JP3651601B2 - Electrochemical measurement cell and electrochemical measurement method using the same - Google Patents

Electrochemical measurement cell and electrochemical measurement method using the same Download PDF

Info

Publication number
JP3651601B2
JP3651601B2 JP2002154204A JP2002154204A JP3651601B2 JP 3651601 B2 JP3651601 B2 JP 3651601B2 JP 2002154204 A JP2002154204 A JP 2002154204A JP 2002154204 A JP2002154204 A JP 2002154204A JP 3651601 B2 JP3651601 B2 JP 3651601B2
Authority
JP
Japan
Prior art keywords
electrochemical measurement
coating film
cell
electrolyte solution
measurement method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002154204A
Other languages
Japanese (ja)
Other versions
JP2003344332A (en
Inventor
徹 多記
昌憲 永井
弘往 田邉
昌昭 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP2002154204A priority Critical patent/JP3651601B2/en
Publication of JP2003344332A publication Critical patent/JP2003344332A/en
Application granted granted Critical
Publication of JP3651601B2 publication Critical patent/JP3651601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塗装された金属の、塗膜下腐食診断を電気化学的手段で行う場合の測定セル部分に関する。
【0002】
【従来の技術】
塗膜下金属の腐食診断を非破壊で行う方法として、従来より、微少な直流電流を印加するカレントインタラプター法を応用した方法、周波数を変えた交流電圧を印加するACインピーダンス法等が行われている。以上の方法は試験室内で行う測定状態の整った好適な場合、共に信頼性のあるデータを得られる方法であり、多くの実験データが報告されている。
【0003】
しかしながら測定状態が一定ではない現場の構造物の塗膜診断を行う場合、被測定面は平面とは限らず、パイプ等の曲面であったり、凹凸がある場合がある。また、水平面とは限らず、垂直面、下向き面等が対象となることもある。測定部の曲率が大きい場合や凹凸が激しい場合、従来技術の固形のセル(例えば特開平2−285250号公報)では測定面に良好な状態で設置することができず、あるいは設置できても塗膜と密着しないため測定面積が一定とならず測定値の精度が低下する不都合があった。
【0004】
【発明が解決しようとする課題】
本発明の目的は、曲面、凹凸の激しい面、垂直面、下向き面等、被塗面の状態を問わず測定することができ、かつ高抵抗塗膜のときでさえ外部ノイズの影響を避けられ、正確な測定をすることのできる電気化学的測定セル及びこれを用いた電気化学的測定方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明に従って、セル本体が、ペースト状の電解質溶液を保持する一定の大きさの開口部及び該電解質溶液が乾燥するのを防ぐためのカバーを備えたマグネットシートであり、該開口部に分極の小さい対極材を設置され、更にセル全体が導電性遮蔽材料で覆れ、該導電性遮蔽材料が高絶縁材を介して塗膜上に着脱自在に保持され、アースされたことを特徴とする電気化学的測定セル及びこれを用いた電気化学的測定方法が提供される。
【0006】
【発明の実施の形態】
以下に、本発明の実施の形態を詳細に説明する。
【0007】
本発明の電気化学的測定セル及びこれを用いた電気化学的測定方法について、図1〜図3を用いて説明する。
【0008】
本発明の電気化学的測定セル部分は、図1に示すように柔軟性に富むマグネットシート1をセル本体とし、一定面積の開口部に電解質を含むペースト状の溶液を充填することにより、平面以外の面でも電解質溶液を測定面に密着させることができ、またカバー2の覆いを付けることにより、溶液水分の蒸発を防ぎ、被測定塗膜が高耐久性で、測定のため長時間浸漬する必要がある場合も対応できる。また、簡易型で安価なため、多数、現場の構造物に設置しておき、数日後に測定することもできる。高耐久性塗膜の測定においては、電解質が浸透するのに時間がかかり、通常設置してすぐには測定することはできず、このような使い方が必須である。
【0009】
本発明のマグネットシート1は、測定面がパイプ等の曲面であったり凹凸がある面に密着できるように柔軟なものが好ましく、磁石等の磁性体をバインダー材料のブタジエンゴム、スチレンゴム及びニトリルゴム等の合成ゴムや天然ゴムと混練させて形成することができる。シートには一定面積の開口部を要するので、平面状のシートを形成した後に開口部に必要な面積を開口することにより作製することができる。シートの厚さは0.5mm〜50mmが好ましい。
