JPS60260839A - Electrochemical method for measuring degree of deterioration - Google Patents

Electrochemical method for measuring degree of deterioration

Info

Publication number
JPS60260839A
JPS60260839A JP59115591A JP11559184A JPS60260839A JP S60260839 A JPS60260839 A JP S60260839A JP 59115591 A JP59115591 A JP 59115591A JP 11559184 A JP11559184 A JP 11559184A JP S60260839 A JPS60260839 A JP S60260839A
Authority
JP
Japan
Prior art keywords
anode
electrolyte
deterioration
degree
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59115591A
Other languages
Japanese (ja)
Inventor
Yoshitaka Iwabuchi
岩渕 義孝
Takashi Hatano
隆司 波多野
Nobuo Chiba
千葉 信男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP59115591A priority Critical patent/JPS60260839A/en
Publication of JPS60260839A publication Critical patent/JPS60260839A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To estimate the degree of deterioration of creep ductility by making constant potential polarization measurement with a metallic material to be measured as an anode and measuring the anode current density in an anode current stagnating region. CONSTITUTION:An electrolytic cell 2 is mounted to the measuring point of the metallic material 1 to be measured in a manner that an electrolyte 3 contacts directly with the material 1. The cell is sealed 4 by rubber or clay to prevent the leakage of the electrolyte 3. The polarization measurement is carried out after connecting the material 1 as the anode to the positive voltage side of a potentiometer 6 and connecting an inert electrode inserted into the electrolyte 3, for example, a platinum electrode 5 as a cathode to the negative voltage side of the potentiometer 6. The measurement is executed by measuring the anode current at a specified potential sweep speed after the cathode reduction at the natural electrode potential or below. The stagnating region of the anode current density appears near the critical potential for passivation on the anode polarization curve on gradual deteriorating of the material. The stagnating region has a close relation with the creep rupture ductility of the material. The degree of deterioration of the material is known by comparing and evaluating such stagnating region value, by which the prediction of the remaining life is made possible.

Description

【発明の詳細な説明】 [産業上の利用分野J 本発明はタービンロータやケーシングパルプなど高温高
圧下で長時間使用した材料が受けた組織の変化および高
温延性の変化として現れる経年変化の程度を非破壊的に
評価する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field J] The present invention aims to reduce the degree of aging that occurs in materials such as turbine rotors and casing pulp that have been used for long periods of time under high temperature and pressure, which manifests as changes in structure and changes in high temperature ductility. Concerning non-destructive evaluation methods.

[従来技術1 高温高圧下で使用される例えば発電用タービンブフント
用匍鍛鋼品は長時間運転される過程で組織の変化、亀裂
の発生と伝播、切欠靭性の低下など材料が劣化し、製造
時の材料特性が変化する。
[Prior art 1] For example, forged steel products for power generation turbine buhunds that are used under high temperatures and high pressures deteriorate due to changes in structure, crack initiation and propagation, and decreased notch toughness during long-term operation. The material properties change over time.

従って、このような材料の変化度合を正しく把握しなけ
れば運転中に故障その他の不都合を生じ、電力供給に不
都合を未たすことになる。
Therefore, if the degree of change in the material is not accurately grasped, failures and other inconveniences may occur during operation, resulting in inconveniences in power supply.

し々・し、従来から材料の劣化度を検査し評価するため
には製品から材料を切り出し、組織観察や機械的試験を
行なうなど破壊試験を行なわければならず、またプラン
トの停止時間も長いという問題があった。
However, conventionally, in order to inspect and evaluate the degree of deterioration of a material, it is necessary to cut the material out of the product and perform destructive tests such as microstructural observation and mechanical testing, and the plant has to be stopped for a long time. There was a problem.

[発明の構成] 本発明はかかる問題点、つまりプラントの停止期間およ
び破壊検査を解決するためのもので、長期間使用した材
料を切り出すことなく、電気化学的に7ノ一ド分極挙動
を測定することにより材料の劣化度を評価し、さらに余
寿命を予測する薪規な材料の電気化学的劣化度測定法を
提供するものである。
[Structure of the Invention] The present invention is intended to solve these problems, namely, the plant shutdown period and destructive inspection.It is an object of the present invention to electrochemically measure seven-node polarization behavior without cutting out materials that have been used for a long time. The present invention provides an electrochemical method for measuring the degree of deterioration of materials, which is similar to firewood, by which the degree of deterioration of the material can be evaluated and the remaining life can be predicted.

