JPH05223726A - Method for detecting secular embrittlement - Google Patents

Method for detecting secular embrittlement

Info

Publication number
JPH05223726A
JPH05223726A JP4027017A JP2701792A JPH05223726A JP H05223726 A JPH05223726 A JP H05223726A JP 4027017 A JP4027017 A JP 4027017A JP 2701792 A JP2701792 A JP 2701792A JP H05223726 A JPH05223726 A JP H05223726A
Authority
JP
Japan
Prior art keywords
measured
potential
embrittlement
current density
sweeping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4027017A
Other languages
Japanese (ja)
Inventor
Kiyoshi Saito
潔 斎藤
Kazunari Kimura
和成 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4027017A priority Critical patent/JPH05223726A/en
Publication of JPH05223726A publication Critical patent/JPH05223726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PURPOSE:To clearly form an intergranular corrosion groove in a short time and improve the reliability of measured data and evaluation of degree of embrittlement by corroding the grain boundary of a part to be measured by reversely sweeping the potential at the part after a passive film is formed at the part. CONSTITUTION:An electrolytic cell 1 is mounted on the surface of a part to be measured after polishing the surface and an electrolyte 7 is poured in the cell 1. Then, while a potential is applied across an object 6 to be measured from a potentiostat 14 and the potential value is swept with a scanner 15 so that anode polarization can be obtained, a polarization curve indicating the relation between the potential and current density is recorded on a recorder 16 and, when the current density becomes the smallest value, a passive film is formed at the part to be measured by once stopping the sweeping. Then the smallest value of the current density is confirmed by reversely sweeping the potential and, at the same time, the grain boundary at the part to be measured is corroded by maintaining the potential which gives the smallest value for a fixed period of time. When the depth to grains suffering from intergranular corrosion is measured after the part to be measured is washed and dried and measured data are plotted on a fracture transient temperature diagram, the reliability of embrittlement evaluation is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば低合金鋼の被
計測物の経年脆化検出方法に係り、特に低合金鋼の結晶
粒界腐食性の変化から経年脆化を評価する経年脆化検出
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detecting aged embrittlement of an object to be measured of a low alloy steel, and particularly to aged embrittlement for evaluating aged embrittlement based on a change in grain boundary corrosion of low alloy steel. Regarding detection method.

【0002】[0002]

【従来の技術】発電プラントや化学プラントなどの高温
流体を取扱う構成部材では耐熱性にすぐれたCr−Mo
鋼、Cr−Mo−V鋼などの低合金鋼が使用されてい
る。
2. Description of the Related Art Cr-Mo, which has excellent heat resistance, is used as a component for handling high-temperature fluids such as power plants and chemical plants.
Low alloy steels such as steel and Cr-Mo-V steel are used.

【0003】しかし、長年使用していると、高温流体を
扱うこともあって、その鋼内に組織変化が起り、材質劣
化の要因になる。この材質劣化は、主としていわゆる焼
戻し脆化によることが大きい。この焼戻し脆化は低合金
鋼中に含まれるP,Sn,As,Sb等のうち、特に不
純物元素であるPが結晶粒界に偏析し、粒界強度を弱め
ることに起因するものと考えられている。
However, when it has been used for many years, it may handle a high temperature fluid, which causes a structural change in the steel and causes deterioration of the material. This material deterioration is largely due to so-called temper embrittlement. It is considered that this temper embrittlement is due to segregation of P, which is an impurity element, among P, Sn, As, and Sb contained in the low-alloy steel, especially at grain boundaries and weakens the grain boundary strength. ing.

【0004】一方、低合金鋼に焼戻し脆化が生じると靭
性が低下し、破損事故の原因になる。このため、低合金
鋼の品質評価や事故防止の観点から、低合金鋼の経年焼
戻し脆化を測定する技術が種々開発されている。
On the other hand, when tempered embrittlement occurs in a low alloy steel, the toughness is lowered and it causes a damage accident. Therefore, from the viewpoint of quality evaluation of low alloy steel and prevention of accidents, various techniques have been developed for measuring aged temper embrittlement of low alloy steel.

【0005】従来、この種脆化度検出法として、シヤル
ピ衝撃試験法が広く知られている。この検出法は、テス
トピースを衝撃破壊させたときの吸収エネルギ値の減少
度合、あるいは衝撃値/試験温度曲線の移動、つまり衝
撃値の遷移温度上昇量、さらに衝撃破損したテストピー
スの延性破面面積の全破面面積に対する割合を計測し、
計測値から延性破面率を求め、この温度依存性から延性
破面率50%に対する温度をもって定義される破面遷移温
度の上昇量(ΔFATT)を検出するものである。しか
し、この方法は定義装置からテストピースを切り取らな
ければならず組立て前の実機装置ならともかく、実際に
は到底適用できない。
Conventionally, the Sharpi impact test method has been widely known as a method for detecting this kind of brittleness. This detection method is based on the degree of decrease in the absorbed energy value when the test piece is destroyed by impact, or the movement of the impact value / test temperature curve, that is, the transition temperature rise amount of the impact value, and the ductile fracture surface of the test piece that is impacted Measure the ratio of the area to the total fracture surface area,
The ductile fracture surface ratio is obtained from the measured value, and the increase amount (ΔFATT) of the fracture surface transition temperature defined by the temperature for the ductile fracture surface ratio of 50% is detected from this temperature dependence. However, this method must be cut out of the test piece from the defining device, and cannot be applied in practice at all, even if it is an actual device before assembly.

【0006】このような従来技術の不具合に対し、最
近、不純物による粒界偏析を、結晶粒界の腐食溝深さを
計測し、金属部材の脆化度を非破壊的に検出法が開発さ
れており、その寸法の公表が例えば特開平1−110259号
公報に見られる。
In response to such problems of the prior art, a method for nondestructively detecting the degree of embrittlement of a metal member has recently been developed by measuring the grain boundary segregation caused by impurities and measuring the corrosion groove depth of the crystal grain boundary. The disclosure of the dimensions is found in, for example, Japanese Patent Application Laid-Open No. 1-110259.

【0007】この技術は、一般に粒界腐食法と呼ばれる
もので、図4に示されているように、セル2内の腐食液
3を被計測物1に当接させ、その検査部位を腐食させて
いる。腐食条件は、温度25℃、時間は2〜3時間であ
る。腐食後の検査部位は、図5,図6にも見られるよう
に、結晶粒界4の脆化度が小さいと図5のように細線と
なってあらわれ、結晶粒界4の脆化度が大きいと図6の
ように太線となってあらわれる。
This technique is generally called the intergranular corrosion method, and as shown in FIG. 4, the corrosive liquid 3 in the cell 2 is brought into contact with the object to be measured 1 to corrode the inspection site. ing. The corrosion conditions are a temperature of 25 ° C. and a time of 2 to 3 hours. As shown in FIGS. 5 and 6, the inspection portion after corrosion appears as a thin line as shown in FIG. 5 when the degree of embrittlement of the crystal grain boundary 4 is small, and the degree of embrittlement of the crystal grain boundary 4 is small. When it is large, it appears as a thick line as shown in FIG.

【0008】このようにしてあらわれた粒界腐食溝深さ
を、ビッカースによる圧こん、あるいは腐食表面粗さ等
を計測し、計測結果を予め作成しておいた破面遷移温度
線図(FATT)にプロットし、脆化度合を評価するも
のである。
The intergranular corrosion groove depth thus produced is measured by indentation by Vickers, corrosion surface roughness, etc., and the measurement result is prepared in advance. Fracture transition temperature diagram (FATT) And the degree of embrittlement is evaluated.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述の
検出法では、結晶粒界を腐食させるに掃引作業が試行錯
誤的であるため2〜3時間という長時間を費やすという
不具合があった。また、結晶粒界を腐食させるに長時間
を費やす割合には計測結果である粒界腐食溝深さが最大
でも 1.5μm程度までしか得られず、このような微少量
域では計測誤差の領域に入り、精度的に必ずしも満足で
きるものではなかった。
However, the above-mentioned detection method has a problem that it takes a long time of 2 to 3 hours because the sweeping operation is trial and error to corrode the crystal grain boundaries. In addition, at the rate of spending a long time in corroding the crystal grain boundaries, the intergranular corrosion groove depth, which is the measurement result, can be obtained only up to about 1.5 μm. It was not always satisfactory in terms of accuracy.

【0010】この発明は、上記の点に鑑み、比較的短時
間で結晶粒界を腐食させることができ、しかも計測粒界
溝深さが大きく、計測誤差の少ない経年脆化検出方法を
提供することを目的とする。
In view of the above points, the present invention provides a method for detecting aged embrittlement that can corrode crystal grain boundaries in a relatively short time, has a large measurement grain boundary groove depth, and has few measurement errors. The purpose is to

【0011】[0011]

【課題を解決するための手段】この発明は、電解液に接
する被計測部に電位を加え、その電位を掃引しながら被
計測部と対極との間に流れる電流密度が極小値になった
ところで電位の掃引を一旦停止させて被計測部に不動態
皮膜を形成せしめ、不動態皮膜形成後、電位を逆掃引さ
せて電解液の電流密度の極小値を確認するとともに、こ
の電流密度の極小値を与える電位を一定時間保持するこ
とにより被計測部の粒界を腐食せしめ、しかる後粒界腐
食溝深さを測定し、測定結果を予め求めておいた破面遷
移温度線図にプロットすることを特徴としている。
According to the present invention, an electric potential is applied to a portion to be measured in contact with an electrolytic solution, and a current density flowing between the portion to be measured and a counter electrode reaches a minimum value while sweeping the potential. Stop the electric potential sweeping once to form a passivation film on the measured part.After forming the passivation film, reverse the potential and check the minimum value of the current density of the electrolyte. Corrosion of the grain boundary of the measured part by holding the potential for applying for a certain period of time, after which the depth of the intergranular corrosion groove is measured, and the measurement result is plotted on the fracture surface transition temperature diagram obtained in advance. Is characterized by.

【0012】[0012]

【作用】このような構成によれば、被計測部に加えられ
る電位は不純物の偏析した粒界以外の領域が電解液によ
って不動態域になり、このため不動態被膜の影響で腐食
はほとんど起らなくなる。したがって、被計測部は、粒
界が腐食部位とそうでない部位とに選択的にわかれるか
ら、粒界腐食溝が短時間で計測することができる。この
ように、計測精度の高いデータを予め求めておいた破面
遷移温度線図(FATT)にプロットするので、脆化測
定の信頼度は従来よりも格段に高まる。
With this structure, the potential applied to the measured portion becomes a passivation region other than the grain boundaries where impurities are segregated by the electrolytic solution, so that corrosion is hardly caused by the passivation film. Will disappear. Therefore, in the measured portion, the grain boundary is selectively divided into a corroded portion and a non-corroded portion, so that the intergranular corrosion groove can be measured in a short time. In this way, since the data with high measurement accuracy is plotted on the fracture surface transition temperature diagram (FATT) which has been obtained in advance, the reliability of the embrittlement measurement is remarkably increased as compared with the conventional case.

【0013】[0013]

【実施例】この発明にかかる経年脆化検出方法の一例を
図を参照して説明する。図1は、この発明にかかる経年
脆化検出方法に適用する従来から良く知られている装置
の概略図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of the aged embrittlement detection method according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a conventionally well-known device applied to the method for detecting aged embrittlement according to the present invention.

【0014】符号1は、被計測物6にパッキン5を介し
て密に当接した電解セル1を示し、この電解セル1内に
は、電解液7が満たされ、開口部8を介して被測定物6
に接している。電解液7は、腐食性の鋭敏性に富む、例
えば飽和ピクリン酸に界面活性剤としてトリメチルベン
ゼンスルフォン酸ナトリウムを少量添加した溶液であ
る。この電解液7は、バルブ11aを経て注入口9から与
えられ、その排出はバルブ11bを備えた排出口10を経
る。
Reference numeral 1 denotes an electrolytic cell 1 which is in close contact with the object to be measured 6 via a packing 5. The electrolytic cell 1 is filled with an electrolytic solution 7 and is exposed through an opening 8. Measured object 6
Touches. The electrolyte solution 7 is highly corrosive and sensitive, for example, a solution in which a small amount of sodium trimethylbenzenesulfonate as a surfactant is added to saturated picric acid. The electrolytic solution 7 is supplied from the inlet 9 via the valve 11a, and its discharge is discharged through the outlet 10 provided with the valve 11b.

【0015】電解セル1には、照合電極12と対極13とを
有し、これら各極12,13は被計測物6とともにポテンシ
ョスタット14に結ばれている。また、ポテンショスタッ
ト14には、一端をスキャナ15に、他端をレコーダ16に結
ばれている。
The electrolysis cell 1 has a reference electrode 12 and a counter electrode 13, and these electrodes 12, 13 are connected to a potentiostat 14 together with the object 6 to be measured. The potentiostat 14 has one end connected to the scanner 15 and the other end connected to the recorder 16.

【0016】したがって、被計測物6に加えられる電位
はスキャナ15によって掃引され、掃引によって加えられ
た電位変化値に対応して被計測物6と対極13との間に流
れる電流値が電位変化値とともにレコーダ16に記録され
ている。
Therefore, the potential applied to the DUT 6 is swept by the scanner 15, and the current value flowing between the DUT 6 and the counter electrode 13 corresponds to the potential change value applied by the sweep. It is recorded with recorder 16.

【0017】しかして、上記装置を用いたこの発明にか
かる経年脆化検出方法の具体例を説明する。なお、この
実施例で用いるテストピースとして3種数のCr−Mo
−V鋼を用い、また各一つ一つは脆化度の異なるもので
ある。さらにこれら各種類の破面遷移温度FATTはシ
ヤルピ衝撃試験からFATT=110 ℃,150 ℃,180℃
を得ている。
A specific example of the aged embrittlement detection method according to the present invention using the above apparatus will be described. As the test piece used in this example, three kinds of Cr-Mo were used.
-V steel is used and each one has a different degree of embrittlement. Further, the fracture surface transition temperature FATT of each of these types is FATT = 110 ° C, 150 ° C, 180 ° C from the Sharpi impact test.
Is getting

【0018】先ず、Cr−Mo−V鍛鋼のテストピース
表面をバフ研摩後、電解セル1を装着し、注入口9から
電解液7を注入する。電解液7は、上述飽和ピクリン酸
にトリメチルベンゼンスルフォン酸ナトリウムを加えた
混合溶液が用いられるが、この混合溶液に限らず、混合
溶液に加えられる界面活性剤としてアルキルベンゼンス
ルフォン酸ナトリウム系の、例えばトリデシルベンゼン
スルフォン酸ナトリウムなどを用いても結晶粒界に不純
物があれば、腐食性に富む電解液7の液温は25℃であ
り、そのときの室温も25℃である。
First, the surface of a test piece of Cr-Mo-V forged steel is buffed, the electrolytic cell 1 is mounted, and the electrolytic solution 7 is injected from the injection port 9. As the electrolytic solution 7, a mixed solution of the above-mentioned saturated picric acid and sodium trimethylbenzenesulfonate is used, but the electrolytic solution 7 is not limited to this mixed solution, and as a surfactant added to the mixed solution, a sodium alkylbenzene sulfonate-based compound such as triethylbenzenesulfonate is used. Even if sodium decylbenzene sulfonate or the like is used, if the crystal grain boundaries have impurities, the electrolytic solution 7 having a high corrosive property has a liquid temperature of 25 ° C., and the room temperature at that time is also 25 ° C.

【0019】続いて、被計測物6にポテンショスタット
14から電位が加えられ、この間、アノード分極が得られ
るようスキャナ15によって電位値を掃引し、この作動か
ら電位と電流との関係、つまり分極曲線をレコーダ16に
記録している。
Then, a potentiostat is attached to the object 6 to be measured.
An electric potential is applied from 14, and during this period, the electric potential value is swept by the scanner 15 so as to obtain the anodic polarization, and the relationship between the electric potential and the current, that is, the polarization curve is recorded in the recorder 16 from this operation.

【0020】図2は、FATT=150 ℃のCr−Mo−
V鍛鋼から得られた分極曲線の一例である。この図にお
いて、自然電位E点から掃引速度5mV/sec で電位を増
加させると、電流密度は比較的に増加し、極大値A点に
いたる。A点を過ぎると、Cr−Mo−V鍛鋼の結晶面
は電解液7によって不動態域に入り、電流密度は漸減し
てゆく。
FIG. 2 shows Cr-Mo-at FATT = 150 ° C.
It is an example of the polarization curve obtained from V forged steel. In this figure, when the potential is increased from the natural potential E point at a sweep rate of 5 mV / sec, the current density relatively increases and reaches the maximum value A point. After the point A, the crystal plane of the Cr-Mo-V forged steel enters the passive region by the electrolytic solution 7 and the current density gradually decreases.

【0021】電流密度が極小値B点にいたると、一旦掃
引を停止し、この間、約400mV の電位のもとで2分間保
持し、不動態皮膜を十分に形成させるようにしている。
不動態皮膜の形成後、電位を減らす方向に5mV/sec で
逆掃引し、こうして上述極小値B点を確認する。
When the current density reaches the minimum value B, the sweep is stopped once, and during this period, it is kept for 2 minutes under the potential of about 400 mV so that the passivation film is sufficiently formed.
After forming the passivation film, reverse sweep is performed at a potential of 5 mV / sec in the direction of decreasing the potential, thus confirming the above-mentioned minimum value point B.

【0022】逆掃引は、電位約300mV に達したc点で停
止し、電位約300mV のまま20分間保持し、粒界腐食を行
う。粒界腐食の進行中、P等の不純物元素濃度が低い粒
内では、不動態皮膜が十分形成されるための溶解はほと
んどないが、不純物元素が偏析している結晶粒界では、
不動態皮膜が形成されないため、粒界の腐食は進行す
る。粒界腐食後、被計測部6から電解セル1を取り除
き、被計測面を水洗、乾燥させて、粒界腐食粒深さを計
測する。粒界腐食溝深さの計測にはビッカース圧こん法
を用いる。この方法は、先ず、粒界腐食を行ったサンプ
ル表面に四角錐のビッカース硬さ計の圧子を用いて圧こ
んをつけ、その寸法を計測する。次にサンプル表面をバ
フ研摩し、粒界腐食溝がほとんど消失する状態まで表面
を削り取る。この状態で、再びビッカース圧こん寸法を
計測すると、初期の圧こん寸法との差から削り取った深
さが計算でき、これが粒界腐食溝深さの計測値となる。
3種類の脆化度の試料について粒界腐食溝深さDを計測
したところ、FATT=115 ℃,150 ℃,180 ℃の材料
に対応してそれぞれD=0.35μm,3.25μm,5.12μm
であった。
The reverse sweep is stopped at the point c where the potential reaches about 300 mV, and the potential is kept at about 300 mV for 20 minutes to perform intergranular corrosion. During the intergranular corrosion, there is almost no dissolution in the grain where the concentration of the impurity element such as P is low so that the passivation film is sufficiently formed, but at the grain boundary where the impurity element is segregated,
Since the passivation film is not formed, the grain boundary corrosion proceeds. After the intergranular corrosion, the electrolytic cell 1 is removed from the measured portion 6, the surface to be measured is washed with water and dried to measure the intergranular corrosion grain depth. The Vickers indentation method is used to measure the intergranular corrosion groove depth. In this method, first, an indenter is applied to the surface of a sample that has undergone intergranular corrosion using a Vickers hardness tester with a quadrangular pyramid, and the dimension is measured. Next, the sample surface is buffed and scraped until the intergranular corrosion grooves almost disappear. In this state, if the Vickers indentation dimension is measured again, the depth of scraping can be calculated from the difference from the initial indentation dimension, and this becomes the measured value of the intergranular corrosion groove depth.
When the intergranular corrosion groove depth D was measured for samples with three types of embrittlement, D = 0.35 μm, 3.25 μm, and 5.12 μm corresponding to materials with FATT = 115 ° C, 150 ° C, and 180 ° C, respectively.
Met.

【0023】一方、同じテストピースを用いて、従来法
による粒界溝深さも計測した。電解液は上記実施例と同
じ溶液を用い、試験温度も同一とし、 2.5時間の浸漬腐
食を行った後、粒界腐食溝深さを計測した。この結果、
D=0.31μm,1.23μm,1.79μm を得た。
On the other hand, the same test piece was used to measure the grain boundary groove depth by the conventional method. As the electrolytic solution, the same solution as in the above example was used, the test temperature was the same, immersion corrosion was performed for 2.5 hours, and then the intergranular corrosion groove depth was measured. As a result,
D = 0.31 μm, 1.23 μm, 1.79 μm were obtained.

【0024】図7は、この発明にかかる経年脆化検出方
法によって計測したデータと従来法によるデータとを比
較したグラフである。この図からもこの発明にかかる経
年脆化検出方法の方が、腐食に要する時間で約1/5に
短縮されており、また結晶粒界腐食溝深さも大きいこと
が容易に理解されるであろう。そして、こうして得たデ
ータを、予め求めておいてた、例えば図6に示すような
破面遷移温度線図(FATT)にプロットすれば、脆化
度の評価信頼度が高くなる。
FIG. 7 is a graph comparing the data measured by the method for detecting aged embrittlement according to the present invention with the data obtained by the conventional method. From this figure, it is easily understood that the method for detecting aged embrittlement according to the present invention shortens the time required for corrosion to about ⅕ and also has a large grain boundary corrosion groove depth. Let's do it. Then, if the data thus obtained is plotted in a fracture surface transition temperature diagram (FATT) as shown in FIG. 6, which has been obtained in advance, the evaluation reliability of the degree of embrittlement becomes high.

【0025】なお、上述実施例中、逆掃引して電流密度
の極小値を確認するとともに、この時点から粒界腐食の
準備に入るようにしているが、この実施例に限らず、ア
ノード活性ピーク電位や不動態保持電位を目安に粒界腐
食の準備に入ってもよい。
In the above-mentioned embodiment, the minimum value of the current density is confirmed by reverse sweeping and preparation for intergranular corrosion is started from this point. However, the present invention is not limited to this embodiment and the anode activity peak Preparation for intergranular corrosion may be started with reference to the potential or the passivation holding potential.

【0026】[0026]

【発明の効果】以上の説明の通り、この発明にかかる経
年脆化検出方法では、不純物元素の偏析した結晶粒界を
腐食させるに当り、結晶粒界が選択的に腐食する電位に
アノード分極させているので、短時間で、かつ粒界腐食
溝を明確に形成させることができる。このため、計測デ
ータの信頼度合は高く、予め求めておいた破面遷移温度
線図にプロットしてもその脆化度合の評価はきわめてす
ぐれたものということができる。したがってこの種検査
の保守管理作業上、その効率の向上と相まって信頼度合
も従来より大幅に向上させることができる。
As described above, in the method of detecting aged embrittlement according to the present invention, in corroding the crystal grain boundaries segregated by impurity elements, the crystal grain boundaries are anodically polarized to a potential at which the crystal grain boundaries are selectively corroded. Therefore, it is possible to form the intergranular corrosion groove clearly in a short time. Therefore, the reliability of the measurement data is high, and it can be said that the evaluation of the degree of embrittlement is extremely excellent even when plotted on the fracture surface transition temperature diagram obtained in advance. Therefore, in the maintenance and management work of this kind of inspection, the reliability can be greatly improved as compared with the conventional one, together with the improvement of the efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる経年脆化検出方法に適用する
結晶粒界腐食装置の一例を示す概略図。
FIG. 1 is a schematic diagram showing an example of a grain boundary corrosion apparatus applied to a method for detecting aged embrittlement according to the present invention.

【図2】分極曲線の一計測例を示すグラフ。FIG. 2 is a graph showing a measurement example of a polarization curve.

【図3】この発明にかかる経年脆化検出方法による計測
データと従来法による計測データとを粒界腐食溝深さ−
破面遷移温度FATT関係線図にプロットした比較した
グラフ。
FIG. 3 shows the intergranular corrosion groove depth--measurement data obtained by the aged embrittlement detection method according to the present invention and measurement data obtained by the conventional method.
The graph which compared and was plotted on the fracture transition temperature FATT relationship diagram.

【図4】従来の実施例を示す概念図。FIG. 4 is a conceptual diagram showing a conventional embodiment.

【図5】脆化度小の場合を示す結晶粒界の模式図。FIG. 5 is a schematic view of a grain boundary showing a case where the degree of embrittlement is small.

【図6】脆化度大の場合を示す結晶粒界の模式図。FIG. 6 is a schematic view of crystal grain boundaries showing a case where the degree of embrittlement is high.

【図7】予め求めていた破面遷移温度FATTを示す線
図。
FIG. 7 is a diagram showing a fracture surface transition temperature FATT obtained in advance.

【符号の説明】[Explanation of symbols]

1…電解セル 6…被測定物 12…照合電極 13…対極 14…ポテンショスタット 15…スキャナ 16…レコーダ 1 ... Electrolytic cell 6 ... Object to be measured 12 ... Reference electrode 13 ... Counter electrode 14 ... Potentiostat 15 ... Scanner 16 ... Recorder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解液に接する被計測部に電位を加え、
その電位を掃引しながら被計測部と対極との間に流れる
電流密度が極小値になったところで電位の掃引を一旦停
止させて被計測部に不動態皮膜を形成せしめ、不動態皮
膜形成後、電位を逆掃引させて電解液の電流密度の極小
値を確認するとともに、この電流密度の極小値を与える
電位を一定時間保持することにより被計測部の粒界を腐
食せしめ、しかる後粒界腐食溝深さを測定し、測定結果
を予め求めておいた破面遷移温度線図にプロットするこ
とを特徴とする経年脆化検出方法。
1. A potential is applied to a portion to be measured in contact with the electrolytic solution,
While sweeping the potential, when the current density flowing between the measured part and the counter electrode reaches a minimum value, the potential sweep is temporarily stopped and a passive film is formed on the measured part. By reverse sweeping the electric potential to check the minimum value of the current density of the electrolyte, and by holding the potential that gives this minimum value of the current density for a certain period of time, the grain boundaries of the measured part are corroded, and then the intergranular corrosion. A method for detecting aged embrittlement, which comprises measuring a groove depth and plotting the measurement result on a fracture surface transition temperature diagram obtained in advance.
JP4027017A 1992-02-14 1992-02-14 Method for detecting secular embrittlement Pending JPH05223726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4027017A JPH05223726A (en) 1992-02-14 1992-02-14 Method for detecting secular embrittlement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4027017A JPH05223726A (en) 1992-02-14 1992-02-14 Method for detecting secular embrittlement

Publications (1)

Publication Number Publication Date
JPH05223726A true JPH05223726A (en) 1993-08-31

Family

ID=12209326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4027017A Pending JPH05223726A (en) 1992-02-14 1992-02-14 Method for detecting secular embrittlement

Country Status (1)

Country Link
JP (1) JPH05223726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290140A (en) * 2016-09-29 2017-01-04 珠海格力电器股份有限公司 A kind of method checking Intergranular Corrosion of Austenitic Stainless Steel sensitivity
CN113176292A (en) * 2021-03-23 2021-07-27 中冶南方连铸技术工程有限责任公司 Judgment method for grain boundary embrittlement of casting blank

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290140A (en) * 2016-09-29 2017-01-04 珠海格力电器股份有限公司 A kind of method checking Intergranular Corrosion of Austenitic Stainless Steel sensitivity
CN106290140B (en) * 2016-09-29 2019-10-08 珠海格力电器股份有限公司 A method of examining Intergranular Corrosion of Austenitic Stainless Steel sensibility
CN113176292A (en) * 2021-03-23 2021-07-27 中冶南方连铸技术工程有限责任公司 Judgment method for grain boundary embrittlement of casting blank

Similar Documents

Publication Publication Date Title
Andrade et al. Corrosion rate monitoring in the laboratory and on-site
Kehler et al. Crevice corrosion stabilization and repassivation behavior of alloy 625 and alloy 22
Sagüés et al. Corrosion of epoxy coated rebar in Florida bridges
Kwon et al. Prediction of stress corrosion cracking susceptibility of stainless steels based on repassivation kinetics
JPH05223726A (en) Method for detecting secular embrittlement
Ferrer et al. Development of an aircraft lap joint simulant environment
Atrens Environmental conditions leading to Pitting/Crevice corrosion of a typical 12% chromium stainless steel at 80 C
Bjegovic et al. Test protocols for migrating corrosion inhibitors (MCI®) in reinforced concrete
Yang et al. Evaluation of Corrosion Inhibitors in Cooling Water Systems Using a Coupled Multi-Electrode Array Sensor
Vedalakshmi et al. Embeddable corrosion rate‐measuring sensor for assessing the corrosion risk of steel in concrete structures
Siebert Laboratory electrochemical test methods
JP3441181B2 (en) Method for detecting deterioration of super heat resistant alloy steel
JP4342715B2 (en) Intergranular corrosion diagnostic method for nickel base alloys
US4715218A (en) Method of determining degree of embrittlement of low alloy steel
Martínez et al. Corrosion-inhibitor efficiency control: comparison by means of different portable corrosion rate meters
JPH0224551A (en) Detecting method of degree of embrittlement of test specimen and detecting apparatus therefor
JPS60260839A (en) Electrochemical method for measuring degree of deterioration
Qian Testing steel corrosion in reinforced concrete
JPH10227784A (en) Creep damage evaluating method for tempered martensite based steel
JP2000241340A (en) Method and apparatus for measuring corrosion rate of weatherable steel material
JP3853250B2 (en) Local corrosion sensor, local corrosion detection method and local corrosion detection apparatus using the local corrosion sensor
Hurley et al. Candidate Corrosion Resistant Reinforcement Materials for Concrete Structures: Corrosion Propagation Behavior
Astuti et al. Corrosion assessment of steel bar in concrete by using electrochemical test method
SU1420503A1 (en) Method of determining optimized concentration of inhibitor
JPH02212755A (en) Electrochemical embrittlement detection