【0010】
カバー2は、上記開口部に保持させるペースト状の電解質溶液が上記の様に長時間設置されても乾燥するのを防止するためのものであり、溶液水分の蒸発を防ぐものであればなんでも構わない。材料としては、ポリエチレンやポリプロピレン等の有機樹脂が好適である。
【0011】
シート開口部に設置される電極となる対極材3は、分極の小さい材料であり、具体的には、白金、銀・塩化銀、ステンレススチール、鉄、カーボン、アルミニウム、チタン又はモリブデンやタングステン等と鉄の合金材等を使用することができ、好ましくは白金、カーボン、ステンレススチール及び銀・塩化銀であり、特に好ましくは白金である。対極材3は、測定する塗装された金属の鋼材7の素地面と塗膜下金属腐食診断装置5を介して接している。
【0012】
測定時における周囲の電気ノイズの侵入を防ぐため導電性遮蔽材4は、金属製の網あるいはアルミニウム箔のような導電性の柔軟な材料を、セル本体を覆うように高絶縁材10を介して鋼材7の塗膜6上に磁石8や粘着テープ等で着脱自在に保持される。ノイズ遮蔽材が金属の網の場合、網目があまり大きくてはノイズ侵入を防ぐ効果が低下するので、少なくとも網目の大きさが1cm以下であることが好ましい。また、導電性遮蔽材はアースする必要がある。遮蔽材4は導電性を有するものなら何でもよく、金属の網、アルミニウム箔、金属を織り込んだ布又は金属を蒸着した材料でも使用することができる。高絶縁材10は、絶縁材4と塗膜6を電気的絶縁し、塗膜4から高絶縁材10への測定時における漏れ電流を遮断するために挿入されている。高絶縁材10の材料としては、ポリテトラフルオロエチレン等の電気抵抗値が1012Ω・cm以上のものが好ましい。
【0013】
ペースト状の電解質溶液9は、垂直面又は下向き面に設置されうるので、セルの開口部から液漏れしない程度の粘度を有する材料であることが好ましく、特には水溶液が高粘性を有するカルボキシメチルセルロースが好適に使用でき、これ以外にも吸水性高分子材料等が使用できる。カルボキシメチルセルロースの含有量は粘性を考慮すると、電解質溶液全質量に対して1質量%〜20質量%が好ましい。電解質としては、通常電気化学的測定に使用される電解質は何でも使用でき、例えば、食塩、塩化カリウム、塩化アンモニウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、硝酸アンモニウム、硝酸ナトリウム及び硝酸カリウム等が挙げられ、その含有量は、電解質溶液の抵抗が1kΩ・cm以下、好ましくは100Ω・cm以下が適当である。
【0014】
塗膜下金属腐食診断装置5は、カレントインタラプター法により塗膜抵抗、塗膜容量、分極抵抗及び分極容量を測定し、これらの効果は下記の通りである。
・塗膜抵抗(Rf):塗装鋼材の塗膜抵抗はその塗膜の健全度を知るうえで有効である。
・塗膜容量(Cf):塗膜中の水分の割合に関係する数値である。これにより吸水のし易く、膜を介しての腐食のし易さに関係する。膜の特性を知るのに重要である。
・分極抵抗(Re):分極抵抗は電極反応である腐食反応に対する抵抗であり、分極抵抗が小さくなることは塗膜下金属界面に水分の層ができるか、腐食の開始により、塗膜と金属の密着が損なわれてきたことを反映するものであり、塗膜下における腐食の開始を判断するのに有効である。
・分極容量(Cdt):電極と電解質との接触界面に存在する10-8m厚程度の層で、その両側で電極電位に相当する電位差がある。そしてその層は電極と電荷質特有の電気容量を持つ。従って、分極容量が分かると塗膜下電極界面の特性がわかる。
【0015】
これらの結果から、金属上に塗布された塗膜の健全度及び/又は塗膜下金属の腐食度を知ることができ、特に塗膜抵抗及び分極抵抗が5.5×106cm2以上あればさびが発生しないことが知られている(佐藤、星野、田辺:防食技術,28,524−531(1979))。
【0016】
塗膜下金属腐食診断装置5で用いるカレントインタラプター法とは、定電流電解における電流に印加、切断時の分極過渡現象に基づくもので、塗装鋼材をその適用の対象とすることができる。測定時の塗装鋼材の等価回路を簡略化して図5に示す。ここでRは純抵抗で、本発明では溶液抵抗がこれに相当する。塗膜に相当するインピーダンスが塗膜容量Cf、塗膜抵抗Rfで表わされ、金属界面のインピーダンスが分極容量Cdt、分極抵抗Reと直列回路を形成しているとして、その結果、時定数に顕著な差異が存在すれば、それぞれの分極現象を分離することが可能になる。本発明の導電性溶液の抵抗は数十Ω以下であり、また塗膜回路では容量Cfが約10-9〜10-10F、抵抗Rfが約106〜107Ωであるから、時定数は容量と抵抗の積の関係から約1msec程度となる。金属界面のインピーダンスは容量Cdtが約10-5F、分極抵抗Reが106Ω程度であるとすれば、時定数は約10sec程度となる。塗膜の時定数が1msec程度であるのに対し、金属界面の時定数は10secであり、これらの間には顕著な差がみられ、その結果、両者を分離しておのおのを検討することができる。
【0017】
ここで、図5に示すように、塗膜のインピーダンスを単一のC及びR素子で示すと、定電流印加の際の分極現象は次式で表される;
i=iR+iC=V/R+C(dv/dt)
【0018】
従って
V=iR(1−e-t/τ) (τ=CR)
また、電流切断時の電位減衰は
V=iRe-t/τ
従って
logV=logiR−t/2.3τ (1)
となる。これをグラフで表わせば図6に示すようになり、これから時定数τと容量C、抵抗Rを求めることができる。
【0019】
塗膜下金属の素地面では、定電流印加時に浸漬液を介して電極反応、すなわち腐食反応が起こる。いまOx+ne⇔Redなる酸化還元系の電極反応の電位と電流の関係は、電極表面上の反応種の濃度が、沖合濃度と平衡になっている時、ファラデー電流if