即ち本発明は、所定条件下で使用された金属材料に電解
液を液密に囲って該金属材料と電解液とを接触させ、該
金属材料をアノードとし不活性電極をカソードとして定
電位測定装置に接続して電解液に挿入されたカソードと
の間で定電位分極測定を行い、不働態化臨界電位近くの
7ノード電流停滞域における7ノ一ド電流密度からクリ
ープ延性の劣化度を推定することからなる金属材料の電
気化学的劣化度測定法に存する。
That is, the present invention provides a constant potential measuring device in which a metal material used under predetermined conditions is surrounded with an electrolyte in a liquid-tight manner, the metal material is brought into contact with the electrolyte, the metal material is used as an anode, and an inert electrode is used as a cathode. The degree of degradation of creep ductility is estimated from the 7-node current density in the 7-node current stagnation region near the passivation critical potential. The present invention consists in a method for measuring the degree of electrochemical deterioration of metallic materials.

分極測定を行うためには、被測定製品本体(1)の測定
箇所に電解槽[囲い(2)1を電解液(3)が該本体(
1)に直接接触するように装着させて7ノードとし、電
解液(3)が漏れないようにゴム、粘土などでシール(
4)を施し、該本体(1)(7)−ド)を電位差計(6
)の正電圧側に、電解液に挿入した不活性電極、たとえ
ば白金電極(カソード)(5)を電位差計(6)の負電
圧側に接続する。なお、(7)はブリッジ用キャピラリ
ー、(8)は飽和甘木電極(SCE)、(9)はにC1
飽和溶液である(第1図)。
To perform polarization measurements, place the electrolytic bath [enclosure (2) 1] at the measuring point of the product body (1) to be measured, and place the electrolyte (3) in the body (1).
1) to make 7 nodes, and seal it with rubber, clay, etc. to prevent electrolyte solution (3) from leaking.
4), and the main body (1) (7)
), an inert electrode inserted into the electrolyte, for example a platinum electrode (cathode) (5), is connected to the negative voltage side of the potentiometer (6). In addition, (7) is a bridge capillary, (8) is a saturated Amagi electrode (SCE), and (9) is C1.
It is a saturated solution (Figure 1).

測定する材料は通常低合金網であるから、使用する電解
液は弱酸性溶液が望ましく、たとえば0.5〜IN硫酸
ソーダ水溶液または飽和ピクリン酸水溶液が適当である
。また、測定は7ノード溶解領域、不動fi領領域らび
に過不動態領域を連続的に測定できる定電位法で行う。
Since the material to be measured is usually a low-alloy network, the electrolyte used is preferably a weakly acidic solution, such as a 0.5-IN aqueous solution of sodium sulfate or a saturated aqueous picric acid solution. Further, the measurement is performed using a constant potential method that allows continuous measurement of the 7-node dissolution region, the immobile fi region, and the hyperpassive region.

[発明の実施例] 測定に際しては自然電極電位以下でカソード還元した後
、一定電位掃引速度でアノード電流を測定する。
[Embodiments of the Invention] During measurement, after cathodic reduction is performed below the natural electrode potential, the anode current is measured at a constant potential sweep rate.

このようにして7ノ一ド分極曲線が得られるが、材料が
劣化していくと不働態化臨界電位近くに7ノード電流の
停滞域(SACM)が出現し、劣化度が大きくなると高
くなる。このSACMは材料のクリープ破断延性と密接
な相関があるから、このSACM値を比較、評価するこ
とで材料の劣化度がわかり、また余寿命が予測できるも
のである。
In this way, a 7-node polarization curve is obtained, but as the material deteriorates, a 7-node current stagnation region (SACM) appears near the passivation critical potential, and increases as the degree of deterioration increases. This SACM has a close correlation with the creep rupture ductility of the material, so by comparing and evaluating this SACM value, the degree of deterioration of the material can be determined and the remaining life can be predicted.

