JPH0333007Y2 - - Google Patents

Info

Publication number
JPH0333007Y2
JPH0333007Y2 JP1983009556U JP955683U JPH0333007Y2 JP H0333007 Y2 JPH0333007 Y2 JP H0333007Y2 JP 1983009556 U JP1983009556 U JP 1983009556U JP 955683 U JP955683 U JP 955683U JP H0333007 Y2 JPH0333007 Y2 JP H0333007Y2
Authority
JP
Japan
Prior art keywords
gel
resistance
container
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983009556U
Other languages
Japanese (ja)
Other versions
JPS59116854U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP955683U priority Critical patent/JPS59116854U/en
Publication of JPS59116854U publication Critical patent/JPS59116854U/en
Application granted granted Critical
Publication of JPH0333007Y2 publication Critical patent/JPH0333007Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は皮膜が施工された金属板の交流インピ
ーダンスや直流抵抗を測定する電気的計測用ゲル
電極セルに関する。 金属の防食を目的として塗装される塗装部材に
おいては、外観的な欠陥が発生する以前に塗膜の
優劣を判断することが必要である。こうした判断
の目安には次に挙げる3つの事象がある。 (1) 塗膜の直流抵抗が短期に106Ω−cm2以下に低
下する塗膜は、その後短期のうちに塗膜に欠陥
が発生すると言われている。 (2) 吸水率の大きな塗膜は一般に塗膜の直流抵抗
低下も著しく、塗膜の耐食性も劣る。この塗膜
の吸水率は塗膜の電気容量を測定することで次
式(1)で知ることができるが、直流抵抗のように
明確な目安はない。 水分(%)=100log(Co/Cp)/log80 …(1) ここで、Cpは初期の塗膜電気容量、またCo
はn時間浸漬後の塗膜の電気容量を示す。 (3) 塗膜のtanδが0.2を越えるとその後、短期間
の内に塗膜に欠陥が発生すると言われている。 ここで、このtanδは交流損失と呼ばれているも
ので、塗膜の交流抵抗、電気容量、及び測定周波
数ωから計算できる特性値で、絶縁材等の特性を
評価するのにもよく用いられる数値であり、小さ
い程絶縁能力が優れている。 このように、塗装部材(被検体)における塗膜
の優劣はその電気特性により判断される。このた
め、従来では次のような方法により塗膜の優劣の
判断を行なつていた。 (イ) 電解質水溶液にリード線を取付けた被検体
を浸漬すると共に、同水溶液中にリード線を
取付けたステンレス、白金等からなる電極
(対極)を設け、両リード線間に測定器を接
続して被検体の直流抵抗及び電気容量を測定
する方法。 (ロ) 電解質水溶液にアセチルセルロース等の増
粘材を添加し、導電性ペーストを作る。この
ペーストを被検体の表面に塗布して電解質層
とし、かつこの上にアルミニウム箔を張り付
けて対極とする。そして前記被検体の下地金
属表面とアルミニウム箔(対極)とにリード
線を夫々接続し、これらリード線間に測定器
を設けて被検体の直流抵抗や電気容量を測定
する。 (ハ) 被検体とアルミニウム箔等の金属板(対
極)の間に、電解質水溶液が含浸されたフエ
ルトやスポンジを介在させる。そして前記被
検体の下地金属表面と対極とにリード線を
夫々接続し、これらリード線間に測定器を設
けて被検体の直流抵抗や電気容量を測定す
る。 しかしながら、上述した従来の測定技術にあつ
ては以下に示す種々の欠点があつた。 即ち、前記(イ)の測定技術にあつては、大きな被
検体の測定が困難であること、エツジ部や端面の
影響を排除できないので、正確な測定ができない
こと、等の欠点を有する。前記(ロ)の測定技術にお
いては、被検体毎にペーストの塗布を行なうため
に作業の煩雑さを招くこと、正確な測定面積の確
保がペーストのはみ出しにより損なわれること、
測定後にペーストを除去する必要があり作業が煩
雑となること、アルミニウム箔は強度が低いため
再使用が難しく、電極を多数必要とすること、等
の欠点を有する。更に前記(ハ)の測定技術において
は電解質水溶液のフエルト等の含浸量の制御が難
しく通常は実用に供しえない欠点を有する。 本考案は上記事情に鑑みなされたもので、プラ
スチツクフイルム、塗膜、ライニング材、溶射
膜、或いは化成処理型皮膜等の各種皮膜が施工さ
れた金属板(被検体)における該皮膜の直流抵抗
や電気容量を簡便かつ短時間が測定し得る極めて
構造が簡単な電気的計測用ゲル電極セルを提供し
ようとするものである。 即ち、本考案は絶縁材からなる片封じ筒状の容
器と、この容器内に配設された耐食材料からなる
電極と、前記容器内に前記電極を包み込むように
充填され、固化された平坦な端部を前記容器の開
放端から僅かに突出させた形状を有すると共に、
アクリルアミドモノマー、N,N′−メチレンビ
スアクリルアミド、N,N,N′,N′−テトラメ
チルエチレンジアミン及び過硫酸アンモニウムを
少なくとも含む電解質水溶液ゲルとを具備したこ
とを特徴とする電気的計測用ゲル電極セルであ
る。 以下、本考案の一実施例を第1図を参照して詳
細に説明する。 図中の1はプラスチツクやセラミツク等の絶縁
材料からなる片封じ円筒状又は片封じ角筒状の容
器である。つまり、この容器1は例えば底部側が
開放され、上壁2が塞じられた構造になつてお
り、かつ該上壁2の中央には後記端子線を引出す
ための孔3が開孔されている。前記容器1内には
平板状の電極4が配設されている。この電極4は
塩類等の電解質水溶液に対して耐食性を有するス
テンレス、ニツケルなどの金属或いはカーボン等
の材料から形成されている。また前記電極4の上
面には端子線5が接続され、かつ該端子線5は前
記容器1の上壁2の孔3を通つて外部に引き出さ
れている。なお、上壁2の孔3と端子線5の間の
〓間は接着剤6によつて封止されている。そし
て、前記容器1内には電解質水溶液ゲル7が前記
電極4を包み込むように充填されており、かつ該
ゲル7の固化された平坦な端部は前記容器1の開
放端から僅か(例えば0.1mm)突出して突出部8
を形成することによりゲル電極セルCを構成して
いる。 しかして、第2図に示すように下地金属9の表
面を皮膜10で覆つた被検体Sの上に第1図図示
のゲル電極セルCにおける水溶液ゲル7の突出部
8を密着させ、端子線5及び被検体Sの下地金属
9から夫々引出したリード線L1,L2の間に測定
器11を設け、この測定器11により以下に示す
被検体Sの皮膜10の直流抵抗、及び同皮膜10
の交流インピーダンスを測定する。 (i) 皮膜の直流抵抗の測定 一般にベーコン法と呼ばれている方法によつて
被検体Sの皮膜10の直流抵抗を測定するのが通
例である。第3図は第2図による直流抵抗測定時
の回路を模式的に示したもので、スイツチSWが
開放された時の電圧E0は次式(2)で示すことがで
きる。 E0=E×RV/RC+RG+RB+RV …(2) 〔但し、式中のEは標準電圧、RCは皮膜の直
流抵抗、RGはゲル7の直流抵抗、RBは標準電圧
の内部抵抗、RVは電圧計Vの内部抵抗、を夫々
示す。〕 また、スイツチSWが短絡された時の電圧ES
次式(3)で示すことができる。 ES=E×1/1/RS+1/RB+RV/RC+RG
1/1/RS+1/RB+RV×RV/RB+RV…(3) 〔但し、式中のRSは短絡用直流抵抗を示す。〕 ここで、RV≫RC≧RSの場合を考えてみる。但
し、RC≧RS≫RG≧RB又はRC≧RS≫RB≧RGは既に
成り立つているものとする。すると、前記(2)式及
び(3)式は次式(4)及び(5)のように近似することがで
きる。 E0=E …(4) ES=E×RS/RC+RS …(5) よつて、測定すべき皮膜の直流抵抗RCは次式
(6)により求めることができる。 RC=RS(EO/ES−1) …(6) (ii) 皮膜の交流インピーダンスの測定 皮膜の電気容量及びtanδの測定にはインピーダ
ンスブリツジが用いられ、かつ電源には1kHzの
サイン波が用いられるのが通例である。第4図は
第2図による交流インピーダンスの測定時の回路
を模式的に示したものであり、同回路での電気容
量CT及び交流抵抗RTは次式(7)及び(8)で示すこと
ができる。 CT=1/1/Cf+1/CC′ …(7) RT=Rf+RG+RC′ …(8) 〔但し、式中のCfは電極4界面の電気容量、
CC′は皮膜の電気容量、Rfは電極4界面の交流抵
抗、Rgは水溶液ゲル7の交流抵抗、RC′は皮膜の
交流抵抗を示す〕 ところで、前記(7)式の電極4界面の電気容量Cf
と皮膜の電気容量CC′とを比べると、CfはmF、
CC′はnF台で、Cf≫CC′となるので、次式(9)のよ
うに近似できる。 CT=CC′ …(9) また、前記(8)式は通常RC′≫Rf≧RG又はRC′≫