Figure 0003651601
で表される。ここで、iOは交換電流密度、αは遷移係数、nは反応電子数、Fはファラデー定数、Rは気体定数、Tは絶対温度、ηは過電圧である。
【0020】
ただし式(2)は電解開始直後とか、電位移動反応抵抗が極めて大きい場合に適用できるもので、一般には電解が進むにつれて、電極界面に反応種の浸度勾配ができるので電流と電位の関係は
Figure 0003651601
で表される。ここでCO及びCCは電極面上のOX及びRedの濃度である。本発明においては、低電流密度を短時間印加することにより、電極界面の反応種の濃度勾配の発生を極力除去したこと、また式の単純化を図り、その取り扱いを容易にする意図から、式(2)をもって論じることができる。
【0021】
この電極系を電気的に等価な回路に置き換えると図7のようになる。この場合の反応抵抗Reは反応速度に反比例し、塗膜下での低腐食反応速度の場合の腐食電流密度icorrを10-8AとするとReは約106Ω程度となる。また、Cdtは通常10-5F程度である。これから時定数は10sec程度となって、塗膜の時定数との差が大きいため、明瞭に分離できることになる。
【0022】
定電流印加の際
Figure 0003651601
【0023】
i)nFη/RT≪1のとき(η≦10mV)
式(3)の指数関数を展開して近似すると、0<α<1であるから
Figure 0003651601
この微分方程式を解いて
η=(i/iO)(RT/nF){1−exp(−t/τ)} (4)
ここに
τ=CdtRT/nFiO=CRe
Re=RT/nFiO
O=RT/RenF
dt=τ/Re
tが非常に小さい場合はidtに比してifは無視できるので
i=Cdt[dη/dt]t=o
また、式(4)は式(1)と全く同様に取扱うことができるので図6のグラフからτ、Re、Cdtが求まりRT/nFが既知であればiOすなわち腐食速度も求まる。
【0024】
ii)mFη/RT≫1のとき
アノード分極の場合はカソード電流が無視できるので
i=Cdt(dη/dt)+iOexp(αnFη/RT)
電流切断の際の減衰時はidt=−if、i=0とおけるので
dt(dη/dt)=−iOexp(αnFη/RT)
この微分方程式を解くと
t=(CRT/iOαnF)exp(−αnFη/RT)
従って
η=(−RT/αnF)Int+(RT/αnF)In(CRT/iOαnF)
となり、図8のη−1ogtの関係から、ターフェル係数が求まる。
【0025】
得られたターフェル係数と分極抵抗Reとから、スターンの式(6)より腐食速度が求まる;
corr=ba/bc/2.3Re(ba+bc) (5)
ただし式(5)はη<10mVの範囲で成立する。ここに
a=2.3RT/αnF (6)
c=2.3RT/(1−α)nF (7)
【0026】
従って、前述のように分極抵抗Reを求めることによって塗装鋼板における塗膜下の腐食を測定することができる。
【0027】
【実施例】
(実施例1)
屋外に設置された外径15cmの円筒状の鉄鋼構造物の垂直部、鉛系さび止とフタル酸樹脂塗料が合計約100μm塗装されて10年経過した塗膜面に、図1に示される厚さ2mmのマグネットシート及びカバーよりなるセル本体を設置し、マグネットシートの開口部(5×4cm)に3質量%食塩水100質量部にカルボキシメチルセルロース5質量部を添加して作製したペースト状の電解質溶液を充填し、その上に4×3cmの白金の対極を置き、白金対極と素地鉄鋼からリード線を出し、塗膜下金属腐食診断装置HL201(北斗電工(株)製)に結線した。次に、セル部分全体を網目の大きさ5mmの金網で覆い、周囲を永久磁石でアングル材に固定しアースした。5時間放置し、電解質が塗膜内に浸透後、測定を行った。結果を表1に示す。
【0028】
測定結果は良好で、塗膜抵抗、塗膜容量、分極抵抗及び分極容量の数値から塗膜は未だに健全であり、かつ塗膜下で腐食が開始していないと判断される。
【0029】
更に、目視観察でも塗膜表面にさびは発生しておらず、塗膜を剥がして素地面を目視観察してもさびの発生は認められなかった。
【0030】
(比較例1)
実施例1と同様のセルを用い、導電性遮蔽材である金網を用いず測定したところ、外部の電気ノイズを拾って正確な測定が不可能であった。
(比較例2)
図4に示すような円筒形の固形磁石を用いたセルで測定を試みたが、測定セルがうまく円筒状の構造体に固定できず測定不能であった。
【0031】
【表1】
Figure 0003651601
【0032】
【発明の効果】
上述したように、本発明によれば、被測定面の形状に追随するフレキシブルなセル構成材と外部ノイズを遮断する金網等のシールド材を組み合わせることにより、被測定面が平面でなく、かつ垂直部であっても被塗面の状態を問わず測定セルを固定でき、精度の高い電気化学的測定をすることのできるセル及び該方法を提供することが可能となった。
【図面の簡単な説明】
【図1】本発明の電気化学的測定セル本体の概略構成図である。
【図2】セルの開口部に対極材を設置した様子である。
【図3】本発明の電気化学的測定方法の概略図である。
【図4】比較例に用いた測定セルの概略図である。
【図5】本発明に用いた測定原理のカレントインタラプター法を説明するための図である。
【図6】本発明に用いた測定原理のカレントインタラプター法を説明するための図である。
【図7】本発明に用いた測定原理のカレントインタラプター法を説明するための図である。
【図8】本発明に用いた測定原理のカレントインタラプター法を説明するための図である。
【符号の説明】
1 マグネットシート
2 カバー
3 対極材
4 導電性遮蔽材
5 塗膜下金属腐食診断装置
6 塗膜
7 鋼材
8 マグネット
9 ペースト状の電解質溶液
10 高絶縁材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a measurement cell portion in a case where an undercoat paint corrosion diagnosis of a coated metal is performed by electrochemical means.
[0002]
[Prior art]
Conventionally, methods for applying non-destructive corrosion diagnosis of metal under the coating include applying a current interrupter method that applies a minute direct current, and an AC impedance method that applies an alternating voltage with different frequencies. ing. The above method is a method for obtaining reliable data in a suitable case where the measurement state performed in the test room is in place, and many experimental data have been reported.
[0003]
However, when a coating film diagnosis is performed on an on-site structure in which the measurement state is not constant, the surface to be measured is not necessarily a flat surface, and may be a curved surface such as a pipe or uneven. Moreover, not only a horizontal surface but a vertical surface, a downward surface, etc. may be object. When the curvature of the measurement part is large or the unevenness is severe, the solid cell of the prior art (for example, Japanese Patent Laid-Open No. 2-285250) cannot be installed in a good condition on the measurement surface, or it can be applied even if it can be installed. Since it does not adhere to the film, there is a disadvantage that the measurement area is not constant and the accuracy of the measurement value is lowered.
[0004]
[Problems to be solved by the invention]
The object of the present invention is that it can be measured regardless of the state of the surface to be coated, such as a curved surface, a highly uneven surface, a vertical surface, a downward surface, etc., and the influence of external noise can be avoided even in the case of a high resistance coating film. It is an object of the present invention to provide an electrochemical measurement cell capable of performing accurate measurement and an electrochemical measurement method using the same.
[0005]
[Means for Solving the Problems]
According to the present invention, the cell main body is a magnet sheet having an opening of a certain size for holding the paste-like electrolyte solution and a cover for preventing the electrolyte solution from drying, and the opening is polarized. Electricity characterized in that a small counter electrode material is installed, the entire cell is further covered with a conductive shielding material, and the conductive shielding material is detachably held on the coating film via a high insulating material and grounded. A chemical measurement cell and an electrochemical measurement method using the same are provided.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0007]
The electrochemical measurement cell of the present invention and the electrochemical measurement method using the same will be described with reference to FIGS.