第2図は各運転条件で105時間使用された1%Cr−
1%Mo−1/4%■僑綱ケーシングから採取した試料
(^−1、B−4、B−5、B−6、及びB−7)を用
いて測定された7ノ一ド分極曲線の線図である。
Figure 2 shows 1% Cr- used for 105 hours under each operating condition.
1% Mo-1/4% ■ Seven-node polarization curve measured using samples (^-1, B-4, B-5, B-6, and B-7) collected from casings FIG.

同図において0ボルト[対飽和甘木電極(SCE月付近
のピークが溶解領域で、0.2〜0.4ボルトにあられ
れる曲線の部分が不働態領域であl)、1.4ボルト以
上で急に曲線が立ち上がっている部分が過不@態領域で
ある。また、矢印で示した箇所が2次7ノード電流密度
(SACM)を表すものである。同図から5ACNをめ
クリープ延性との関係をプロットすると第3図が得られ
る。なお、第2図において使用した試料の使用状況は下
記の通りである:^−1; 566℃×10g時間 B−4; 538℃x io’時間 B−5; 494°CX 10’時間 B−6; 368℃×105時間 B−7−未使用 したがって、第3図に基づき被検品のアノード分極曲線
−を測定することにより材料のクリープ劣化度が非破壊
的に予測できる。
In the same figure, at 0 volts [vs. the saturated Amagi electrode (the peak near the SCE month is the melting region, and the part of the curve that falls between 0.2 and 0.4 volts is the passive region), and at 1.4 volts or more, The part where the curve rises suddenly is the over-fault region. Furthermore, the locations indicated by arrows represent the secondary 7-node current density (SACM). If the relationship between 5ACN and creep ductility is plotted from the same figure, Figure 3 is obtained. The usage conditions of the samples used in Fig. 2 are as follows: ^-1; 566°C x 10g time B-4; 538°C x io' time B-5; 494°C x 10' time B- 6; 368°C x 105 hours B-7 - Unused Therefore, by measuring the anode polarization curve of the test piece based on FIG. 3, the degree of creep deterioration of the material can be predicted non-destructively.

[発明の効果] 本発明の効果はプラントの停止または非破壊検査を要す
ることなく迅速に材料の劣化度を評価し余寿命を予測で
きることにある。
[Effects of the Invention] The effects of the present invention are that the degree of deterioration of materials can be quickly evaluated and the remaining life can be predicted without requiring plant shutdown or non-destructive testing.

【図面の簡単な説明】[Brief explanation of drawings]

tJSi図は電気化学的アノード分極測定装置の概略図
、第2図は運転条件による定電位アノード分極曲線の変
化を示す図、第3図はクリープ延性と2次アノード電流
密度の関係を示す図である。図中: 1・・・被測定製品本体(7)−ド)、2・・・囲い、
3・・・電解液、 4・・・シール、5・・・カソード
、6・・・電位差計、7・・・ブリッジ用キャピラリー
、8・・・飽和甘木電極、9・・・KCI飽和溶液特許
出頻人 株式会社日本製鋼所
The tJSi diagram is a schematic diagram of the electrochemical anode polarization measuring device, Figure 2 is a diagram showing changes in the constant potential anode polarization curve depending on operating conditions, and Figure 3 is a diagram showing the relationship between creep ductility and secondary anode current density. be. In the diagram: 1... Main body of the product to be measured (7), 2... Enclosure,
3... Electrolyte, 4... Seal, 5... Cathode, 6... Potentiometer, 7... Capillary for bridge, 8... Saturated Amagi electrode, 9... KCI saturated solution patent Frequently appearing Japan Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 所定条件下で使用された金属材料に電解液を液密に囲っ
て該金属材料と電解液とを接触させ、該金属材料をアノ
ードとし不活性電極を陰極として定電位測定装置に接続
して電解液に挿入された陰極との間で定電位分極測定を
行い、不働態化臨界電位近くの7ノード電流停滞域にお
ける7ノ一ド電流密度からクリープ延性の劣化度を推定
することからなる、金属材料の電気化学的劣化度測定法
The metal material used under predetermined conditions is surrounded with an electrolyte solution in a liquid-tight manner, the metal material and the electrolyte are brought into contact, and the metal material is used as an anode and an inert electrode is used as a cathode to connect to a constant potential measuring device to perform electrolysis. The process consists of performing potentiostatic polarization measurements between a cathode inserted in a liquid and estimating the degree of creep ductility deterioration from the 7-node current density in the 7-node current stagnation region near the passivation critical potential. Electrochemical degradation measurement method for materials.
JP59115591A 1984-06-07 1984-06-07 Electrochemical method for measuring degree of deterioration Pending JPS60260839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59115591A JPS60260839A (en) 1984-06-07 1984-06-07 Electrochemical method for measuring degree of deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59115591A JPS60260839A (en) 1984-06-07 1984-06-07 Electrochemical method for measuring degree of deterioration

