JP6963745B2 - Laves phase detection method for high Cr steel - Google Patents

Laves phase detection method for high Cr steel Download PDF

Info

Publication number
JP6963745B2
JP6963745B2 JP2017176782A JP2017176782A JP6963745B2 JP 6963745 B2 JP6963745 B2 JP 6963745B2 JP 2017176782 A JP2017176782 A JP 2017176782A JP 2017176782 A JP2017176782 A JP 2017176782A JP 6963745 B2 JP6963745 B2 JP 6963745B2
Authority
JP
Japan
Prior art keywords
steel
laves phase
anode
measured
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017176782A
Other languages
Japanese (ja)
Other versions
JP2019052916A (en
Inventor
康明 渡部
栄 和泉
満男 山下
哲雄 庄子
健 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017176782A priority Critical patent/JP6963745B2/en
Publication of JP2019052916A publication Critical patent/JP2019052916A/en
Application granted granted Critical
Publication of JP6963745B2 publication Critical patent/JP6963745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、電気化学的分極法による高Cr鋼のラーベス相検出方法に関する。本発明は、特には、ラーベス相の選択的な検出が可能な方法に関する。 The present invention relates to a method for detecting the Laves phase of high Cr steel by an electrochemical polarization method. The present invention specifically relates to a method capable of selective detection of the Laves phase.

火力発電設備に使用される蒸気タービンの部品は高温、高応力で長期間使用されるため、使用材料は経年劣化する。火力発電設備の電力を安定供給するためには蒸気タービンの破損を未然に防ぐ必要があり、そのためには蒸気タービン部品の劣化度を非破壊にて計測し、部品の残寿命を予測する余寿命診断技術が重要となる。これにより、蒸気タービン部品を適切なタイミングで補修、交換することが可能となる。 Since the parts of the steam turbine used in thermal power generation equipment are used for a long time at high temperature and high stress, the materials used deteriorate over time. In order to stably supply the electric power of the thermal power generation equipment, it is necessary to prevent the steam turbine from being damaged. For that purpose, the degree of deterioration of the steam turbine parts is measured non-destructively and the remaining life of the parts is predicted. Diagnostic technology is important. This makes it possible to repair and replace steam turbine parts at an appropriate timing.

蒸気タービン部品の劣化は主に疲労損傷、クリープ損傷、脆化が挙げられ、これらの材料劣化は材料中の添加元素による固溶強化、微細析出や転位組織により高強度化された耐熱合金鋼が高温、高応力下にて長期間使用されることで、固溶強化元素が金属間化合物あるいは炭素窒化物として析出、凝集粗大化すること、また、転位組織が回復することなどによる材質変化と密接に関係する。加熱時効により、材料中には、新たに金属間化合物であるラーベス相が析出し、また、炭窒化物は凝集粗大化する。特に脆化、クリープ損傷は粗大なラーベス相あるいは炭窒化物の凝集粗大箇所が損傷の起点となるため、ラーベス相、炭窒化物などの析出物量を計測することは、材料の劣化度を予測するのに有効である。 Deterioration of steam turbine parts mainly includes fatigue damage, creep damage, and brittleness, and these material deteriorations are caused by solid solution strengthening by additive elements in the material, and heat-resistant alloy steel with high strength due to fine precipitation and dislocation structure. When used for a long period of time under high temperature and high stress, the solid solution strengthening element precipitates as an intermetallic compound or carbon nitride and coagulates and coarsens, and the dislocation structure is restored, resulting in close contact with material changes. Related to. Due to heating aging, a new Laves phase, which is an intermetallic compound, is precipitated in the material, and the carbonitride is aggregated and coarsened. Especially for embrittlement and creep damage, the coarse Laves phase or the coagulation coarse part of the carbonitride is the starting point of the damage. Therefore, measuring the amount of precipitates such as the Laves phase and the carbonitride predicts the degree of deterioration of the material. It is effective for.

ラーベス相や炭窒化物の析出物量を非破壊的に計測する手法として電気化学的分極法が知られている(例えば、非特許文献1)。電気化学的分極法は被測定材に溶液を接触させ被測定材と電解液間に電位を掃引することでアノード電流分極波形を得、被測定材中に含まれる析出物の溶解量を計測する方法である。非特許文献1に記載の電気化学的法は、pH14の1mol/L水酸化カリウム水溶液を用いて腐食電位から電位掃引速度0.5mV/sec.にて電位を掃引し、アノード電流分極波形を計測する。計測したアノード電流分極波形において、−100〜400mV(vs.SCE)に観察されるアノードピーク電流密度Ipが観察され、このアノードピーク電流密度Ipとラーベス相量に相関があるとしている。 The electrochemical polarization method is known as a method for non-destructively measuring the amount of precipitates of the Laves phase and carbonitrides (for example, Non-Patent Document 1). In the electrochemical polarization method, the solution is brought into contact with the material under test and the potential is swept between the material under test and the electrolytic solution to obtain an anode current polarization waveform, and the amount of the precipitate contained in the material under test is measured. The method. The electrochemical method described in Non-Patent Document 1 uses a 1 mol / L potassium hydroxide aqueous solution having a pH of 14 to obtain a potential sweep rate of 0.5 mV / sec. Sweep the potential with and measure the anode current polarization waveform. In the measured anode current polarization waveform, the anode peak current density Ip observed at -100 to 400 mV (vs. SCE) is observed, and it is said that there is a correlation between this anode peak current density Ip and the Laves phase amount.

他に、酸性の電解液を用いた電気化学的分極法も知られている(例えば、特許文献1)。特許文献1に記載の電気化学的分極法は、pHの値が0より大きく5より小さい電解液を用いてアノード分極曲線におけるアノード電流密度の極大値を得ることにより、高クロム鋼のラーベス相のみが溶解して生じるパラメータを得ることを開示している。そして、この方法により、じん性の簡便な評価が可能であることを開示している。 In addition, an electrochemical polarization method using an acidic electrolyte is also known (for example, Patent Document 1). In the electrochemical polarization method described in Patent Document 1, only the Raves phase of high chromium steel is obtained by obtaining the maximum value of the anode current density in the anodic polarization curve using an electrolytic solution having a pH value greater than 0 and less than 5. Discloses that the parameters produced by dissolution are obtained. Then, it is disclosed that the toughness can be easily evaluated by this method.

特開2010-38553号公報Japanese Unexamined Patent Publication No. 2010-38553

J.Soc.Mat.Sci.,Japan,Vol.49,No.8,pp.919-926,Aug.2000J.Soc.Mat.Sci., Japan, Vol.49, No.8, pp.919-926, Aug.2000

非特許文献1に開示された手法では、−100〜400mVに観察されるアノードピーク電流密度はラーベス相の他、炭窒化物の溶解による電流値も含まれるため、ラーベス相のみを選択的に検出できているわけではない。一方、特許文献1の方法では、タングステン(W)を含むラーベス相を溶解させることができず、Wを含む高Cr鋼においては、検出できていないラーベス相が残存する問題があった。 In the method disclosed in Non-Patent Document 1, since the anode peak current density observed at -100 to 400 mV includes not only the Laves phase but also the current value due to the dissolution of the carbonitride, only the Laves phase is selectively detected. It's not done. On the other hand, in the method of Patent Document 1, the Laves phase containing tungsten (W) could not be dissolved, and there was a problem that the undetectable Laves phase remained in the high Cr steel containing W.