[0008]
As shown in FIG. 1, the electrochemical measurement cell portion of the present invention has a flexible magnet sheet 1 as a cell main body, and is filled with a paste-like solution containing an electrolyte in an opening having a constant area. The electrolyte solution can be brought into close contact with the measurement surface, and the cover 2 can be covered to prevent evaporation of the solution water, and the coating film to be measured should be highly durable and immersed for a long time for measurement. If there is, we can cope. Also, since it is simple and inexpensive, it can be installed in many structures on site and measured after several days. In the measurement of a highly durable coating film, it takes time for the electrolyte to permeate and cannot be measured immediately after installation, and such usage is essential.
[0009]
The magnet sheet 1 of the present invention is preferably flexible so that the measurement surface can be in close contact with a curved surface such as a pipe or an uneven surface, and a magnetic material such as a magnet is made of butadiene rubber, styrene rubber or nitrile rubber as a binder material. It can be formed by kneading with synthetic rubber or natural rubber. Since the sheet requires an opening of a certain area, it can be produced by opening a necessary area in the opening after forming a planar sheet. The thickness of the sheet is preferably 0.5 mm to 50 mm.
[0010]
The cover 2 is for preventing the paste-like electrolyte solution to be held in the opening from drying even if it is placed for a long time as described above, and may be anything as long as it prevents evaporation of the solution moisture. Absent. As the material, organic resins such as polyethylene and polypropylene are suitable.
[0011]
The counter electrode material 3 serving as an electrode installed in the opening of the sheet is a material with small polarization, specifically, platinum, silver / silver chloride, stainless steel, iron, carbon, aluminum, titanium, molybdenum, tungsten, or the like. An iron alloy material or the like can be used, and platinum, carbon, stainless steel and silver / silver chloride are preferable, and platinum is particularly preferable. The counter electrode material 3 is in contact with the ground surface of the coated metal steel material 7 to be measured through the undercoat metal corrosion diagnostic device 5.
[0012]
In order to prevent intrusion of surrounding electric noise during measurement, the conductive shielding material 4 is made of a conductive flexible material such as a metal net or aluminum foil via a high insulating material 10 so as to cover the cell body. It is detachably held on the coating film 6 of the steel material 7 with a magnet 8 or an adhesive tape. In the case where the noise shielding material is a metal mesh, if the mesh is too large, the effect of preventing noise intrusion is reduced, so at least the mesh size is preferably 1 cm or less. Further, the conductive shielding material needs to be grounded. The shielding material 4 may be anything as long as it has conductivity, and may be a metal net, an aluminum foil, a cloth woven with metal, or a metal-deposited material. The high insulating material 10 is inserted in order to electrically insulate the insulating material 4 and the coating film 6 and to block a leakage current at the time of measurement from the coating film 4 to the high insulating material 10. The material of the high insulating material 10 is preferably a material having an electrical resistance value of 10 12 Ω · cm or more, such as polytetrafluoroethylene.
[0013]
Since the paste-like electrolyte solution 9 can be installed on a vertical surface or a downward surface, the paste-like electrolyte solution 9 is preferably a material having a viscosity that does not leak from the opening of the cell. In particular, an aqueous solution having a high viscosity is carboxymethylcellulose. A water-absorbing polymer material or the like can also be used. In consideration of viscosity, the content of carboxymethyl cellulose is preferably 1% by mass to 20% by mass with respect to the total mass of the electrolyte solution. As the electrolyte, any electrolyte that is usually used for electrochemical measurements can be used, and examples thereof include sodium chloride, potassium chloride, ammonium chloride, sodium sulfate, potassium sulfate, ammonium sulfate, ammonium nitrate, sodium nitrate, and potassium nitrate. The amount of the electrolyte solution is 1 kΩ · cm or less, preferably 100 Ω · cm or less.
[0014]
The undercoat metal corrosion diagnostic apparatus 5 measures the film resistance, the film capacity, the polarization resistance, and the polarization capacity by the current interrupter method, and these effects are as follows.
-Coating film resistance ( Rf ): The coating film resistance of a coated steel material is effective in knowing the soundness of the coating film.
Coating film capacity (C f ): A numerical value related to the proportion of moisture in the coating film. This facilitates water absorption and is related to the ease of corrosion through the membrane. It is important to know the characteristics of the membrane.