RG≧Rfなので、次式(10)のように近似できる。 RT=RC′ …(10) よつて、前記CT及びRTを用いることにより、
皮膜の電気容量及び交流抵抗を求めることがで
き、これより皮膜の含水率を計算できる。 また、tanδは次式(11)で求めることができる。 tanδ=1/(ωRTCT) …(11) 〔但し、ω=2πf(fは1kHz)を示す〕 したがつて、本考案の電気的計測用ゲル電極セ
ルによれば次のような効果を奏する。 被検体に対してゲル電極セルを設置するた
め、常に一定の測定面積を確保でき、ひいては
正確な直流抵抗、交流インピーダンスの測定が
可能となる。 電解液をゲルとして固定したので、従来法に
比べて1/10以下の時間で測定できる。 電解液をゲルとして固定したため、携帯が可
能となり、屋外での測定も容易に行なうことが
できる。 次に、本考案の具体的なゲル電極セル並びにそ
のゲル電極セルによる実験を以下に詳細に説明す
る。 実施例 1 まず、蒸留水1に1級塩化カリウム300gを
40℃に加温しながら添加して溶解し、完全に溶解
した後アクリルアミドモノマ50gを加え、撹拌し
て溶解した。つづいて、この溶解液にN,N′−
メチレンビスアクリルアミド1g(架橋材)を
N,N,N′,N′−テトラメチルエチレンジアミ
ン0.5ml(重合開始材)と共に添加した後、残留
物がなくなるまで充分に撹拌、溶解した。更に過
硫酸アンモニウムの1%水溶液1mlを加え、直ち
にこ調製液を、予めステンレス製メツシユ網から
なる電極4及びステンレス製の0.5mmφ線からな
る端子線5が設けられたポリエチレン製の片封じ
円筒状の容器1の開放端から同容器1内に充填し
た。この時、容器1の開放端には1mm幅のビニー
ルテープにより筒状部が形成され、その部位まで
調製液を流し込んだ。この後、調製液がゲル状に
固化したら、ビニールテープを剥離してゲル7の
突出部8が1mmである第1図図示のゲル電極セル
を製作した。 しかして、本実験例1のゲル電極セルを用いて
被検体の皮膜の電気特性を測定したところ、下記
The present invention relates to a gel electrode cell for electrical measurement that measures the AC impedance and DC resistance of a metal plate coated with a film. In painted parts that are painted for the purpose of preventing metal corrosion, it is necessary to judge the quality of the paint film before appearance defects occur. The following three events serve as a guideline for such judgment. (1) It is said that a coating whose DC resistance decreases to 10 6 Ω-cm 2 or less in a short period of time will develop defects in the coating within a short period of time. (2) Paint films with a high water absorption rate generally have a significant drop in DC resistance, and the corrosion resistance of the paint film is also poor. The water absorption rate of this coating film can be determined by the following formula (1) by measuring the capacitance of the coating film, but unlike DC resistance, there is no clear guideline. Moisture (%) = 100log (C o /C p )/log80...(1) Here, C p is the initial coating film capacitance, and C o
indicates the capacitance of the coating film after n hours of immersion. (3) It is said that if the tan δ of the paint film exceeds 0.2, defects will occur in the paint film within a short period of time. Here, this tanδ is called AC loss, and is a characteristic value that can be calculated from the AC resistance, capacitance, and measurement frequency ω of the coating film, and is often used to evaluate the characteristics of insulation materials, etc. It is a numerical value, and the smaller the value, the better the insulation ability. In this way, the quality of the coating film on the painted member (test object) is determined by its electrical properties. For this reason, conventionally the following method was used to judge the quality of the coating film. (b) Immerse the test object with a lead wire attached in an electrolyte aqueous solution, and place an electrode (counter electrode) made of stainless steel, platinum, etc. with a lead wire attached in the same aqueous solution, and connect a measuring device between both lead wires. A method for measuring the DC resistance and capacitance of a test object. (b) Add a thickener such as acetylcellulose to the electrolyte solution to make a conductive paste. This paste is applied to the surface of the subject to form an electrolyte layer, and an aluminum foil is pasted on top of this to form a counter electrode. Then, lead wires are connected to the underlying metal surface of the test object and the aluminum foil (counter electrode), and a measuring device is provided between these lead wires to measure the direct current resistance and electric capacitance of the test object. (c) A felt or sponge impregnated with an aqueous electrolyte solution is interposed between the subject and a metal plate (counter electrode) such as aluminum foil. Then, lead wires are connected to the base metal surface of the test object and the counter electrode, respectively, and a measuring device is provided between these lead wires to measure the direct current resistance and electric capacitance of the test object. However, the conventional measurement techniques described above have various drawbacks as shown below. That is, the measurement technique (a) has drawbacks such as difficulty in measuring large objects, and inability to eliminate the effects of edges and end faces, making accurate measurements impossible. In the measurement technique (b) above, the paste is applied to each specimen, which makes the work complicated, and securing an accurate measurement area is impaired due to the paste protruding.