被測定材の脆化を精度よく予測するためには脆化因子であるラーベス相のみを選択的に検出する必要があり、被測定材にラーベス相、炭窒化物など複数の析出物が含まれる場合、ラーベス相と炭窒化物をそれぞれ別々に溶解することができる方法が求められる。 In order to accurately predict the brittleness of the material to be measured, it is necessary to selectively detect only the Laves phase, which is a brittle factor, and the material to be measured contains a plurality of precipitates such as the Laves phase and carbon nitride. In this case, a method capable of dissolving the Laves phase and the carbon nitride separately is required.

本発明者らは、非破壊的な分析方法である電気化学的分極法において、ラーベス相のみを選択的に検出する方法を模索した。そして、所定の条件において、ラーベス相のみを選択的に溶解させることができることを見出し、本発明を完成するに至った。すなわち、本発明は、一実施形態によれば、高Cr鋼のラーベス相検出方法であって、pHが14.3より大きい電解液を高Cr鋼からなる被測定材に接触させて、前記被測定材と電解液間の電位を低電位側から高電位側へ掃引することによりアノード電流分極波形を得る工程と、前記アノード電流分極波形に3つ以上のアノードピーク電流が存在する場合に、2次アノードピーク電流に基づき、ラーベス相を検出する工程とを含む。 The present inventors have sought a method for selectively detecting only the Laves phase in the electrochemical polarization method, which is a non-destructive analytical method. Then, they have found that only the Laves phase can be selectively dissolved under predetermined conditions, and have completed the present invention. That is, according to one embodiment, the present invention is a method for detecting a Raves phase of a high Cr steel, in which an electrolytic solution having a pH higher than 14.3 is brought into contact with a material to be measured made of the high Cr steel to be subjected to the above-mentioned anode. A step of obtaining an anodic current polarization waveform by sweeping the potential between the measuring material and the electrolytic solution from the low potential side to the high potential side, and when there are three or more anodic peak currents in the anodic current polarization waveform, 2 It includes a step of detecting the Raves phase based on the next anode peak current.

前記高Cr鋼のラーベス相検出方法において、前記電位の掃引速度が、100mV/min.以下であることが好ましい。 In the Laves phase detection method for high Cr steel, the sweep rate of the potential is 100 mV / min. The following is preferable.

前記高Cr鋼のラーベス相検出方法において、前記ラーベス相を検出する工程が、2次アノードピーク電流密度の極大値、または2次アノードピーク電流密度の積分値に基づき、ラーベス相析出量の指標値を得ることを含む。 In the Laves phase detection method for high Cr steel, the step of detecting the Laves phase is an index value of the Laves phase precipitation amount based on the maximum value of the secondary anode peak current density or the integrated value of the secondary anode peak current density. Including getting.

前記高Cr鋼のラーベス相検出方法において、前記高Cr鋼のCr含有量が8〜14重量%であることが好ましい。 In the Laves phase detection method for the high Cr steel, the Cr content of the high Cr steel is preferably 8 to 14% by weight.

前記高Cr鋼のラーベス相検出方法において、前記高Cr鋼が、鉄(Fe)、モリブデン(Mo)を含むことが好ましい。 In the Laves phase detection method for high Cr steel, it is preferable that the high Cr steel contains iron (Fe) and molybdenum (Mo).

前記高Cr鋼のラーベス相検出方法において、前記高Cr鋼が、鉄(Fe)、タングステン(W)、モリブデン(Mo)を含むことが好ましい。 In the Laves phase detection method for high Cr steel, it is preferable that the high Cr steel contains iron (Fe), tungsten (W), and molybdenum (Mo).

前記高Cr鋼のラーベス相検出方法において、前記高Cr鋼が、タービンの構成部材である。 In the Laves phase detection method for high Cr steel, the high Cr steel is a constituent member of the turbine.

本発明は、別の実施形態によれば、高Cr鋼のラーベス相析出量の経時変化を測定する方法であって、a)被測定材にpHが14.3より大きい電解液を接触させて、前記被測定材と電解液間の電位を低電位側から高電位側へ掃引することによりアノード電流分極波形を得る工程と、b)前記アノード電流分極波形基づき、3つ以上のアノードピーク電流が存在する場合に、2次アノードピーク電流密度の極大値、または2次アノードピーク電流密度の積分値を得る工程と、c)同一の被測定材について、経時的に前記工程a)及びb)を行うことにより、高Cr鋼のラーベス相析出量の経時変化を得る工程とを含む。
According to another embodiment, the present invention is a method for measuring a change over time in the amount of Raves phase precipitated in a high Cr steel. the obtaining a anode current polarization wave by sweeping the potential between the measured material electrolyte from the low potential side to the high potential side, b) based on the anode current polarization wave, three or more anodic peak current In the presence of, the step of obtaining the maximum value of the secondary anode peak current density or the integrated value of the secondary anode peak current density, and c) the same material to be measured, the steps a) and b) over time. This includes a step of obtaining a change over time in the amount of the Raves phase precipitated in the high Cr steel.

本発明に係る方法によれば、高Cr鋼の劣化に伴い析出する金属間化合物であるラーベス相を選択的に検出することが可能となり、また、ラーベス相析出量の指標値を得ることができる。これにより、蒸気タービンの各種部品について、実機材の劣化度を非破壊にて検査することが可能となる。 According to the method according to the present invention, it is possible to selectively detect the Laves phase, which is an intermetallic compound precipitated with the deterioration of high Cr steel, and to obtain an index value of the Laves phase precipitation amount. .. This makes it possible to non-destructively inspect the degree of deterioration of actual equipment for various parts of the steam turbine.

図1は、電気化学的分極法に用いる電気分極用セルの一例を概念的に示す図である。FIG. 1 is a diagram conceptually showing an example of an electropolarizing cell used in an electrochemical polarization method. 図2は、本発明に係る方法により得られるアノード電流分極波形の一例を概念的に示す図である。FIG. 2 is a diagram conceptually showing an example of an anode current polarization waveform obtained by the method according to the present invention. 図3は、2次アノードピーク電流密度の極大値または2次アノードピーク電流密度の積分値Qと、温度、時間の劣化パラメータとの相関関係を概念的に示すグラフである。FIG. 3 is a graph conceptually showing the correlation between the maximum value of the secondary anode peak current density or the integrated value Q of the secondary anode peak current density and the deterioration parameters of temperature and time. 図4は、実施例1により得られたアノード電流分極波形を示す図である。FIG. 4 is a diagram showing an anode current polarization waveform obtained in Example 1. 図5は、初期状態(a)、加熱時効後(b)の高Cr鋼試料表面を、それぞれ走査型電子顕微鏡の反射電子像で観察した写真である。FIG. 5 is a photograph of the surface of a high Cr steel sample in the initial state (a) and after heating aging (b) observed by a backscattered electron image of a scanning electron microscope, respectively. 図6は、高Cr鋼からなる被測定材に対し、pH12.9〜14.2の水酸化カリウム溶液を電解液として用い、0.2Vの定電位で保持する前(a)、及び後(b)の被測定材表面を、それぞれ走査型電子顕微鏡の反射電子像で観察した写真である。In FIG. 6, a potassium hydroxide solution having a pH of 12.9 to 14.2 is used as an electrolytic solution for a material to be measured made of high Cr steel, and is held at a constant potential of 0.2 V before (a) and after (a). b) is a photograph of the surface of the material to be measured observed by a backscattered electron image of a scanning electron microscope. 図7は、高Cr鋼からなる被測定材に対し、pH14.7の水酸化カリウム溶液を電解液として用い、腐食電位から−0.56Vまで掃引試験前(a)、及び後(b)の被測定材表面を、それぞれ走査型電子顕微鏡の反射電子像で観察した写真である。In FIG. 7, for the material to be measured made of high Cr steel, a potassium hydroxide solution having a pH of 14.7 was used as an electrolytic solution, and the sweep test from the corrosion potential to −0.56 V was performed before (a) and after (b). It is a photograph of the surface of the material to be measured observed by the reflected electron image of each scanning electron microscope. 図8は、実施例2により得られたアノード電流分極波形を示す図である。FIG. 8 is a diagram showing an anode current polarization waveform obtained in Example 2.