Polarization resistance (R e ): Polarization resistance is a resistance to the corrosion reaction that is an electrode reaction. A decrease in the polarization resistance can cause a moisture layer at the metal interface under the coating, This reflects that the adhesion of the metal has been impaired, and is effective in determining the start of corrosion under the coating film.
Polarization capacity (C dt ): A layer having a thickness of about 10 −8 m present at the contact interface between the electrode and the electrolyte, and there is a potential difference corresponding to the electrode potential on both sides. The layer has a capacitance specific to the electrode and the charge. Therefore, if the polarization capacity is known, the characteristics of the electrode interface under the coating film can be understood.
[0015]
From these results, it is possible to know the soundness of the coating film applied on the metal and / or the corrosion degree of the metal under the coating film, and particularly when the coating film resistance and the polarization resistance are 5.5 × 10 6 cm 2 or more. It is known that no wedge is generated (Sato, Hoshino, Tanabe: Anticorrosion technology, 28, 524-531 (1979)).
[0016]
The current interrupter method used in the undercoat metal corrosion diagnostic device 5 is based on a polarization transient phenomenon during application and cutting of current in constant current electrolysis, and can be applied to a coated steel material. FIG. 5 shows a simplified equivalent circuit of the painted steel material at the time of measurement. Here, R is a pure resistance, and in the present invention, the solution resistance corresponds to this. Coating the impedance equivalent to the coating film capacitance C f, is represented by the coating film resistor R f, as the impedance of the metal surface forms the polarization capacity C dt, the polarization resistance R e and the series circuit, as a result, If there is a significant difference in the time constant, it becomes possible to separate the respective polarization phenomena. The resistance of the conductive solution of the present invention is several tens of Ω or less, and in the coating film circuit, the capacitance C f is about 10 −9 to 10 −10 F and the resistance R f is about 10 6 to 10 7 Ω. The time constant is about 1 msec from the relationship between the product of capacitance and resistance. Impedance of the metal interface capacitance C dt is about 10 -5 F, if the polarization resistance R e is to be about 10 6 Omega, the time constant is approximately 10 sec. While the time constant of the coating is about 1 msec, the time constant of the metal interface is 10 sec, and there is a significant difference between them. As a result, it is possible to examine the two separately. it can.
[0017]
Here, as shown in FIG. 5, when the impedance of the coating film is represented by a single C and R element, the polarization phenomenon when a constant current is applied is represented by the following equation:
i = i R + i C = V / R + C (dv / dt)
[0018]
Therefore, V = iR (1−e −t / τ) (τ = CR)
In addition, the potential decay at the time of current disconnection is V = iRe- t / τ
Therefore, logV = logiR−t / 2.3τ (1)
It becomes. If this is represented by a graph, it becomes as shown in FIG. 6, and from this, the time constant τ, the capacitance C, and the resistance R can be obtained.
[0019]
On the metal base under the coating film, an electrode reaction, that is, a corrosion reaction occurs through the immersion liquid when a constant current is applied. The relationship between the potential and current of the electrode reaction of the redox system O x + ne⇔R ed is that when the concentration of reactive species on the electrode surface is in equilibrium with the offshore concentration, the Faraday current if is
Figure 0003651601
It is represented by Here, i O is the exchange current density, α is the transition coefficient, n is the number of reaction electrons, F is the Faraday constant, R is the gas constant, T is the absolute temperature, and η is the overvoltage.
[0020]
However, equation (2) can be applied immediately after the start of electrolysis or when the potential transfer reaction resistance is extremely large. In general, as the electrolysis progresses, there is a dip gradient of reactive species at the electrode interface, so the relationship between current and potential is
Figure 0003651601
It is represented by Here, C O and C C are the concentrations of O X and R ed on the electrode surface. In the present invention, by applying a low current density for a short time, the generation of the concentration gradient of the reactive species at the electrode interface is eliminated as much as possible, and the intention is to simplify the expression and facilitate its handling. It can be discussed with (2).
[0021]
When this electrode system is replaced with an electrically equivalent circuit, the result is as shown in FIG. The reaction resistance R e of the case is inversely proportional to the reaction rate, R e corrosion current density i corr and When 10 -8 A in the case of low corrosion rate of reaction under the coating film becomes approximately 10 6 Omega. C dt is usually about 10 −5 F. From this, the time constant is about 10 seconds, and since the difference from the time constant of the coating film is large, it can be clearly separated.
[0022]
When applying constant current
Figure 0003651601
[0023]
i) When nFη / RT << 1 (η ≦ 10 mV)