Publications (1)

Publication Number Publication Date
JPS60260839A true JPS60260839A (en) 1985-12-24

Family

ID=14666391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59115591A Pending JPS60260839A (en) 1984-06-07 1984-06-07 Electrochemical method for measuring degree of deterioration

Country Status (1)

Country Link
JP (1) JPS60260839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288758A (en) * 1988-05-17 1989-11-21 Hideaki Takahashi Evaluating method of degree of deterioration of austenitic stainless steel
US4894251A (en) * 1988-06-20 1990-01-16 American National Can Company Method and apparatus for inspecting containers
CN110411863A (en) * 2018-04-26 2019-11-05 天津大学 High-temperature creep life prediction method based on creep ductility

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981552A (en) * 1983-09-13 1984-05-11 Toshiba Corp Method for measuring texture change of metallic material electrochemically

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981552A (en) * 1983-09-13 1984-05-11 Toshiba Corp Method for measuring texture change of metallic material electrochemically

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288758A (en) * 1988-05-17 1989-11-21 Hideaki Takahashi Evaluating method of degree of deterioration of austenitic stainless steel
US4894251A (en) * 1988-06-20 1990-01-16 American National Can Company Method and apparatus for inspecting containers
CN110411863A (en) * 2018-04-26 2019-11-05 天津大学 High-temperature creep life prediction method based on creep ductility
CN110411863B (en) * 2018-04-26 2022-02-11 天津大学 High-temperature creep life prediction method based on creep ductility

Similar Documents

Publication Publication Date Title
CN103323387A (en) Electro-chemical corrosion simulator with in-situ loading
US11892391B2 (en) Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment
CN108680493B (en) Method for measuring corrosion current density in galvanic corrosion of metal welding joint part
JPH0650927A (en) Detecting method for crack or fracture caused by stress corrosion cracking
CN105973970B (en) A method of detection austenitic stainless steel corrosion susceptibility
Leinonen Stress corrosion cracking and life prediction evaluation of austenitic stainless steels in calcium chloride solution
Bosch et al. Application of electrochemical impedance spectroscopy for monitoring stress corrosion cracking
JPS60260839A (en) Electrochemical method for measuring degree of deterioration
CN115931538B (en) Method for measuring influence degree of hydrogen in acidic environment on metal stress corrosion cracking
CN111028898B (en) Evaluation method for damage failure life of aluminum electrolysis cathode material
DE3274386D1 (en) A method of detecting and quantifying damage in metal structures
JP2004031256A (en) Inspection method for polymer electrolyte fuel cell, and polymer electrolyte fuel cell by the method
JPS6014155A (en) Detection for secular brittleness
JP3853250B2 (en) Local corrosion sensor, local corrosion detection method and local corrosion detection apparatus using the local corrosion sensor
JPH0886768A (en) Method for detecting deterioration of super heat-resistant alloy steel
WO2024079877A1 (en) Method for evaluating hydrogen evolution reaction
RU2777000C1 (en) Method for determining the corrosion activity of glycols in heat exchange equipment
JPS5981552A (en) Method for measuring texture change of metallic material electrochemically
JP2003121406A (en) Electrochemical measuring cell for metallic material
JPH02157642A (en) Gel electrode for electrochemical measurement for evaluating deterioration degree of metallic material
JPH0516743B2 (en)
Wang Conditions for stress corrosion cracking to occur from crevice corrosion sites and related electrochemical features
JPH07225217A (en) Method for detecting aging deterioration of metal material
JPH05223726A (en) Method for detecting secular embrittlement
CN114279946A (en) Device and method for evaluating stress corrosion sensitivity of metal sample through electrochemical monitoring