The disadvantages include that the paste must be removed after measurement, making the work complicated, that aluminum foil has low strength and is difficult to reuse, and that a large number of electrodes are required. Furthermore, the above measurement technique (c) has the disadvantage that it is difficult to control the amount of electrolyte aqueous solution impregnated into the felt, etc., making it usually impractical. The present invention was developed in view of the above circumstances, and it is possible to measure the direct current resistance and It is an object of the present invention to provide a gel electrode cell for electrical measurements with an extremely simple structure that allows capacitance to be measured simply and in a short time. That is, the present invention includes a single-sealed cylindrical container made of an insulating material, an electrode made of a corrosion-resistant material disposed inside the container, and a flat solidified container filled with the container so as to enclose the electrode. It has a shape in which the end portion slightly protrudes from the open end of the container, and
A gel electrode cell for electrical measurements, comprising an aqueous electrolyte gel containing at least an acrylamide monomer, N,N'-methylenebisacrylamide, N,N,N',N'-tetramethylethylenediamine, and ammonium persulfate. It is. Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG. Reference numeral 1 in the figure indicates a container made of an insulating material such as plastic or ceramic and having a cylindrical shape with one side sealed or a rectangular cylindrical container with one side sealed. In other words, this container 1 has a structure in which, for example, the bottom side is open and the top wall 2 is closed, and a hole 3 is opened in the center of the top wall 2 for pulling out the terminal wire described later. . A flat electrode 4 is disposed within the container 1 . The electrode 4 is made of a metal such as stainless steel or nickel, or a material such as carbon, which has corrosion resistance against electrolyte aqueous solutions such as salts. Further, a terminal wire 5 is connected to the upper surface of the electrode 4, and the terminal wire 5 is led out through the hole 3 in the upper wall 2 of the container 1. Note that the space between the hole 3 in the upper wall 2 and the terminal wire 5 is sealed with an adhesive 6. The container 1 is filled with an electrolyte aqueous gel 7 so as to surround the electrode 4, and the solidified flat end of the gel 7 is slightly (for example, 0.1 mm) away from the open end of the container 1. ) protruding protrusion 8
A gel electrode cell C is constituted by forming. As shown in FIG. 2, the protrusion 8 of the aqueous gel 7 in the gel electrode cell C shown in FIG. A measuring device 11 is provided between the lead wires L 1 and L 2 drawn out from the base metal 9 of the specimen S and the DC resistance of the coating 10 of the specimen S shown below, and the same coating. 10
Measure the AC impedance of (i) Measuring the DC resistance of the film It is customary to measure the DC resistance of the film 10 of the subject S by a method generally called Bacon's method. FIG. 3 schematically shows a circuit for measuring DC resistance according to FIG. 2, and the voltage E 0 when the switch SW is opened can be expressed by the following equation (2). E 0 =E×R V /R C +R G +R B +R V …(2) [However, in the formula, E is the standard voltage, R C is the DC resistance of the film, R G is the DC resistance of the gel 7, R B represents the internal resistance of the standard voltage, and R V represents the internal resistance of the voltmeter V. ] Furthermore, the voltage E S when the switch SW is short-circuited can be expressed by the following equation (3). E S =E×1/1/R S +1/R B +R V /R C +R G +
1/1/R S +1/R B +R V ×R V /R B +R V ...(3) [However, R S in the formula indicates the short-circuit DC resistance. ] Here, consider the case where R V ≫R C ≧R S. However, it is assumed that R C ≧R S ≫R G ≧R B or R C ≧R S ≫R B ≧R G already holds true. Then, the above equations (2) and (3) can be approximated as shown in the following equations (4) and (5). E 0 =E …(4) E S =E×R S /R C +R S …(5) Therefore, the DC resistance R C of the film to be measured is determined by the following formula:
It can be obtained using (6). R C = R S (E O /E S −1) …(6) (ii) Measuring the AC impedance of the film An impedance bridge is used to measure the capacitance and tanδ of the film, and a 1 kHz power supply is used. A sine wave is usually used. Figure 4 schematically shows the circuit used to measure AC impedance according to Figure 2, and the electrical capacitance C T and AC resistance R T in the same circuit are expressed by the following equations (7) and (8). be able to. C T = 1/1/C f + 1/C C ′...(7) R T =R f +R G +R C ′...(8) [However, C f in the formula is the electric capacity of the electrode 4 interface,
C C ′ is the capacitance of the film, R f is the AC resistance at the interface of the electrode 4, R g is the AC resistance of the aqueous gel 7, and R C ′ is the AC resistance of the film] By the way, the electrode 4 in the above formula (7) Interface capacitance C f
Comparing the film capacitance C C ′, C f is mF,
Since C C ′ is on the order of nF and C f ≫C C ′, it can be approximated as shown in the following equation (9). C T =C C ′ …(9) Also, the above formula (8) is usually R C ′≫R f ≧R G or R C ′≫
Since R G ≧R f , it can be approximated as shown in the following equation (10). R T =R C ′...(10) Therefore, by using the above C T and R T ,
The capacitance and AC resistance of the film can be determined, and from this the water content of the film can be calculated. Further, tan δ can be determined using the following equation (11). tanδ=1/(ωR T C T ) …(11) [However, ω=2πf (f is 1kHz)] Therefore, the gel electrode cell for electrical measurement of the present invention has the following effects. play. Since a gel electrode cell is installed relative to the subject, a constant measurement area can always be ensured, which in turn makes it possible to accurately measure DC resistance and AC impedance. Since the electrolyte is fixed as a gel, measurements can be made in less than 1/10 the time compared to conventional methods. Since the electrolyte is fixed as a gel, it is portable and can be easily measured outdoors. Next, a specific gel electrode cell of the present invention and experiments using the gel electrode cell will be described in detail below. Example 1 First, add 300g of primary potassium chloride to 1 part of distilled water.
The mixture was added and dissolved while heating to 40° C. After completely dissolving, 50 g of acrylamide monomer was added and dissolved with stirring. Next, add N, N'-
After adding 1 g of methylenebisacrylamide (crosslinking material) together with 0.5 ml of N,N,N',N'-tetramethylethylenediamine (polymerization initiator), the mixture was thoroughly stirred and dissolved until no residue remained. Furthermore, 1 ml of a 1% aqueous solution of ammonium persulfate was added, and the prepared solution was immediately poured into a polyethylene single-sealed cylindrical tube, on which an electrode 4 made of a mesh mesh made of stainless steel and a terminal wire 5 made of a stainless steel 0.5 mm diameter wire were provided in advance. The container 1 was filled from the open end of the container 1. At this time, a cylindrical part was formed at the open end of the container 1 with a 1 mm wide vinyl tape, and the prepared liquid was poured into that part. Thereafter, when the prepared solution solidified into a gel-like state, the vinyl tape was peeled off to produce the gel electrode cell shown in FIG. 1, in which the protrusion 8 of the gel 7 was 1 mm. However, when we measured the electrical characteristics of the test object's film using the gel electrode cell of Experimental Example 1, we found the following results:

【表】 上記第1表より本考案のゲル電極セルは被検体
の代表的な部位(中央部)の塗膜箇所を選択的に
測定できるため、安定な測定体が得られる。これ
に対し被検体を電解質水溶液中に浸漬する方法
(比較例)では被検体のエツジ部に起因する電気
の容量の誤差が5〜15%程度測定値中に加えられ
るため、安定した測定が困難となる。 また、本考案のゲル電極セルは、ゲルの強度が
充分なために、400回以上の使用に耐えることが
できた。 実施例 2 ゲル調製液として塩化カリウムの添加量を50
g、アクリルアミドモノマの添加量を25gにした
以外、実験例1と同組成とし、これを用いて実験
例1と同様、第1図図示のゲル電極セルを製作し
た。 しかして、このゲル電極セルを用いて実験例1
と同様な被検体について、その電気特性を測定し
たところ、第2表に示す結果を得た。
[Table] As shown in Table 1 above, the gel electrode cell of the present invention can selectively measure the coating film at a representative part (center) of the subject, so a stable measuring body can be obtained. On the other hand, in the method of immersing the specimen in an electrolyte aqueous solution (comparative example), an error in the electrical capacity caused by the edges of the specimen is added to the measured value by about 5 to 15%, making stable measurement difficult. becomes. In addition, the gel electrode cell of the present invention was able to withstand more than 400 uses because the gel had sufficient strength. Example 2 The amount of potassium chloride added to the gel preparation solution was 50%.
The gel electrode cell shown in FIG. 1 was manufactured in the same manner as in Experimental Example 1 using the same composition as in Experimental Example 1 except that the amount of the acrylamide monomer added was 25g. Therefore, using this gel electrode cell, Experimental Example 1
When the electrical properties of a similar test object were measured, the results shown in Table 2 were obtained.

【表】 上記第2表より明らかな如く、実験例1と同様
な安定した測定値が得られた。また、ゲル電極セ
ルの耐用度も400回以上であつた。 参照例 まず、蒸留水1に1級塩化カリウムを400℃
程度に加温しながら添加して溶解し、完全に溶解
した後90℃まで昇温した。液温が90℃まで上つた
後寒天20gを溶解状態をみながら徐々に加えて溶
解した。溶解後直ちに、調製液を予めステンレス
製メツシユ網からなる電極4及びステンレス製の
0.5mmφ線からなる端子線5が設けられたガラス
製片封じ円筒状の容器1の開放端から同容器1内
に流し込んだ。この時、容器1の開放端には0.5
mm幅のビニールテープを筒状に設け、この部位ま
で調製液を流し込んだ。この後、調製液がゲル状
に固化したら、ビニールテープを剥離し、ゲル7
の突出部8が0.5mmである第1図図示のゲル電極
セルを製作した。 しかして、本参照例のゲル電極セルを用いて実
施例1と同様な被検体の電気特性を測定したとこ
ろ、下記第3表に示す結果となつた。
[Table] As is clear from Table 2 above, stable measured values similar to those in Experimental Example 1 were obtained. Furthermore, the durability of the gel electrode cell was more than 400 times. Reference example: First, add primary potassium chloride to 1 part distilled water at 400°C.
It was added and dissolved while heating to a certain degree, and after completely dissolving, the temperature was raised to 90°C. After the temperature of the liquid rose to 90°C, 20 g of agar was gradually added and dissolved while checking the dissolution state. Immediately after dissolution, the prepared solution was placed in advance on the electrode 4 made of a stainless steel mesh net and the stainless steel mesh.
The mixture was poured into the container 1 from the open end of a glass single-sealed cylindrical container 1 provided with a terminal wire 5 made of a 0.5 mmφ wire. At this time, the open end of container 1 has 0.5
A mm-wide vinyl tape was provided in a cylindrical shape, and the prepared solution was poured into this area. After this, when the prepared solution solidifies into a gel, peel off the vinyl tape and remove the gel 7.
A gel electrode cell as shown in FIG. 1 was manufactured in which the protrusion 8 was 0.5 mm. When the gel electrode cell of this reference example was used to measure the electrical characteristics of the same test object as in Example 1, the results were shown in Table 3 below.

【表】 上記第3表から明らかな如く、実験例1と同
様、安定した測定値が得られた。但し、ゲル強度
がアクリルアミド系ゲルほどないため、ゲル電極
セルの耐用度は30回程度と低下した。 以上詳述した如く、本考案によれば金属板表面
に施工された各種皮膜の直流抵抗や電気容量(交
流インピーダンス)を簡便かつ短時間に精度よく
測定でき、ひいては前記皮膜の優劣の判定を正確
に行なうことが可能で、しかも構造が簡単な電気
的計測用ゲル電極セルを提供できる。
[Table] As is clear from Table 3 above, similar to Experimental Example 1, stable measured values were obtained. However, because the gel strength was not as strong as acrylamide gel, the durability of the gel electrode cell was reduced to about 30 times. As detailed above, according to the present invention, the DC resistance and electric capacity (AC impedance) of various coatings applied to the surface of a metal plate can be easily and accurately measured in a short time, and the superiority or inferiority of the coating can be accurately determined. Therefore, it is possible to provide a gel electrode cell for electrical measurement that can be used for electrical measurements and has a simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示すゲル電極セル
の断面図、第2図は同ゲル電極セルによる被検体
の電気特性の測定状態を示す概略図、第3図は第
2図での皮膜の直流抵抗を測定した時の模式的な
回路を示す図、第4図は第2図での皮膜の電気容
量を測定した時の模式的な回路を示す図である。 1……容器、4……電極、7……電解質水溶液
ゲル、8……突出部、9……下地金属、10……
皮膜、11……測定器、C……ゲル電極セル、S
……被検体。
FIG. 1 is a cross-sectional view of a gel electrode cell showing an embodiment of the present invention, FIG. 2 is a schematic diagram showing how the gel electrode cell measures the electrical characteristics of a subject, and FIG. FIG. 4 is a diagram showing a schematic circuit when measuring the DC resistance of the film, and FIG. 4 is a diagram showing a schematic circuit when measuring the capacitance of the film in FIG. DESCRIPTION OF SYMBOLS 1... Container, 4... Electrode, 7... Electrolyte aqueous gel, 8... Protrusion, 9... Base metal, 10...
Film, 11... Measuring device, C... Gel electrode cell, S
...Subject.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 絶縁材からなる片封じ筒状の容器と、この容器
内に配設された耐食材料からなる電極と、前記容
器内に前記電極を包み込むように充填され、固化
された平坦な端部を前記容器の開放端から僅かに
突出させた形状を有すると共に、アクリルアミド
モノマー、N,N′−メチレンビスアクリルアミ
ド、N,N,N′,N′−テトラメチルエチレンジ
アミン及び過硫酸アンモニウムを少なくとも含む
電解質水溶液ゲルとを具備したことを特徴とする
電気的計測用ゲル電極セル。
A single-sealed cylindrical container made of an insulating material, an electrode made of a corrosion-resistant material disposed inside the container, and a flat end portion filled with and solidified so as to enclose the electrode in the container. an aqueous electrolyte gel having a shape slightly protruding from the open end of the gel and containing at least an acrylamide monomer, N,N'-methylenebisacrylamide, N,N,N',N'-tetramethylethylenediamine, and ammonium persulfate. A gel electrode cell for electrical measurement, characterized by comprising:
JP955683U 1983-01-26 1983-01-26 Gel electrode cell for electrical measurement Granted JPS59116854U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP955683U JPS59116854U (en) 1983-01-26 1983-01-26 Gel electrode cell for electrical measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP955683U JPS59116854U (en) 1983-01-26 1983-01-26 Gel electrode cell for electrical measurement

Publications (2)

Publication Number Publication Date
JPS59116854U JPS59116854U (en) 1984-08-07
JPH0333007Y2 true JPH0333007Y2 (en) 1991-07-12

Family

ID=30141013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP955683U Granted JPS59116854U (en) 1983-01-26 1983-01-26 Gel electrode cell for electrical measurement

Country Status (1)

Country Link
JP (1) JPS59116854U (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE372714B (en) * 1973-04-13 1975-01-13 Lkb Produkter Ab
JPS5011286A (en) * 1973-05-31 1975-02-05

Also Published As

Publication number Publication date
JPS59116854U (en) 1984-08-07

Similar Documents

Publication Publication Date Title
Taylor et al. AC admittance of the metal/insulator/electrolyte interface
TW306078B (en)
EP0437857A2 (en) A method for producing a solid capacitor and a solid capacitor obtainable by said method
Jones et al. The behaviour of the lead dioxide electrode. Part 3.—Overvoltage during oxygen evolution in H 2 SO 4
Lisowska-Oleksiak et al. Ionic transport of Li+ in polymer films consisting of poly (3, 4-ethylenedioxythiophene) and poly (4-styrenesulphonate)
JPH0333007Y2 (en)
JPS6179219A (en) electrolytic capacitor
Sandi et al. Impedance and voltammetric studies of electrogenerated polyaniline conducting films
JPH0432982B2 (en)
De Tacconi et al. The kinetics and mechanism of the cathodic reduction of monomolecular oxide layers electrochemically formed on platinum in bisulphate melts under constant ageing conditions
Barton et al. Estimation of the residual capacity of maintenance-free lead acid batteries Part 1. Identification of a parameter for the prediction of state-of-charge
JPS60200153A (en) Metal corrosion measuring apparatus
JPH07190973A (en) Method for determining property of base material and device used therefor
JP3651601B2 (en) Electrochemical measurement cell and electrochemical measurement method using the same
Rauch et al. A Study of surface chromium on tinplate
Petrocelli Anodic Behavior of Aluminum at Low Potentials
JPS6091250A (en) Electrochemical measurement method
GB1577724A (en) Humidity sensors
US4840708A (en) Process for the precise determination of the surface area of an electrically conducting shaped body
JPH03188364A (en) Paint film measurement probe
JPH0330267B2 (en)
JPH02186617A (en) Solid electrolytic capacitor and manufacture thereof
US4808276A (en) Method for checking in a moving mode the continuity of a metal covering on a metal wire of different nature
SU1571472A1 (en) Method of determining corrosion resistance of metal with polymeric coating
JPH02148566A (en) Polymer-coated foam electrode and its manufacturing method