When the exponential function of Equation (3) is expanded and approximated, 0 <α <1.
Figure 0003651601
Solving this differential equation, η = (i / i O ) (RT / nF) {1-exp (−t / τ)} (4)
Where τ = C dt RT / nFi O = CR e
Re = RT / nFi O
i O = RT / R e nF
C dt = τ / R e
Since t is the i f than the i dt when very small negligible i = C dt [dη / dt ] t = o
Further, since the expression (4) can be handled in the same manner as the expression (1), τ, R e , and C dt are obtained from the graph of FIG. 6, and if the RT / nF is known, i O, that is, the corrosion rate can be obtained.
[0024]
ii) When mFη / RT >> 1, the cathode current can be ignored in the case of anodic polarization, so i = C dt (dη / dt) + i O exp (αnFη / RT)
When the current is attenuated, i dt = −i f and i = 0, so C dt (dη / dt) = − i O exp (αnFη / RT)
Solving this differential equation, t = (CRT / i O αnF) exp (−αnFη / RT)
Accordingly, η = (− RT / αnF) Int + (RT / αnF) In (CRT / i O αnF)
Thus, the Tafel coefficient is obtained from the relationship of η-1 ogt in FIG.
[0025]
From the obtained Tafel coefficient and polarization resistance R e, than the corrosion rate is obtained stern of formula (6);
i corr = b a / b c /2.3R e (b a + b c ) (5)
However, Formula (5) is materialized in the range of η <10 mV. Where b a = 2.3 RT / αnF (6)
b c = 2.3 RT / (1-α) nF (7)
[0026]
Therefore, it is possible to measure the corrosion under a coating film in the coated steel plate by determining the polarization resistance R e, as described above.
[0027]
【Example】
(Example 1)
The thickness shown in Fig. 1 is on the vertical part of a cylindrical steel structure with an outer diameter of 15 cm installed outdoors, the coating surface after 10 years have passed since a total of about 100 µm of lead-based rust inhibitor and phthalate resin paint is applied. A paste-like electrolyte prepared by installing a cell body consisting of a 2 mm thick magnetic sheet and a cover, and adding 5 parts by mass of carboxymethyl cellulose to 100 parts by mass of 3% by weight saline in the opening (5 × 4 cm) of the magnet sheet. The solution was filled, a 4 × 3 cm platinum counter electrode was placed thereon, lead wires were taken out from the platinum counter electrode and the base steel, and were connected to an undercoat metal corrosion diagnostic apparatus HL201 (manufactured by Hokuto Denko Co., Ltd.). Next, the entire cell portion was covered with a wire mesh having a mesh size of 5 mm, and the periphery was fixed to an angle member with a permanent magnet and grounded. The sample was allowed to stand for 5 hours, and the measurement was performed after the electrolyte had penetrated into the coating film. The results are shown in Table 1.
[0028]
The measurement results are good, and it is judged from the numerical values of the coating film resistance, the coating film capacity, the polarization resistance and the polarization capacity that the coating film is still healthy and that corrosion has not started under the coating film.
[0029]
Further, no rust was generated on the surface of the coating film by visual observation, and no rust was observed even when the coating was peeled off and the ground surface was visually observed.
[0030]
(Comparative Example 1)
When the same cell as in Example 1 was used and measurement was performed without using a wire mesh as a conductive shielding material, it was impossible to accurately measure by picking up external electric noise.
(Comparative Example 2)
Measurement was attempted with a cell using a cylindrical solid magnet as shown in FIG. 4, but the measurement cell could not be fixed to the cylindrical structure and measurement was impossible.
[0031]
[Table 1]
Figure 0003651601
[0032]
【The invention's effect】
As described above, according to the present invention, by combining a flexible cell constituent material that follows the shape of the surface to be measured and a shielding material such as a wire mesh that blocks external noise, the surface to be measured is not flat and vertical. Even if it is a part, the measurement cell can be fixed regardless of the state of the coated surface, and it is possible to provide a cell capable of performing electrochemical measurement with high accuracy and the method.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an electrochemical measurement cell body of the present invention.
FIG. 2 shows a state in which a counter electrode material is installed in an opening of a cell.
FIG. 3 is a schematic view of the electrochemical measurement method of the present invention.
FIG. 4 is a schematic view of a measurement cell used in a comparative example.
FIG. 5 is a diagram for explaining a current interrupter method of a measurement principle used in the present invention.
FIG. 6 is a diagram for explaining the current interrupter method of the measurement principle used in the present invention.
FIG. 7 is a diagram for explaining a current interrupter method of a measurement principle used in the present invention.
FIG. 8 is a diagram for explaining a current interrupter method of a measurement principle used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnet sheet 2 Cover 3 Counter electrode material 4 Conductive shielding material 5 Under-coating metal corrosion diagnostic device 6 Coating film 7 Steel material 8 Magnet 9 Paste electrolyte solution 10 High insulation material