以下に、図面を参照して本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments described below.

[第1実施形態]
本発明は第1実施形態によれば、ラーベス相の検出方法に関する。ラーベス相の検出方法は、高Cr鋼からなる被測定物にpHが14.3より大きい電解液を接触させて、前記被測定物と電解液間の電位を低電位側から高電位側へ掃引することによりアノード電流分極波形を得る工程と、前記アノード電流分極波形に3つ以上のアノードピーク電流が存在する場合に、2次アノードピーク電流に基づき、ラーベス相を検出する工程とを含む。
[First Embodiment]
According to the first embodiment, the present invention relates to a method for detecting the Laves phase. The method for detecting the Raves phase is to bring an electrolytic solution having a pH higher than 14.3 into contact with an object to be measured made of high Cr steel, and sweep the potential between the object to be measured and the electrolytic solution from the low potential side to the high potential side. This includes a step of obtaining an anode current polarization waveform and a step of detecting a Raves phase based on the secondary anode peak current when three or more anode peak currents are present in the anode current polarization waveform.

実施形態において、被測定材である高Cr鋼は、Crを含む高耐熱性の鋼部材であれば特には限定されないが、好ましくは8〜14重量%のCrを含み、その他にFe、W、Mo等を含んでもよい。ある実施形態においては、被測定材は8〜14重量%のCrを含み、その他にFe、Moを主成分として含む高Cr鋼であってよい。別の実施形態においては、被測定材は8〜14重量%のCrを含み、その他にFe、W、Moを主成分として含む高Cr鋼であってよい。また、被測定材は高温や応力に曝される部材であってよく、火力発電所用の蒸気タービン、ガスタービンなどが挙げられるが、これらには限定されない。また、被測定材における測定部位は、特には限定されず、高Cr鋼からなる部材の所望の部位であってよい。例えば、蒸気タービンを評価対象とする場合には、高温、高圧に曝されやすく、脆化度合が高い部位とすることができ、シミュレーション計算などにより脆化度合が高いことが予測される部位であって良いが、これらには限定されない。本発明の方法によれば、後述する電気分極用セルを用いて、高Cr鋼からなる部材の所望の部位について、非破壊でラーベス相の検出を実施することができる。 In the embodiment, the high Cr steel as the material to be measured is not particularly limited as long as it is a highly heat-resistant steel member containing Cr, but preferably contains 8 to 14% by weight of Cr, and Fe, W, and others. It may contain Mo and the like. In a certain embodiment, the material to be measured may be a high Cr steel containing 8 to 14% by weight of Cr and also containing Fe and Mo as main components. In another embodiment, the material to be measured may be a high Cr steel containing 8 to 14% by weight of Cr and also containing Fe, W, and Mo as main components. Further, the material to be measured may be a member exposed to high temperature or stress, and examples thereof include, but are not limited to, steam turbines and gas turbines for thermal power plants. Further, the measurement portion of the material to be measured is not particularly limited, and may be a desired portion of a member made of high Cr steel. For example, when a steam turbine is evaluated, it can be a part that is easily exposed to high temperature and high pressure and has a high degree of embrittlement, and is a part that is predicted to have a high degree of embrittlement by simulation calculation or the like. However, it is not limited to these. According to the method of the present invention, the Laves phase can be detected nondestructively at a desired portion of a member made of high Cr steel by using an electric polarization cell described later.

アノード電流分極波形を得る工程は、電気化学的分極法を用いて行う。図1は電気化学的分極法に用いる電気分極用セルの一例を概念的に示す図である。電気分極用セル1は大別して、上部の基準電極部と下部の電解液部とに区別され、例えばアクリル樹脂製の仕切り板2にて分かれている。セルはアクリル等の樹脂製であってよい。電解液部は内部の各部品を装着しやすい様に分割しており、分割部は接着、もしくはネジ構造により、ゴム製リング3で密着している。セル上部の基準電極部の開口部はゴム栓4で封じ、基準電極部には飽和塩化カリウム溶液5が充填され、ゴム栓を貫通するように基準電極6がセル中央部に設置される。電解液部には、電解液7がゴム栓とアクリル樹脂製の仕切り板を貫通するガラス管11から注入される。セルの底部は中央に貫通孔8をあけたゴム板9によりセルの底面を形成し、電解液部とは反対側のゴム板9面に被測定材10をセッティングする。これにより、ゴム板中央の貫通孔に露出した被測定材10表面のみ電解液と接触するようになる。対極14はゴム栓とアクリル板を貫通し、電解液に浸漬する様に取り付けられおり、被測定材に接続した導線13と対極に接続した導線15が定電位発生装置16に接続されている。測定に際しては、ゴム栓と仕切り板を貫通するガラス管12から窒素ガスを流入し、電位が一定になったら窒素ガスを止め、ガラス管11、12をゴム栓で封じ、被測定材と対極との間に電位を印加する。電位を印加すると、セル内に配置した塩橋17と被測定材との間に、被測定材表面の電気化学反応によるアノード電流が発生する。このアノード電流は基準電極6を介して定電位発生装置16により測定することができる。得られるアノード電流は、被測定材の表面性状や電気化学反応によって変化する。このアノード電流を、記録装置18を用いて記録することにより、アノード電流分極波形を得ることができる。このような電気分極用セル1を用いることで、被測定材に、例えば、1cm程度の面が存在すれば、本実施形態による測定が可能となる。なお、上述の電気分極用セルの構成やその材料は一例であり、同様の測定結果を得られる代替的な構成や材料からなる装置を用いることもできる。 The step of obtaining the anode current polarization waveform is performed using an electrochemical polarization method. FIG. 1 is a diagram conceptually showing an example of an electropolarizing cell used in an electrochemical polarization method. The electric polarization cell 1 is roughly divided into an upper reference electrode portion and a lower electrolyte portion, and is separated by, for example, an acrylic resin partition plate 2. The cell may be made of a resin such as acrylic. The electrolytic solution portion is divided so that each internal component can be easily attached, and the divided portion is adhered by a rubber ring 3 by an adhesive or a screw structure. The opening of the reference electrode portion at the upper part of the cell is sealed with a rubber stopper 4, the reference electrode portion is filled with the saturated potassium chloride solution 5, and the reference electrode 6 is installed at the center portion of the cell so as to penetrate the rubber stopper. The electrolytic solution 7 is injected into the electrolytic solution portion from a glass tube 11 penetrating the rubber stopper and the partition plate made of acrylic resin. The bottom of the cell is formed by a rubber plate 9 having a through hole 8 in the center, and the material 10 to be measured is set on the rubber plate 9 surface opposite to the electrolytic solution portion. As a result, only the surface of the material to be measured 10 exposed in the through hole in the center of the rubber plate comes into contact with the electrolytic solution. The counter electrode 14 is attached so as to penetrate the rubber stopper and the acrylic plate and be immersed in the electrolytic solution, and the conductor wire 13 connected to the material to be measured and the conductor wire 15 connected to the counter electrode are connected to the constant potential generator 16. At the time of measurement, nitrogen gas flows in from the glass tube 12 penetrating the rubber stopper and the partition plate, the nitrogen gas is stopped when the potential becomes constant, the glass tubes 11 and 12 are sealed with the rubber stopper, and the material to be measured and the counter electrode are used. Apply a potential between. When an electric potential is applied, an anode current is generated between the salt bridge 17 arranged in the cell and the material to be measured due to an electrochemical reaction on the surface of the material to be measured. This anode current can be measured by the constant potential generator 16 via the reference electrode 6. The obtained anode current changes depending on the surface properties of the material to be measured and the electrochemical reaction. By recording this anode current using the recording device 18, an anode current polarization waveform can be obtained. By using such an electric polarization cell 1, if the material to be measured has a surface of, for example, about 1 cm 2 , the measurement according to the present embodiment becomes possible. The above-mentioned configuration of the electric polarization cell and its material are examples, and an apparatus composed of an alternative configuration or material that can obtain similar measurement results can also be used.

本実施形態においては、電気分極用セルに充填して用いる電解液として、pHが14.3より大きい溶液を用いる。電解液の好ましいpHは、概ね14.3より大きく、15.2以下程度であり、例えば、14.6以上であって15.0以下程度であってもよい。pHが14.3より大きい水溶液であれば、例えば、水酸化カリウム(KOH)溶液であってもよく、その他のアルカリ溶液であってもよい。pHが14.3より大きい電解液を用いることにより、被測定材の電解液接触面にラーベス相が存在する場合、被測定材と電解液間に所定の電位を印加することで、ラーベス相を選択的に溶解させることができる。また、電解液の温度は室温程度であればよく、例えば、約20〜25℃とすることができる。 In the present embodiment, a solution having a pH greater than 14.3 is used as the electrolytic solution to be used by filling the electric polarization cell. The preferable pH of the electrolytic solution is generally larger than 14.3 and about 15.2 or less, and may be, for example, 14.6 or more and about 15.0 or less. As long as the aqueous solution has a pH higher than 14.3, it may be, for example, a potassium hydroxide (KOH) solution or another alkaline solution. When a Laves phase is present on the electrolytic solution contact surface of the material to be measured by using an electrolytic solution having a pH higher than 14.3, a predetermined potential is applied between the material to be measured and the electrolytic solution to obtain a Laves phase. It can be selectively dissolved. The temperature of the electrolytic solution may be about room temperature, and can be, for example, about 20 to 25 ° C.

アノード電流分極波形を得る工程においては、被測定材と電解液間の電位を低電位側から高電位側へ掃引することによりアノード電流分極波形を得る。印加する電位は、腐食電位である約−1.2〜−1.0Vから、約0.2〜0.4Vまで掃引することが好ましいが、被測定材の組成により開始電位及び掃引を終了する電位を適宜変更する場合がある。また、電位の掃引速度は100mV/min.以下であることが好ましく、概ね5〜50mV/min.程度であることが好ましい。ラーベス相の溶解に対応するピークを、他の析出物の溶解に対応するピークと十分に分離して得るためである。 In the step of obtaining the anodic current polarization waveform, the anodic current polarization waveform is obtained by sweeping the potential between the material to be measured and the electrolytic solution from the low potential side to the high potential side. The applied potential is preferably swept from the corrosion potential of about -1.2 to -1.0 V to about 0.2 to 0.4 V, but the starting potential and the sweep are terminated depending on the composition of the material to be measured. The potential may be changed as appropriate. The potential sweep rate is 100 mV / min. It is preferably the following, and is approximately 5 to 50 mV / min. It is preferably about. This is because the peak corresponding to the dissolution of the Laves phase is sufficiently separated from the peak corresponding to the dissolution of other precipitates.

図2は、上述の装置及び方法を用いて得られる、被測定材のアノード電流分極波形の概念図である。図2の横軸は電位、縦軸は電流密度を示す。図2に示す波形には、低電位側から順に、1次アノードピークIp1、2次アノードピークIp2、3次アノードピークIp3の3つのアノードピークが存在する。1次アノードピークは金属表面の活性化によるアノード電流、2次アノードピークはラーベス相溶解によるアノード電流、3次アノードピークは炭窒化物によるアノード電流に由来する。本明細書において、一回の掃引で得られる1以上のピークのそれぞれを「n次アノードピーク(nは整数)」と指称し、低電位側から高電位側に向けて電位を掃引した際に、n番目に出現するピークをいうものとする。 FIG. 2 is a conceptual diagram of the anode current polarization waveform of the material to be measured, which is obtained by using the above-mentioned device and method. The horizontal axis of FIG. 2 shows the potential, and the vertical axis shows the current density. In the waveform shown in FIG. 2, there are three anode peaks, that is, the primary anode peak Ip1, the secondary anode peak Ip2, and the tertiary anode peak Ip3 in order from the low potential side. The primary anode peak is derived from the anode current due to activation of the metal surface, the secondary anode peak is derived from the anode current due to Raves phase dissolution, and the tertiary anode peak is derived from the anode current due to carbon nitride. In the present specification, each of one or more peaks obtained by one sweep is referred to as "nth-order anode peak (n is an integer)", and when the potential is swept from the low potential side to the high potential side. , The nth peak to appear.

被測定材にラーベス相が存在する場合には、主として3つのアノードピークが出現し、このうち、2次アノードピークIp2がラーベス相の溶解に相当する。2次アノードピークIp2は、被測定材の組成や測定条件にもよるが、例えば、−0.8〜−0.4Vの電位に観察される。一方、1次アノードピークIp1は、概ね−1.1〜−0.9Vに観察される。1次アノードピークIp1は識別しにくい場合もあるが、縦軸の電流密度を対数表示とすると、ピークが顕著に表れ、ピークの存在を確認することができる。3次アノードピークIp3は、被測定材の組成にもよるが、概ね−0.3〜0.45Vの電位に観察される。なお、1次アノードピークIp1、2次アノードピークIp2、3次アノードピークIp3が出現する電位については、ラーベス相、炭窒化物の存在が予め他の分析方法等により確認されている同じ組成の被測定材について、電解液の組成(pH)、掃引速度を同じ条件としてアノード電流分極波形を得る予備実験を行うことで確認することができる。 When the Laves phase is present in the material to be measured, three anode peaks mainly appear, and the secondary anode peak Ip2 corresponds to the dissolution of the Laves phase. The secondary anode peak Ip2 is observed at a potential of -0.8 to -0.4 V, for example, depending on the composition of the material to be measured and the measurement conditions. On the other hand, the primary anode peak Ip1 is generally observed at 1-1 to −0.9 V. The primary anode peak Ip1 may be difficult to identify, but when the current density on the vertical axis is displayed in logarithm, the peak appears prominently, and the existence of the peak can be confirmed. The tertiary anode peak Ip3 is observed at a potential of approximately −0.3 to 0.45 V, although it depends on the composition of the material to be measured. Regarding the potential at which the primary anode peak Ip1, the secondary anode peak Ip2, and the tertiary anode peak Ip3 appear, the Laves phase and the presence of carbon nitride have been confirmed in advance by other analytical methods, etc. The measurement material can be confirmed by conducting a preliminary experiment to obtain an anode current polarization waveform under the same conditions of the composition (pH) of the electrolytic solution and the sweep rate.

