」の評価基準:電解液の充填作業を作業性良く行えないものを「×」とした。
「電気抵抗」の評価基準:電解液を充分に含ませた状態で、スポンジ自身が電気的な抵抗になるものを「×」とした。
Evaluation criteria for “deformation”: “X” indicates that the sponge cannot visually follow the object to be measured, or that deforms too much and causes liquid leakage.
Evaluation criteria for “bleed out”: “X” indicates that the electrolyte filling work cannot be performed with good workability.
Evaluation criteria for “electric resistance”: “x” indicates that the sponge itself has electric resistance in a state where the electrolyte is sufficiently contained.

(水溶性高分子の濃度)
電解液としては、硫酸ナトリウム(NaSO)2質量%と表2の「水溶性高分子」に示す濃度の水溶性高分子を水に溶解して調製した水溶液を用いた。ここで用いた水溶性高分子は、市販のカルボキシメチルセルロース(CMC)である。なお、電解液には界面活性剤を添加していない。水溶性高分子の濃度を、0質量%(なし)、1質量%、3質量%、5質量%、10質量%の5通りとして、電解液の粘度の違いによるタレと塗膜クラックへの浸透性を調べたところ、表2に示す結果が得られた。粘度を高くすると電解液はタレないが、塗膜クラックへ電解液が浸透しにくくなることから、表2の中ではNo2−2やNo2−3のものが好ましいといえる。
(Concentration of water-soluble polymer)
As the electrolytic solution, an aqueous solution prepared by dissolving 2% by mass of sodium sulfate (Na 2 SO 4 ) and a water-soluble polymer having a concentration shown in “Water-soluble polymer” in Table 2 in water was used. The water-soluble polymer used here is commercially available carboxymethyl cellulose (CMC). In addition, surfactant is not added to electrolyte solution. The concentration of the water-soluble polymer is 0% by mass (none), 1% by mass, 3% by mass, 5% by mass, and 10% by mass. When the properties were examined, the results shown in Table 2 were obtained. When the viscosity is increased, the electrolytic solution does not sag, but the electrolytic solution is less likely to penetrate into the coating film cracks. Therefore, in Table 2, it can be said that those of No2-2 and No2-3 are preferable.

Figure 2013185872
Figure 2013185872

「タレ」の評価基準:電解液を含んだスポンジを測定対象に押し当てたときに、電解液が垂れ落ちないものを「○」、垂れ落ちたものを「×」とした。
「塗膜クラックへの浸透」の評価基準:電解液が塗膜クラックによく浸透したものを「○」、浸透がやや悪いものを「△」、浸透が悪いものを「×」とした。
Evaluation criteria for “sag”: When a sponge containing an electrolytic solution was pressed against an object to be measured, the case where the electrolytic solution did not sag was indicated as “◯”, and the case where the electrolyte sagged was indicated as “X”.
Evaluation criteria for “penetration into coating film crack”: “◯” indicates that the electrolyte solution penetrates well into the coating film crack, “Δ” indicates that the penetration is slightly poor, and “x” indicates that the penetration is poor.

(界面活性剤の濃度)
表3では、電解液として、硫酸ナトリウム(NaSO)2質量%と水溶性高分子(CMC)1質量%、さらに表3の「界面活性剤」に示す濃度の界面活性剤を添加した水溶液を用いた。表4では、電解液として、硫酸ナトリウム(NaSO)2質量%と水溶性高分子(CMC)3質量%、さらに表4の「界面活性剤」に示す濃度の界面活性剤を添加した水溶液を用いた。ここで用いた界面活性剤は、アニオン性界面活性剤(日油株式会社製のラピゾール(登録商標)A−80、ジアルキルスルホコハク酸ナトリウム)である。表3と表4は水溶性高分子の濃度が異なり、それぞれについて、界面活性剤の濃度が、0質量%(なし)、0.001質量%、0.01質量%、0.1質量%、0.2質量%の5通りに異なる電解液を調製して測定した。
(Concentration of surfactant)
In Table 3, 2% by weight of sodium sulfate (Na 2 SO 4 ) and 1% by weight of water-soluble polymer (CMC) were added as the electrolyte, and a surfactant having a concentration shown in “Surfactant” in Table 3 was added. An aqueous solution was used. In Table 4, 2% by weight of sodium sulfate (Na 2 SO 4 ), 3% by weight of water-soluble polymer (CMC), and a surfactant having a concentration shown in “Surfactant” in Table 4 were added as an electrolytic solution. An aqueous solution was used. The surfactant used here is an anionic surfactant (Lapisol (registered trademark) A-80 manufactured by NOF Corporation, sodium dialkylsulfosuccinate). Table 3 and Table 4 differ in the concentration of the water-soluble polymer, and for each, the surfactant concentration was 0% by mass (none), 0.001% by mass, 0.01% by mass, 0.1% by mass, Measurements were made by preparing five different electrolyte solutions of 0.2% by mass.

Figure 2013185872
Figure 2013185872

Figure 2013185872
Figure 2013185872

「塗膜クラックへの浸透」の評価基準:表2(水溶性高分子の濃度)と同じ。
「泡の巻き込み」の評価基準:電解液を調製した後、泡が発生しないか、又は速やかに消泡したものを「○」、泡が多く残りやすいものを「×」とした。
Evaluation criteria for “penetration into coating film crack”: Same as Table 2 (concentration of water-soluble polymer).
Evaluation criteria for “bubble entrainment”: “◯” indicates that bubbles are not generated or rapidly defoamed after the electrolytic solution is prepared, and “×” indicates that many bubbles are likely to remain.

表面張力を低くすれば、濡れ性が良くなり、塗膜クラックへ浸透しやすくなる。ただし、粘度が高い状態で、界面活性剤の添加量が多すぎると、泡が抜けにくくなり、電解液として扱いづらくなる。表3の中では、No3−2からNo3−5のものが、また、表4の中では、No4−2からNo4−5のものが好ましいといえる。   Lowering the surface tension improves wettability and facilitates penetration into coating film cracks. However, if the addition amount of the surfactant is too large in a state where the viscosity is high, it is difficult for bubbles to escape and it becomes difficult to handle as an electrolytic solution. In Table 3, it can be said that No. 3-2 to No. 3-5 are preferable, and in Table 4, No. 4-2 to No. 4-5 are preferable.

好ましい電解液の組成の一例としては、硫酸ナトリウム(NaSO)2.0質量%と水溶性高分子(CMC)1.6質量%、さらに界面活性剤0.04%を添加した水溶液が挙げられ、その粘度は100mPa・s、表面張力は26.2mN/mである。 As an example of a preferable composition of the electrolytic solution, an aqueous solution in which 2.0% by mass of sodium sulfate (Na 2 SO 4 ), 1.6% by mass of a water-soluble polymer (CMC), and 0.04% of a surfactant are further added. The viscosity is 100 mPa · s, and the surface tension is 26.2 mN / m.

1…プローブ、10…シリンジ、11…シリンダ、12…ピストン、13…スポンジ、14…電解液、15…カウンター電極、16…参照電極、20…測定対象、21…鋼材、22…塗膜、23…屈曲部、24…欠陥部、25…腐食部。 DESCRIPTION OF SYMBOLS 1 ... Probe, 10 ... Syringe, 11 ... Cylinder, 12 ... Piston, 13 ... Sponge, 14 ... Electrolyte, 15 ... Counter electrode, 16 ... Reference electrode, 20 ... Measurement object, 21 ... Steel material, 22 ... Coating film, 23 ... bent part, 24 ... defect part, 25 ... corroded part.

Claims (6)

電解液を充填したプローブの内部にカウンター電極と参照電極が挿入され、前記プローブが測定対象に接触する先端部には、前記電解液を保持するスポンジが設けられ、前記スポンジの側面が露出されていることを特徴とする電気化学測定用プローブ。   A counter electrode and a reference electrode are inserted into the probe filled with the electrolyte solution, and a sponge for holding the electrolyte solution is provided at the tip where the probe contacts the measurement object, and the side surface of the sponge is exposed. An electrochemical measurement probe characterized by comprising: 前記スポンジは、30%圧縮応力が3.0〜4.7kPa、気孔径が130〜200μm、保水率が1150〜1300%であることを特徴とする請求項1に記載の電気化学測定用プローブ。   2. The probe for electrochemical measurement according to claim 1, wherein the sponge has a 30% compressive stress of 3.0 to 4.7 kPa, a pore diameter of 130 to 200 μm, and a water retention of 1150 to 1300%. 前記電解液は、界面活性剤を含むことを特徴とする請求項1又は2に記載の電気化学測定用プローブ。   The electrochemical measurement probe according to claim 1, wherein the electrolytic solution contains a surfactant. 前記電解液は、水溶性高分子を含み、粘度が30〜1000mPa・sであることを特徴とする請求項1〜3のいずれか一項に記載の電気化学測定用プローブ。   The said electrolyte solution contains water-soluble polymer, and the viscosity is 30-1000 mPa * s, The probe for electrochemical measurements as described in any one of Claims 1-3 characterized by the above-mentioned. 前記測定対象が金属の表面に塗膜を有する構造物であり、請求項1〜4のいずれか一項に記載の電気化学測定用プローブを使用して、交流インピーダンスを測定することにより前記塗膜の劣化を評価することを特徴とする塗膜評価方法。   The said measuring object is a structure which has a coating film on the surface of a metal, The said coating film is measured by measuring alternating current impedance using the probe for electrochemical measurements as described in any one of Claims 1-4. A coating film evaluation method characterized by evaluating deterioration of the film. 前記測定対象の表面が凹部又は凸部を有し、前記凹部又は凸部に前記スポンジを押し当て変形させることにより、前記スポンジを前記構造物に密着させることを特徴とする請求項5に記載の塗膜評価方法。   The surface of the measurement object has a concave portion or a convex portion, and the sponge is brought into close contact with the structure by pressing and deforming the sponge against the concave portion or the convex portion. Coating film evaluation method.
JP2012049481A 2012-03-06 2012-03-06 Coating film evaluation method using electrochemical measurement probe Active JP5902002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012049481A JP5902002B2 (en) 2012-03-06 2012-03-06 Coating film evaluation method using electrochemical measurement probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012049481A JP5902002B2 (en) 2012-03-06 2012-03-06 Coating film evaluation method using electrochemical measurement probe

Publications (2)

Publication Number Publication Date
JP2013185872A true JP2013185872A (en) 2013-09-19
JP5902002B2 JP5902002B2 (en) 2016-04-13

Family

ID=49387433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012049481A Active JP5902002B2 (en) 2012-03-06 2012-03-06 Coating film evaluation method using electrochemical measurement probe

Country Status (1)

Country Link
JP (1) JP5902002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098207A (en) * 2018-12-14 2020-06-25 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 Wind turbin coating monitoring system and operational method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758324A (en) * 1985-10-03 1988-07-19 Colebrand Limited Apparatus for determining potential differences
JPH01296156A (en) * 1988-05-24 1989-11-29 Nippon Steel Corp Electrochemical measuring sensor and diagnosing method of corrosion resisting function of coating film
JPH0224551A (en) * 1988-07-13 1990-01-26 Toshiba Corp Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor
JPH02269946A (en) * 1989-04-12 1990-11-05 Nakagawa Boshoku Kogyo Kk Corrosion detection sensor for steel material in concrete structure and steel structure
JPH05126783A (en) * 1991-11-07 1993-05-21 Nakaboo Tec:Kk Standard electrode for potential measurement and portable sensor using it for corrosion probing
JPH07333188A (en) * 1994-06-10 1995-12-22 Nakabootec:Kk Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor
JP2003107025A (en) * 2001-09-28 2003-04-09 Nobuaki Otsuki Method for calculating corrosion rate of macrocell in concrete member
JP2011066386A (en) * 2009-08-20 2011-03-31 Aion Kk Cleaning sponge and cleaning method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4758324A (en) * 1985-10-03 1988-07-19 Colebrand Limited Apparatus for determining potential differences
JPH01296156A (en) * 1988-05-24 1989-11-29 Nippon Steel Corp Electrochemical measuring sensor and diagnosing method of corrosion resisting function of coating film
JPH0224551A (en) * 1988-07-13 1990-01-26 Toshiba Corp Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor
JPH02269946A (en) * 1989-04-12 1990-11-05 Nakagawa Boshoku Kogyo Kk Corrosion detection sensor for steel material in concrete structure and steel structure
JPH05126783A (en) * 1991-11-07 1993-05-21 Nakaboo Tec:Kk Standard electrode for potential measurement and portable sensor using it for corrosion probing
JPH07333188A (en) * 1994-06-10 1995-12-22 Nakabootec:Kk Polarization resistance measuring method of under-film metal and polarization resistance measuring sensor therefor
JP2003107025A (en) * 2001-09-28 2003-04-09 Nobuaki Otsuki Method for calculating corrosion rate of macrocell in concrete member
JP2011066386A (en) * 2009-08-20 2011-03-31 Aion Kk Cleaning sponge and cleaning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098207A (en) * 2018-12-14 2020-06-25 財團法人船舶▲曁▼▲海▼洋▲産▼▲業▼研發中心 Wind turbin coating monitoring system and operational method therefor

Also Published As

Publication number Publication date
JP5902002B2 (en) 2016-04-13

Similar Documents

Publication Publication Date Title
US20110018543A1 (en) Electrochemical cell for eis
Caldona et al. Surface electroanalytical approaches to organic polymeric coatings
Pan et al. Preparation and characterization of anticorrosion Ormosil sol–gel coatings for aluminum alloy
JP5902002B2 (en) Coating film evaluation method using electrochemical measurement probe
Liu et al. Corrosion resistance of polyurea polyaspartic ester coating in 3.5% NaCl by EIS
Nazarov et al. Scanning Kelvin probe investigation of corrosion under thick marine paint systems applied on carbon steel
Lin et al. Pack boronizing of P110 oil casing tube steel to combat wear and corrosion
RU2532592C1 (en) Method for determining integrity of polymer coating, and device for its implementation
JP6037868B2 (en) Electrochemical measurement probe and corrosion evaluation method
Song et al. Initial corrosion of pure zinc under NaCl electrolyte droplet using a Zn-Pt-Pt three-electrode system
CN106680180B (en) Device, method and application for monitoring migration quantity of chloride ions across concrete
Babutzka et al. Dynamic tafel factor adaption for the evaluation of instantaneous corrosion rates on zinc by using gel-type electrolytes
JP2021076510A (en) Test device and test method
Lee et al. Acceleration and quantitative evaluation of degradation for corrosion protective coatings on buried pipeline: Part I. Development of electrochemical test methods
Zhao et al. A Comparative Study of Neat Epoxy Coating and NanoZrO2/Epoxy Coating for Corrosion Protection on Carbon Steel
CN111024782B (en) Application method of organic coating binding force measuring device based on alternating current impedance analysis
Sofian et al. Corrosion resistance and mechanism of zinc rich paint in corrosive media
CN105445178B (en) One kind is for evaluating the active test fluid of surface of steel plate and method for fast measuring
Zahiri et al. Electrochemical approach to evaluate the wettability of rough surfaces
Dorman et al. Managing environmental impacts of time-cycle dependent structural integrity of high performance DoD alloys
Momber et al. EIS offset-cell measurements on epoxy-based coating systems over mechanically and thermally rounded cut edges
KR100971524B1 (en) Method and apparatus for measuring the quality of enameled metal plate
Zhang et al. Study on corrosion behavior of copper-clad steel for grounding grids
Büchler et al. A new locally resolving electrochemical sensor: application in research and development
Yantao et al. Corrosion behavior of sprayed zinc-aluminum (ZZA) coatings in simulated marine environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

R150 Certificate of patent or registration of utility model

Ref document number: 5902002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250