Claims (8)

セル本体が、ペースト状の電解質溶液を保持する一定の大きさの開口部及び該電解質溶液が乾燥するのを防ぐためのカバーを備えたマグネットシートであり、該開口部に分極の小さい対極材が設置され、更にセル全体が導電性遮蔽材料で覆われ、該導電性遮蔽材料が高絶縁材を介して塗膜上に着脱自在に保持され、アースされたことを特徴とする電気化学的測定セル。The cell body is a magnet sheet having an opening having a certain size for holding the paste-like electrolyte solution and a cover for preventing the electrolyte solution from drying, and a counter electrode material having a small polarization is provided in the opening. An electrochemical measurement cell that is installed and further covered with a conductive shielding material, the conductive shielding material is detachably held on the coating film via a high insulating material, and is grounded . 対極材が白金、カーボン、ステンレススチール、銀・塩化銀からなる群より選ばれる請求項1に記載の電気化学的測定セル。The electrochemical measurement cell according to claim 1, wherein the counter electrode material is selected from the group consisting of platinum, carbon, stainless steel, and silver / silver chloride. ペースト状の電解質溶液がカルボキシメチルセルロースを含有する請求項1又は2に記載の電気化学的測定セル。The electrochemical measurement cell according to claim 1 or 2, wherein the paste-like electrolyte solution contains carboxymethyl cellulose. セル本体が、ペースト状の電解質溶液を保持する一定の大きさの開口部及び該電解質溶液が乾燥するのを防ぐためのカバーを備えたマグネットシートであり、該開口部に分極の小さい対極材が設置され、更にセル全体が導電性遮蔽材料で覆われ、該導電性遮蔽材料が高絶縁材を介して塗膜上に着脱自在に保持され、アースされた電気化学的測定セルを用いたことを特徴とする電気化学的測定方法。The cell body is a magnet sheet having an opening having a certain size for holding the paste-like electrolyte solution and a cover for preventing the electrolyte solution from drying, and a counter electrode material having a small polarization is provided in the opening. It was installed, and the entire cell was covered with a conductive shielding material, and the conductive shielding material was detachably held on the coating film through a high insulating material, and a grounded electrochemical measurement cell was used. A characteristic electrochemical measurement method. 対極材が白金、カーボン、ステンレススチール、銀・塩化銀からなる群より選ばれる請求項4に記載の電気化学的測定方法。The electrochemical measurement method according to claim 4, wherein the counter electrode material is selected from the group consisting of platinum, carbon, stainless steel, and silver / silver chloride. ペースト状の電解質溶液がカルボキシメチルセルロースを含有する請求項4又は5に記載の電気化学的測定方法。The electrochemical measurement method according to claim 4 or 5, wherein the paste-like electrolyte solution contains carboxymethylcellulose. 測定原理がカレントインタラプター法である請求項4〜6のいずれかに記載の電気化学的測定方法。The electrochemical measurement method according to claim 4, wherein the measurement principle is a current interrupter method. 前記測定方法により金属上に塗布された塗膜の健全度、塗膜下金属の腐食度の一方又は両方を測定する請求項7に記載の電気化学的測定方法。The electrochemical measurement method according to claim 7, wherein one or both of a soundness level of a coating film applied on a metal by the measurement method and a corrosion level of a metal under the coating film are measured.
JP2002154204A 2002-05-28 2002-05-28 Electrochemical measurement cell and electrochemical measurement method using the same Expired - Fee Related JP3651601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002154204A JP3651601B2 (en) 2002-05-28 2002-05-28 Electrochemical measurement cell and electrochemical measurement method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002154204A JP3651601B2 (en) 2002-05-28 2002-05-28 Electrochemical measurement cell and electrochemical measurement method using the same