ラーベス相の析出量は、2次アノードピーク電流密度の極大値Ip2max、または2次アノードピーク電流密度の積分値Qと相関する。2次アノードピーク電流密度の積分値Qは、アノード電流分極波形で、2次アノードピークに対してベースラインLを引き、ベースラインとピークで囲まれる部分の面積(図2中の斜線部)で表すことができる。したがって、Ip2max値、またはQ値は、ラーベス相析出量の指標値とすることができる。 The amount of Laves phase precipitation correlates with the maximum value Ip2 max of the secondary anode peak current density or the integrated value Q of the secondary anode peak current density. The integrated value Q of the secondary anode peak current density is the area of the portion surrounded by the baseline and the peak (hatched portion in FIG. 2) obtained by drawing the baseline L with respect to the secondary anode peak in the anode current polarization waveform. Can be represented. Therefore, the Ip2 max value or the Q value can be used as an index value of the Laves phase precipitation amount.

このようにして、定量可能な指標値を得ることで、例えば、予め別の方法でラーベス相の析出量が定量されている被測定材について、Ip2max値またはQ値と、ラーベス相の析出量との相関関係を求めることで、Ip2maxまたはQ値の実測値から、ラーベス相を定量することができる。さらには、ラーベス相の析出量は、高Cr鋼の劣化と大きな相関関係があることから、温度、時間の劣化パラメータと、Ip2max値、またはQ値との相関関係式を得ることもできる。図3は、このような相関関係を概念的に示すものである。温度、時間の劣化パラメータとしては、例えば、所定温度における時効加熱時間、あるいは温度、時間から成るラーソン・ミラーパラメータ等が挙げられるが、これらには限定されない。 By obtaining a quantifiable index value in this way, for example, for a material to be measured in which the amount of Laves phase precipitation is quantified by another method in advance, the Ip2 max value or Q value and the amount of Laves phase precipitation are obtained. The Laves phase can be quantified from the measured values of Ip2 max or Q value by obtaining the correlation with. Furthermore, since the amount of Laves phase precipitation has a large correlation with the deterioration of high Cr steel, it is possible to obtain a correlation equation between the deterioration parameters of temperature and time and the Ip2 max value or the Q value. FIG. 3 conceptually shows such a correlation. Examples of the deterioration parameter of temperature and time include, but are not limited to, aging heating time at a predetermined temperature, Larson mirror parameter consisting of temperature and time, and the like.

なお、図2に示す波形は、一例であって、ラーベス相あるいは他の炭窒化物の析出量により、複数のピークの大きさや形状、並びに相対的な大きさが異なる場合がある。あるいは、3を超えるピークが確認される場合もある。また、図示はしないが、pHが14.3未満の電解液を用いた場合には、図2の2次ピークに相当するピークが存在せず、概ね−1.1〜−0.9Vと、概ね−0.3〜0.3Vの電位にピークが現れる。前者は金属表面の活性化によるアノード電流、後者は炭窒化物によるアノード電流に由来する。 The waveform shown in FIG. 2 is an example, and the size and shape of a plurality of peaks and their relative sizes may differ depending on the amount of precipitation of the Laves phase or other carbonitrides. Alternatively, a peak exceeding 3 may be confirmed. Although not shown, when an electrolytic solution having a pH of less than 14.3 was used, there was no peak corresponding to the secondary peak in FIG. 2, and the pH was approximately 1.1 to −0.9 V. A peak appears at a potential of approximately -0.3 to 0.3 V. The former is derived from the anodic current due to activation of the metal surface, and the latter is derived from the anodic current due to carbonitride.

本実施形態による方法によれば、所定の条件でアノード電流分極波形を得る工程により、波形(ピークの数及び位置)に基づいてラーベス相の有無を判断することができる。また、アノード電流分極波形に基づいて、2次アノードピーク電流密度の極大値または2次アノードピーク電流密度の積分値といった定量可能な指標値を得ることができる。これらの指標値は、従来困難であったラーベス相のみの析出物量を反映するものであり、高Cr鋼の劣化や寿命予測において非常に有用となる。 According to the method according to the present embodiment, the presence or absence of the Laves phase can be determined based on the waveform (number and position of peaks) by the step of obtaining the anode current polarization waveform under predetermined conditions. Further, based on the anode current polarization waveform, a quantifiable index value such as a maximum value of the secondary anode peak current density or an integrated value of the secondary anode peak current density can be obtained. These index values reflect the amount of precipitates only in the Laves phase, which has been difficult in the past, and are very useful in predicting the deterioration and life of high Cr steel.

[第2実施形態]
本発明は第2実施形態によれば、高Cr鋼のラーベス相析出量の経時変化を測定する方法に関する。経時変化を測定する方法は、
a)被測定材にpHが14.3より大きい電解液を接触させて、前記被測定材と電解液間の電位を低電位側から高電位側へ掃引することによりアノード電流分極波形を得る工程と、
b)前記アノード電流分極波形基づき、3つ以上のアノードピーク電流が存在する場合に、2次アノードピーク電流密度の極大値、または2次アノードピーク電流密度の積分値を得る工程と、
c)同一の被測定材について、経時的に前記工程a)及びb)行うことにより、高Cr鋼のラーベス相析出量の経時変化を得る工程と
を含む。
[Second Embodiment]
According to the second embodiment, the present invention relates to a method for measuring a change over time in the amount of Laves phase precipitation of high Cr steel. The method of measuring the change over time is
a) A step of bringing an electrolytic solution having a pH higher than 14.3 into contact with the material to be measured and sweeping the potential between the material to be measured and the electrolytic solution from the low potential side to the high potential side to obtain an anode current polarization waveform. When,
Based on b) the anode current polarization wave, and obtaining when three or more anodic peak current is present, the maximum value of the secondary anodic peak current density, or the integrated value of the secondary anodic peak current densities,
c) Includes a step of obtaining a change over time in the amount of Laves phase precipitation of high Cr steel by performing the steps a) and b) for the same material to be measured over time.

本実施形態において、工程a)及びb)は、第1実施形態において詳述した態様と同様であってよく、ここでは説明を省略する。本実施形態においては、工程c)を実施することで、例えば、ラーベス相の析出状態を比較することができ、経時的な変化を得ることが可能となる。 In the present embodiment, steps a) and b) may be the same as those described in detail in the first embodiment, and description thereof will be omitted here. In the present embodiment, by carrying out step c), for example, the precipitation state of the Laves phase can be compared, and a change with time can be obtained.

以下に、本発明を、実施例を参照してより詳細に説明する。しかし、以下の実施例は本発明を限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention.

[実施例1.析出物の検出]
電気化学的分極法による高Cr鋼のラーベス相の検出を行った。本実施例では、蒸気タービン部品に使用される、10%のCrを含み、その他に主成分としてFe、W、Moを含む高Cr鋼であって、ラーベス相及び炭窒化物の析出が確認されている試料を被測定材として用いた。アノード電流分極波形を得るための装置としては、図1よりも簡易な装置を用いた。具体的には、図1における基準電極6、電解液7、被測定材10の小片、ガラス管11、導線15、定電位発生装置16、塩橋17、記録計18と温度計で構成された簡易装置を用いた。簡易装置を用いても、同様の分極波形が得られることは確認されている。電解液には、0.086,0.86,1.72,4.25mol/L(pH12.9、13.9、14.2、14.6)の水酸化カリウム溶液を用い、電解液の温度は25℃で、腐食電位(−1.1V付近)から高電位側に、掃引速度10mV/minにて電位を掃引した。得られたアノード電流分極波形を図4に示す。
[Example 1. Detection of precipitates]
The Laves phase of high Cr steel was detected by the electrochemical polarization method. In this embodiment, a high Cr steel containing 10% Cr and other main components Fe, W, and Mo used for steam turbine parts, and the precipitation of the Laves phase and carbon nitride was confirmed. The sample used was used as the material to be measured. As a device for obtaining the anode current polarization waveform, a device simpler than that in FIG. 1 was used. Specifically, it was composed of a reference electrode 6 in FIG. 1, an electrolytic solution 7, a small piece of the material to be measured 10, a glass tube 11, a lead wire 15, a constant potential generator 16, a salt bridge 17, a recorder 18, and a thermometer. A simple device was used. It has been confirmed that a similar polarization waveform can be obtained by using a simple device. As the electrolytic solution, a potassium hydroxide solution of 0.086, 0.86, 1.72, 4.25 mol / L (pH 12.9, 13.9, 14.2, 14.6) was used as the electrolytic solution. The temperature was 25 ° C., and the potential was swept from the corrosion potential (around −1.1 V) to the high potential side at a sweep speed of 10 mV / min. The obtained anode current polarization waveform is shown in FIG.

本実施例の予備実験として、実施例1の被測定材と同じ組成をもつ高Cr鋼について、ラーベス相が析出していない初期状態の試料と、630℃で15000時間の加熱時効後の試料を観察した。図5(a)は初期状態の試料表面を、図5(b)は加熱時効後の試料表面を、それぞれ走査型電子顕微鏡の反射電子像で観察した写真である。図5(a)と図5(b)を比較すると、加熱時効後の試料には、初期状態の試料には存在しなかった白色粒状物21がみられ、そのほかに灰色粒状物22がみられる。白色粒状物21について、元素分析を行ったところ、Crが約13.9%、Feが約60.9%、Moが14.6%、Wが約8.9%であり(単位はいずれもAt%)、白色析出物21がラーベス相であることが推定された。 As a preliminary experiment of this example, for a high Cr steel having the same composition as the material to be measured in Example 1, a sample in an initial state in which the Laves phase is not precipitated and a sample after heating at 630 ° C. for 15,000 hours are used. Observed. FIG. 5A is a photograph of the surface of the sample in the initial state, and FIG. 5B is a photograph of the surface of the sample after heating and aging, which are observed by a backscattered electron image of a scanning electron microscope. Comparing FIG. 5 (a) and FIG. 5 (b), in the sample after heating aging, white granules 21 which were not present in the sample in the initial state are observed, and gray granules 22 are also observed. .. Elemental analysis of the white granules 21 revealed that Cr was about 13.9%, Fe was about 60.9%, Mo was 14.6%, and W was about 8.9% (all units were). At%), it was estimated that the white precipitate 21 was in the Laves phase.

図4を参照すると、pH12.9〜14.2である0.086〜1.72mol/L水酸化カリウム溶液を電解液として用いたアノード電流分極波形では、−1.1〜−0.9V(vs.Ag/AgCl)に1次アノードピーク電流密度Ip1、−0.1〜0.45V(vs.Ag/AgCl)に3次アノードピーク電流密度Ip3が観察されるのみであった。図6(a)は、電位印加前の被測定材の表面を走査型電子顕微鏡の反射電子像で観察した写真である。図6(b)は、被測定材に電解液を接触させ、0.2V(vs.Ag/AgCl)の定電位で所定時間保持した後、電解液を接触させた表面を走査型電子顕微鏡の反射電子像で観察した写真である。図6(a)にみられる白色粒状物21は、図5(b)の白色粒状物とほぼ同じ組成であることが元素分析により確認された。したがって、白色粒状物21はラーベス相であると推定される。図6(b)では白色粒状物21が残存しており、図6(a)にはほとんど存在しなかった黒色の溶解痕23がみられた。このことから、pH12.9〜14.2の電解液を用いたときに−0.1〜0.45V(vs.Ag/AgCl)に得られる3次アノードピーク電流密度Ip3は主に炭窒化物の溶解によるピーク電流密度と考えられる。 Referring to FIG. 4, in the anodic current polarization waveform using a 0.086 to 1.72 mol / L potassium hydroxide solution having a pH of 12.9 to 14.2 as the electrolytic solution, 1-1 to −0.9 V ( Only the primary anode peak current density Ip1 was observed at vs. Ag / AgCl) and the tertiary anode peak current density Ip3 was observed at −0.1 to 0.45 V (vs. Ag / AgCl). FIG. 6A is a photograph of the surface of the material to be measured before applying the potential, which is observed by a reflected electron image of a scanning electron microscope. In FIG. 6B, the electrolytic solution is brought into contact with the material to be measured, held at a constant potential of 0.2 V (vs. Ag / AgCl) for a predetermined time, and then the surface of the contacted electrolytic solution is subjected to a scanning electron microscope. It is a photograph observed by a backscattered electron image. It was confirmed by elemental analysis that the white granules 21 seen in FIG. 6 (a) had substantially the same composition as the white granules in FIG. 5 (b). Therefore, the white granules 21 are presumed to be in the Laves phase. In FIG. 6 (b), the white granules 21 remained, and in FIG. 6 (a), black dissolution marks 23 which were hardly present were observed. From this, the tertiary anode peak current density Ip3 obtained at −0.1 to 0.45 V (vs. Ag / AgCl) when an electrolytic solution having a pH of 12.9 to 14.2 is used is mainly a carbonitride. It is considered to be the peak current density due to the dissolution of.

pH14.6である4.25mol/L水酸化カリウム水溶液を電解液として用いたアノード電流分極波形では、−1.1〜−0.9V(vs.Ag/AgCl)に1次アノードピーク電流密度Ip1、−0.3〜0.3V(vs.Ag/AgCl)に3次アノードピーク電流密度が観察された他、−0.8〜−0.4V(vs.Ag/AgCl)に2次アノードピーク電流密度Ip2が観察された。図7(a)は、電位掃引前の被測定材の表面を走査型電子顕微鏡の反射電子像で観察した写真である。図7(b)は、pH14.6である5mol/L水酸化カリウム溶液を電解液として用い、腐食電位から−0.56V(vs.Ag/AgCl)まで掃引試験した後、電解液を接触させた表面を走査型電子顕微鏡の反射電子像で観察した写真である。図7(a)にみられる白色粒状物21は、図5(b)の白色粒状物とほぼ同じ組成であることが元素分析により確認された。したがって、白色粒状物21はラーベス相であると推定される。図7(b)では白色粒状物21がみられず、白色粒状物が存在した箇所に溶解痕23がみられる。このことから、pH14.6である4.25mol/L水酸化カリウム溶液を電解液として用いたアノード電流分極波形において、−0.8〜−0.4V(vs.Ag/AgCl)に観察される2次アノードピーク電流密度Ip2はラーベス相をほぼ溶解したピーク電流密度であると考えられる。 In the anode current polarization waveform using a 4.25 mol / L potassium hydroxide aqueous solution having a pH of 14.6 as an electrolytic solution, the primary anode peak current density Ip1 was 1-1 to −0.9 V (vs. Ag / AgCl). , A tertiary anode peak current density was observed at -0.3 to 0.3 V (vs. Ag / AgCl), and a secondary anode peak at -0.8 to -0.4 V (vs. Ag / AgCl). The current density Ip2 was observed. FIG. 7A is a photograph of the surface of the material to be measured before the potential sweep, which is observed by a reflected electron image of a scanning electron microscope. In FIG. 7 (b), a 5 mol / L potassium hydroxide solution having a pH of 14.6 was used as the electrolytic solution, and after a sweep test from the corrosion potential to −0.56 V (vs. Ag / AgCl), the electrolytic solution was brought into contact with the electrolytic solution. It is a photograph which observed the surface with the reflected electron image of the scanning electron microscope. It was confirmed by elemental analysis that the white granules 21 seen in FIG. 7 (a) had substantially the same composition as the white granules in FIG. 5 (b). Therefore, the white granules 21 are presumed to be in the Laves phase. In FIG. 7B, the white granules 21 are not observed, and the dissolution marks 23 are observed at the locations where the white particles were present. From this, it is observed at −0.8 to −0.4 V (vs. Ag / AgCl) in the anodic current polarization waveform using a 4.25 mol / L potassium hydroxide solution having a pH of 14.6 as the electrolytic solution. The secondary anode peak current density Ip2 is considered to be the peak current density in which the Raves phase is almost dissolved.

上記実験に加えて、pH14.3、14.4、14.5及びpH14.7の水酸化カリウム水溶液を電解液として用いた以外は上記と同じ条件でアノード電流分極波形を得た。その結果、pH14.4、14.5及びpH14.7の条件では、−0.8〜−0.4V(vs.Ag/AgCl)付近に2次アノードピーク電流密度が観察された。一方で、pH14.3では2次アノードピークは観察されなかった(波形は図示せず)。特に、pH14.7では、図4におけるpH14.6の条件で得た場合と同程度の大きさの2次アノードピークを持つ波形が得られた。測定したpH14.4〜pH14.7の範囲では、2次アノードピーク電流密度極大値、2次アノードピーク電流密度の積分値とも、pHの増大とともに増加する傾向にあった。 In addition to the above experiment, an anodic current polarization waveform was obtained under the same conditions as above except that potassium hydroxide aqueous solutions having pH 14.3, 14.4, 14.5 and pH 14.7 were used as the electrolytic solution. As a result, under the conditions of pH 14.4, 14.5 and pH 14.7, the secondary anode peak current density was observed in the vicinity of −0.8 to −0.4 V (vs. Ag / AgCl). On the other hand, no secondary anode peak was observed at pH 14.3 (waveform not shown). In particular, at pH 14.7, a waveform having a secondary anode peak having a magnitude similar to that obtained under the condition of pH 14.6 in FIG. 4 was obtained. In the measured pH range of 14.4 to 14.7, both the maximum value of the secondary anode peak current density and the integrated value of the secondary anode peak current density tended to increase as the pH increased.

[実施例2.人工劣化材における析出物の経時変化検出]
加熱時効により作製した人工劣化材について、本発明の第2実施形態にしたがって、析出物を検出した。人工劣化材としては、実施例1と同じ組成の高Cr鋼を、630℃の温度にて、ぞれぞれ、1400時間、2800時間、5600時間、10000時間、15000時間、及び20000時間にわたって加熱時効した計6条件の加熱時効試料及び加熱時効処理時間が0時間の初期材を用いた。加熱時効処理温度は、例えば610℃〜650℃である。図8中、”As quenched”で表した試料は、受け入れまま材(初期材)に、再焼入れ処理を施した試料である。焼入れ処理温度は、加熱時効処理温度より高い温度である。アノード電流分極波形を得るための装置としては、実施例1と同じ装置を用いた。電解液には、pH14.6の水酸化カリウムを用いた。電位を初期状態(−1.2〜−1.0V付近)から0.4Vまで、10mV/min.の一定速度で掃引し、得られた電気分極波形を記録計に出力させた。結果を図8に示す。加熱時効時間の増加に伴い2次アノードピーク電流は増加した。一方で、初期材(0h)と”As quenched”で表した試料は、2次アノードピークが得られなかった。図8で得られた各人工劣化材の2次アノードピーク電流値と温度・時間の劣化パラメータの相関関係を概略的に示すと、概ね図3の曲線と同じカーブが得られた。複数のパラメータについてこのような相関関係を予め求めておくことで、劣化に伴う金属間化合物量の変化を定量することが可能となり、実機材の劣化度を非破壊にて検査することが可能となると考えられる。
[Example 2. Detection of changes in precipitates over time in artificially deteriorated materials]
Precipitates were detected in the artificially deteriorated material produced by heating aging according to the second embodiment of the present invention. As the artificial deterioration material, high Cr steel having the same composition as that of Example 1 is heated at a temperature of 630 ° C. for 1400 hours, 2800 hours, 5600 hours, 10000 hours, 15000 hours, and 20000 hours, respectively. A heat-aged sample under a total of 6 conditions and an initial material having a heat-age treatment time of 0 hours were used. The heat aging treatment temperature is, for example, 610 ° C. to 650 ° C. In FIG. 8, the sample represented by “As sintered” is a sample obtained by subjecting the material (initial material) to the re-quenching treatment as it is received. The quenching treatment temperature is a temperature higher than the heating aging treatment temperature. As an apparatus for obtaining the anode current polarization waveform, the same apparatus as in Example 1 was used. Potassium hydroxide having a pH of 14.6 was used as the electrolytic solution. The potential was changed from the initial state (around -1.2 to -1.0 V) to 0.4 V at 10 mV / min. The electric polarization waveform was swept at a constant speed, and the obtained electric polarization waveform was output to a recorder. The results are shown in FIG. The secondary anode peak current increased as the heating aging time increased. On the other hand, the initial material (0h) and the sample represented by "As quenched" did not have a secondary anode peak. When the correlation between the secondary anode peak current value of each artificially deteriorated material obtained in FIG. 8 and the deterioration parameters of temperature and time is roughly shown, a curve substantially the same as the curve in FIG. 3 was obtained. By obtaining such correlations for multiple parameters in advance, it is possible to quantify changes in the amount of intermetallic compounds due to deterioration, and it is possible to inspect the degree of deterioration of actual equipment in a non-destructive manner. It is considered to be.

本発明の方法による析出物の検出方法は、高温下で使用される機械の部材として用いられる高Cr鋼から構成される部材、例えば、火力発電所用の蒸気タービン部品の劣化度の評価、例えば脆化評価や余寿命の算出において有用となりうる。 The method for detecting precipitates by the method of the present invention evaluates the degree of deterioration of a member made of high Cr steel used as a member of a machine used at a high temperature, for example, a steam turbine component for a thermal power plant, for example, embrittlement. It can be useful in evaluation of embrittlement and calculation of remaining life.

Claims (8)

pHが14.3より大きい電解液を高Cr鋼からなる被測定材に接触させて、前記被測定材と電解液間の電位を低電位側から高電位側へ掃引することによりアノード電流分極波形を得る工程と、
前記アノード電流分極波形に3つ以上のアノードピーク電流が存在する場合に、2次アノードピーク電流に基づき、ラーベス相を検出する工程と
を含む、高Cr鋼のラーベス相検出方法。
Anode current polarization waveform by bringing an electrolytic solution having a pH higher than 14.3 into contact with a material under test made of high Cr steel and sweeping the potential between the material under test and the electrolytic solution from the low potential side to the high potential side. And the process of obtaining
A method for detecting a Laves phase of high Cr steel, which comprises a step of detecting a Laves phase based on a secondary anode peak current when three or more anode peak currents are present in the anode current polarization waveform.
前記電位の掃引速度が、100mV/min.以下である、請求項1に記載の方法。 The sweep rate of the potential is 100 mV / min. The method according to claim 1, which is as follows. 前記ラーベス相を検出する工程が、2次アノードピーク電流密度の極大値、または2次アノードピーク電流密度の積分値に基づき、ラーベス相析出量の指標値を得ることを含む、請求項1または2に記載の方法。 The step of detecting the Laves phase includes obtaining an index value of the Laves phase precipitation amount based on the maximum value of the secondary anode peak current density or the integrated value of the secondary anode peak current density, according to claim 1 or 2. The method described in. 前記高Cr鋼のCr含有量が8〜14重量%である、請求項1〜3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the high Cr steel has a Cr content of 8 to 14% by weight. 前記高Cr鋼が、Fe、Moを含む、請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the high Cr steel contains Fe and Mo. 前記高Cr鋼が、Fe、W、Moを含む、請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the high Cr steel contains Fe, W, and Mo. 前記高Cr鋼が、タービンの構成部材である、請求項1〜6のいずれか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the high Cr steel is a constituent member of the turbine. 高Cr鋼のラーベス相析出量の経時変化を測定する方法であって、
a)被測定材にpH14.3がより大きい電解液を接触させて、前記被測定材と電解液間の電位を低電位側から高電位側へ掃引することによりアノード電流分極波形を得る工程と、
b)前記アノード電流分極波形基づき、3つ以上のアノードピーク電流が存在する場合に、2次アノードピーク電流密度の極大値、または2次アノードピーク電流密度の積分値を得る工程と、
c)同一の被測定材について、経時的に前記工程a)及びb)行うことにより、高Cr鋼のラーベス相析出量の経時変化を得る工程と
を含む方法。
This is a method for measuring the change over time in the amount of Laves phase precipitation of high Cr steel.
a) A step of bringing an electrolytic solution having a higher pH of 14.3 into contact with the material to be measured and sweeping the potential between the material to be measured and the electrolytic solution from the low potential side to the high potential side to obtain an anode current polarization waveform. ,
Based on b) the anode current polarization wave, and obtaining when three or more anodic peak current is present, the maximum value of the secondary anodic peak current density, or the integrated value of the secondary anodic peak current densities,
c) A method including a step of obtaining a change over time in the amount of Laves phase precipitation of high Cr steel by performing the above steps a) and b) on the same material to be measured over time.
JP2017176782A 2017-09-14 2017-09-14 Laves phase detection method for high Cr steel Active JP6963745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017176782A JP6963745B2 (en) 2017-09-14 2017-09-14 Laves phase detection method for high Cr steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176782A JP6963745B2 (en) 2017-09-14 2017-09-14 Laves phase detection method for high Cr steel

Publications (2)

Publication Number Publication Date
JP2019052916A JP2019052916A (en) 2019-04-04
JP6963745B2 true JP6963745B2 (en) 2021-11-10

Family

ID=66014701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176782A Active JP6963745B2 (en) 2017-09-14 2017-09-14 Laves phase detection method for high Cr steel

Country Status (1)

Country Link
JP (1) JP6963745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113624816A (en) * 2021-07-20 2021-11-09 中山大学 Method for detecting Laves phase content in steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05263171A (en) * 1992-01-24 1993-10-12 Hitachi Maxell Ltd Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JP3486315B2 (en) * 1997-02-17 2004-01-13 三菱重工業株式会社 High temperature damage evaluation method for tempered martensitic steel
NO325620B1 (en) * 2003-10-21 2008-06-30 Revolt Technology Ltd Electrode, Method of Preparation thereof, Metal / Air Fuel Cell and Metal Hydride Battery Cell
JP4664399B2 (en) * 2008-07-31 2011-04-06 財団法人発電設備技術検査協会 Evaluation method of toughness of high Cr steel structures
JP6344741B2 (en) * 2015-01-30 2018-06-20 三菱日立パワーシステムズ株式会社 Operating temperature estimation method and creep life estimation method

Also Published As

Publication number Publication date
JP2019052916A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
Homborg et al. Novel time–frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra
Berradja Electrochemical techniques for corrosion and tribocorrosion monitoring: methods for the assessment of corrosion rates
Hou et al. Detection of under deposit corrosion in a CO2 environment by using electrochemical noise and recurrence quantification analysis
Fu et al. Characterization of corrosion of X65 pipeline steel under disbonded coating by scanning Kelvin probe
Arellano-Pérez et al. Electrochemical noise signals evaluation to classify the type of corrosion using Synchrosqueezing transform
CN106290133A (en) A kind of image measuring method evaluating oil pipe Pitting corrosion behavior
CN105606869B (en) A kind of transmission line of electricity atmosphere environment corrosion severity fast evaluation method
JP6963745B2 (en) Laves phase detection method for high Cr steel
CN109374519A (en) A kind of detection method based on AC impedance spectrometry characterization Rust of Rebar in Concrete rate
CN105973970B (en) A method of detection austenitic stainless steel corrosion susceptibility
CN108344679A (en) A method of characterization cast austenitic-ferritic stainless steel pitting corrosion
Tormoen et al. Localised corrosion of heat treated alloys Part 1–repassivation potential of alloy 600 as function of solution chemistry and thermal aging
Hornus et al. Effect of temperature on the crevice corrosion resistance of Ni-Cr-Mo alloys as engineered barriers of nuclear repositories
JP4872087B2 (en) Detection method of stress corrosion cracking and pitting corrosion
JP3486315B2 (en) High temperature damage evaluation method for tempered martensitic steel
JPH06249828A (en) Detection of carbide in low alloy steel by electrochemical polarization method
Leiva-García et al. Role of Modern Localised Electrochemical Techniques to Evaluate the Corrosion on Heterogeneous Surfaces
JP3441181B2 (en) Method for detecting deterioration of super heat resistant alloy steel
JP2729679B2 (en) Evaluation method of aging and embrittlement of chromium-molybdenum steel by electrochemical method
JP4342715B2 (en) Intergranular corrosion diagnostic method for nickel base alloys
JP3495543B2 (en) Evaluation method for creep damage of tempered martensitic steel
JP2009168684A (en) Embrittlement level determination method for metal
KR101047405B1 (en) Method of measuring porosity of coating material using EIS
JPH07225217A (en) Method for detecting aging deterioration of metal material
El Hajj et al. A condition-based deterioration model for the crack propagation in a submerged concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210930

R150 Certificate of patent or registration of utility model

Ref document number: 6963745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150