Publications (2)

Publication Number Publication Date
JP2003344332A JP2003344332A (en) 2003-12-03
JP3651601B2 true JP3651601B2 (en) 2005-05-25

Family

ID=29771057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002154204A Expired - Fee Related JP3651601B2 (en) 2002-05-28 2002-05-28 Electrochemical measurement cell and electrochemical measurement method using the same

Country Status (1)

Country Link
JP (1) JP3651601B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804170B2 (en) * 2006-02-24 2011-11-02 大日本塗料株式会社 Measurement cell for under-coat metal corrosion diagnostic equipment
JP6732236B2 (en) * 2016-03-28 2020-07-29 中日本高速道路株式会社 Method and system for measuring rebar corrosion environment in concrete
JP7202827B2 (en) * 2018-09-25 2023-01-12 大日本塗料株式会社 Paint film diagnosis device

Also Published As

Publication number Publication date
JP2003344332A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
EP2223081B1 (en) Electrochemical cell for eis
Murray Electrochemical test methods for evaluating organic coatings on metals: an update. Part I. Introduction and generalities regarding electrochemical testing of organic coatings
Deflorian et al. Degradation of epoxy coatings on phosphatized zinc-electroplated steel
Deslouis et al. The cathodic mass transport process during zinc corrosion in neutral aerated sodium sulphate solutions
CN108362637B (en) Corrosion electrochemical testing device and corrosion electrochemical testing method
US3926766A (en) Miniature probe containing multifunctional electrochemical sensing electrodes
US6611151B1 (en) Coating assessment system based on electrochemical noise
US7508223B1 (en) Multihole and multiwire sensors for localized and general corrosion monitoring
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
Lillard et al. Using local electrochemical impedance spectroscopy to examine coating failure
US6328878B1 (en) Adhesive tape sensor for detecting and evaluating coating and substrate degradation utilizing electrochemical processes
US5188715A (en) Condensate corrosion sensor
JP3326587B2 (en) Method for detecting corrosion points of steel in concrete
CN111788478B (en) Corrosion measuring device
Murray et al. Utilization of the specific pseudocapacitance for determination of the area of corroding steel surfaces
JP3651601B2 (en) Electrochemical measurement cell and electrochemical measurement method using the same
EP2068139A1 (en) Electrochemical cell for EIS
Babutzka et al. Dynamic tafel factor adaption for the evaluation of instantaneous corrosion rates on zinc by using gel-type electrolytes
Kern et al. Electrochemical impedance spectroscopy as a tool for investigating the quality and performance of coated food cans
JPH0347458B2 (en)
US3098801A (en) Apparatus and method for measuring corrosiveness of aqueous liquids
JP6833626B2 (en) Measuring device and measuring method
NO833886L (en) METHOD AND DEVICE FOR DETERMINING HYDROGEN FLOW.
Worsley et al. Influence of remote cathodes on corrosion mechanism at exposed cut edges in organically coated galvanized steels
EP0249267B1 (en) Electrochemical sensor for the measurement of corrosion in metal equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050215

R150 Certificate of patent or registration of utility model

Ref document number: 3651601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees