JPH04328877A - Semiconductor device provided with chirp light reflection layer - Google Patents

Semiconductor device provided with chirp light reflection layer

Info

Publication number
JPH04328877A
JPH04328877A JP3125139A JP12513991A JPH04328877A JP H04328877 A JPH04328877 A JP H04328877A JP 3125139 A JP3125139 A JP 3125139A JP 12513991 A JP12513991 A JP 12513991A JP H04328877 A JPH04328877 A JP H04328877A
Authority
JP
Japan
Prior art keywords
light
layer
thickness
semiconductor
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3125139A
Other languages
Japanese (ja)
Other versions
JP2973581B2 (en
Inventor
Takashi Saka
坂 貴
Masumi Hiroya
真澄 廣谷
Toshihiro Kato
加藤 俊宏
Hiromoto Suzawa
諏澤 寛源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP12513991A priority Critical patent/JP2973581B2/en
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to DE69132764T priority patent/DE69132764T2/en
Priority to EP91118652A priority patent/EP0483868B1/en
Priority to US07/786,006 priority patent/US5260589A/en
Priority to DE69124338T priority patent/DE69124338T2/en
Priority to EP96104419A priority patent/EP0724300B1/en
Priority to CA002054853A priority patent/CA2054853C/en
Priority to CA002272129A priority patent/CA2272129C/en
Publication of JPH04328877A publication Critical patent/JPH04328877A/en
Application granted granted Critical
Publication of JP2973581B2 publication Critical patent/JP2973581B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To prevent a chirp light reflection layer from deteriorating in reflectivity to light of shorter wavelengths due to the absorption of light by the semiconductor which forms the reflection layer concerned. CONSTITUTION:Unit semiconductors formed of two types of semiconductors different from each other in composition are repeatedly laminated to form a light reflection layer 14a widened in wavelength of reflection light by varying the unit semiconductors in thickness, where the unit semiconductors which reflect light of shorter wavelengths are provided to the upper part of the layer 14a or the light incident side of the layer 14a.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はチャープ状光反射層を備
えた半導体装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a semiconductor device equipped with a chirped light reflecting layer.

【0002】0002

【従来の技術】光通信や表示器、センサなどに発光ダイ
オードが多用されている。かかる発光ダイオードは、半
導体基板の上に液相成長法や気相成長法などのエピタキ
シャル成長法により光を発する活性層を形成したもので
、このような発光ダイオードの一種に、活性層で発生し
た光をその活性層と略平行に形成された光取出し面から
取り出す面発光型のものがある。
2. Description of the Related Art Light emitting diodes are widely used in optical communications, displays, sensors, and the like. Such light emitting diodes have an active layer that emits light formed on a semiconductor substrate by an epitaxial growth method such as liquid phase growth or vapor phase growth. There is a surface-emitting type that extracts light from a light extraction surface formed approximately parallel to the active layer.

【0003】ところで、発光ダイオードの光出力は、電
気エネルギーを光エネルギーに変換する際の内部量子効
率と、発生した光を外部に取り出す際の外部量子効率と
によって定まるが、前記面発光型発光ダイオードの場合
、例えばブラッグ反射として知られているように光波干
渉によって光を反射する光反射層を前記活性層を挟んで
光取出し面と反対側に設け、光取出し面の反対側へ進行
した光を反射して外部量子効率を上げることにより光出
力を向上させるようにしたものが知られている。上記光
反射層は、組成が異なる複数種類の半導体が重ね合わさ
れた単位半導体を繰り返し積層した多層構造を成し、そ
れ等の屈折率の相違に基づいて特定の波長の光を反射す
るもので、例えばAlX Ga1−X Asにて構成さ
れる赤外或いは赤色発光ダイオードの場合、所定の厚さ
のAlAsとGaAsとを交互にエピタキシャル成長さ
せることによって光反射層が形成されている。かかるA
lAsおよびGaAsの厚さTA 、TG は、AlX
 Ga1−X Asの発光波長すなわち反射すべき光の
波長をλB 、AlAsの屈折率をnA 、GaAsの
屈折率をnG とすると、それぞれ次式(1)、(2)
に従って求められ、それ等を重ね合わせた単位半導体の
厚さTは(TA +TG )となる。
By the way, the light output of a light emitting diode is determined by the internal quantum efficiency when converting electrical energy into light energy and the external quantum efficiency when extracting the generated light to the outside. In this case, for example, a light reflecting layer that reflects light by light wave interference, known as Bragg reflection, is provided on the opposite side of the light extraction surface with the active layer in between, and the light traveling to the opposite side of the light extraction surface is reflected. It is known that the light output is improved by reflecting and increasing the external quantum efficiency. The light reflecting layer has a multilayer structure in which unit semiconductors are repeatedly laminated with multiple types of semiconductors having different compositions, and reflects light of a specific wavelength based on the difference in their refractive index. For example, in the case of an infrared or red light emitting diode made of AlX Ga1-X As, a light reflecting layer is formed by epitaxially growing AlAs and GaAs to a predetermined thickness alternately. Such A
The thicknesses TA and TG of lAs and GaAs are AlX
When the emission wavelength of Ga1-X As, that is, the wavelength of the light to be reflected is λB, the refractive index of AlAs is nA, and the refractive index of GaAs is nG, the following equations (1) and (2) are obtained, respectively.
The thickness T of the unit semiconductor obtained by overlapping them is (TA + TG).

【0004】     TA =λB /4nA          
                       ・・
・(1)    TG =λB /4nG      
                         
  ・・・(2)
TA=λB/4nA
・・・
・(1) TG = λB /4nG

...(2)

【0005】しかしながら、このよう
な光反射層で反射できる光は光波干渉の条件を満たす特
定の波長の光だけで、その反射波長幅が比較的狭く、且
つその波長は上記(1)式、(2)式に示される如く単
位半導体の厚さや屈折率に依存する。したがって、光反
射層を構成する半導体の厚さや組成が少し変化しただけ
でも、活性層から発せられる光の波長域から反射波長域
がずれて光出力が低下してしまい、製造に非常な困難を
伴うという問題があった。因に、GaAs赤外発光ダイ
オードの場合、その発光波長は880nmを中心として
約±35nmの広がりを持っており、この発光波長域を
完全にカバーするには極めて正確な膜厚制御技術を要す
る。また、大きな基板にエピタキシャル成長させる場合
、基板面上の膜厚を厳密に均一に成長させることは困難
であり、膜厚の不均一により反射波長の面内不均一が生
じて歩留まりが低下するといった問題も含んでいた。
However, the light that can be reflected by such a light reflecting layer is only light of a specific wavelength that satisfies the conditions for light wave interference, and the reflected wavelength width is relatively narrow, and the wavelength is expressed by the above equation (1), ( 2) As shown in the formula, it depends on the thickness and refractive index of the unit semiconductor. Therefore, even if there is even a slight change in the thickness or composition of the semiconductor that makes up the light-reflecting layer, the reflected wavelength range will shift from the wavelength range of light emitted from the active layer, resulting in a decrease in optical output, making manufacturing extremely difficult. There was a problem with that. Incidentally, in the case of a GaAs infrared light emitting diode, its emission wavelength has a spread of approximately ±35 nm around 880 nm, and extremely accurate film thickness control technology is required to completely cover this emission wavelength range. Furthermore, when performing epitaxial growth on a large substrate, it is difficult to grow a film with a strictly uniform thickness on the substrate surface, and uneven film thickness causes in-plane non-uniformity in reflected wavelengths, which reduces yield. It also included

【0006】これに対し、上記単位半導体の膜厚を変化
させて反射波長域を拡大することが考えられている。す
なわち、光反射層による光の反射波長は上記のように単
位半導体の膜厚によって定まるため、例えば、所定の積
層数毎に単位半導体の膜厚を段階的に変化させたり、連
続して積層される単位半導体の一つ一つの膜厚を連続的
に変化させたりするのである。このような光反射層によ
れば、製造時の僅かな制御誤差等により各半導体の厚さ
や組成が変化しても、活性層から発せられる光の波長域
が光反射層の反射波長域からずれることが良好に防止さ
れ、光反射層による光出力向上効果が十分に得られるよ
うになるとともに、そのような光反射層を備えた面発光
型発光ダイオードを容易に製造できるようになる。また
、大きな基板にエピタキシャル成長させる場合でも、基
板面上の膜厚の不均一により反射波長の面内不均一が生
ずることによる歩留まりの低下が良好に回避される。 本明細書においては、このように単位半導体の膜厚を段
階的若しくは連続的に変化させた光反射層を便宜的にチ
ャープ状光反射層という。
On the other hand, it has been considered to expand the reflection wavelength range by changing the film thickness of the unit semiconductor. In other words, the wavelength of light reflected by the light reflecting layer is determined by the film thickness of the unit semiconductor as described above, so for example, the film thickness of the unit semiconductor may be changed stepwise for each predetermined number of layers, or if the layer is continuously stacked. In other words, the film thickness of each unit semiconductor is continuously changed. With such a light-reflecting layer, even if the thickness or composition of each semiconductor changes due to slight control errors during manufacturing, the wavelength range of light emitted from the active layer will deviate from the wavelength range reflected by the light-reflecting layer. This can be effectively prevented, and the light output improvement effect of the light reflection layer can be sufficiently obtained, and a surface-emitting light emitting diode equipped with such a light reflection layer can be manufactured easily. Further, even when epitaxially growing on a large substrate, a decrease in yield due to in-plane non-uniformity of reflection wavelength due to non-uniform film thickness on the substrate surface can be avoided. In this specification, a light reflecting layer in which the film thickness of the unit semiconductor is changed stepwise or continuously in this way is conveniently referred to as a chirped light reflecting layer.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うなチャープ状光反射層の光反射特性について研究を重
ねたところ、短波長側における光の反射率向上効果が必
ずしも十分でないことを見出した。これは、光反射層を
構成している半導体が光を吸収するためと考えられ、具
体的にはその半導体の吸収端エネルギーにおける波長λ
C より長い波長の光は吸収しないが短い波長の光は吸
収するため、短波長側の光の反射率がその分だけ低下し
てしまうのである。前記GaAsおよびAlAsから成
る光反射層の場合、GaAsの吸収端波長λCは880
nmであるため、GaAs赤外発光ダイオードの発光波
長域880±35nmの短波長側の半分の光は反射層の
吸収を受けて光の反射率が低下する。この対策としては
、吸収端波長λC が最短波長845nmよりも短いA
l0.2 Ga0.8 AsをGaAsの替わりに用い
ることが考えられるが、混晶比の制御が困難で屈折率が
ばらつくとともに、AlAsとの屈折率の差が小さくな
って光波干渉上好ましくない。
[Problems to be Solved by the Invention] However, after repeated research on the light reflection characteristics of such a chirped light reflection layer, it was found that the effect of improving the reflectance of light on the short wavelength side is not necessarily sufficient. This is thought to be because the semiconductor that makes up the light reflective layer absorbs light, and specifically, the wavelength λ at the absorption edge energy of the semiconductor
Since it does not absorb light with a longer wavelength than C but absorbs light with a shorter wavelength, the reflectance of light on the shorter wavelength side decreases by that amount. In the case of the light reflecting layer made of GaAs and AlAs, the absorption edge wavelength λC of GaAs is 880
nm, the half of the light on the short wavelength side of the emission wavelength range of 880±35 nm of the GaAs infrared light emitting diode is absorbed by the reflective layer and the reflectance of the light decreases. As a countermeasure for this, the absorption edge wavelength λC is shorter than the shortest wavelength 845 nm
Although it is possible to use l0.2 Ga0.8 As in place of GaAs, it is difficult to control the mixed crystal ratio and the refractive index varies, and the difference in refractive index with AlAs becomes small, which is not preferable in terms of light wave interference.

【0008】本発明は以上の事情を背景として為された
もので、その目的とするところは、光吸収による短波長
側の反射率の低下を簡単な手法で防止することにある。
The present invention has been made against the background of the above-mentioned circumstances, and its object is to prevent the decrease in reflectance on the short wavelength side due to light absorption by a simple method.

【0009】[0009]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、組成が異なる複数種類の半導体が重ね
合わされた単位半導体が繰り返し積層されて入射した光
を光波干渉によって反射するとともに、その単位半導体
の厚さが変化させられて反射波長域が拡大されたチャー
プ状光反射層を備えた半導体装置において、前記単位半
導体の厚さが薄いもの程光の入射側に設けられているこ
とを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention has a unit semiconductor in which a plurality of types of semiconductors having different compositions are stacked on top of each other, and the unit semiconductor is repeatedly stacked to reflect incident light by light wave interference. In a semiconductor device including a chirped light reflecting layer whose reflection wavelength range is expanded by changing the thickness of the unit semiconductor, the thinner the unit semiconductor is, the closer to the light incident side the unit semiconductor is provided. It is characterized by

【0010】0010

【作用および発明の効果】すなわち、厚さが薄い単位半
導体は前記(1)式および(2)式から明らかなように
短波長側の光を反射するため、これを光の入射側に設け
ると、その短波長側の光は光反射層の奥深くまで入射す
ることなく反射されるようになり、光反射層による吸収
が防止されて反射率が向上するのである。一方、長波長
側の光は光反射層の奥深くまで入射して反射されること
になるが、この長波長側の光は光反射層によって吸収さ
れないため、これにより反射率が低下することはない。 したがって、長波長側の光の反射率を損なうことなく短
波長側の光の反射率が向上させられることとなり、広い
波長域の光がその全域に亘って良好に反射されるように
なるのである。
[Operation and Effects of the Invention] That is, as is clear from equations (1) and (2) above, since a thin unit semiconductor reflects light on the short wavelength side, if it is provided on the light incident side, , the light on the short wavelength side is reflected without entering deep into the light reflection layer, preventing absorption by the light reflection layer and improving reflectance. On the other hand, light on the long wavelength side enters deep into the light reflective layer and is reflected, but this light on the long wavelength side is not absorbed by the light reflective layer, so this does not reduce the reflectance. . Therefore, the reflectance of light on the short wavelength side can be improved without impairing the reflectance of light on the long wavelength side, and light in a wide wavelength range can be reflected well over the entire range. .

【0011】また、かかる本発明では、厚さが薄い単位
半導体を光の入射側に設けるだけで良いため、入射光の
波長域よりも吸収端波長λC が短い半導体を用いて光
反射層を構成する場合に比較して、半導体組成を細かく
制御したり屈折率の差が小さくなったりするなどの問題
がなく、所定の光反射特性を有するチャープ状光反射層
を安定して簡単に形成することができる。
Furthermore, in the present invention, since it is only necessary to provide a thin unit semiconductor on the light incident side, the light reflecting layer is constructed using a semiconductor whose absorption edge wavelength λC is shorter than the wavelength range of the incident light. It is possible to stably and easily form a chirped light-reflecting layer having predetermined light-reflecting characteristics without problems such as finely controlling the semiconductor composition or reducing the difference in refractive index compared to when Can be done.

【0012】0012

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0013】図1は、本発明の一実施例である面発光型
発光ダイオード10の構造を説明する図で、n−GaA
s基板12上にはn−AlAs/n−GaAs光反射層
14、n−Al0.45Ga0.55Asクラッド層1
6、p−GaAs活性層18、p−Al0.45Ga0
.55Asクラッド層20、およびp−GaAsキャッ
プ層22が順次積層されており、クラッド層16、活性
層18、およびクラッド層20によってダブルヘテロ構
造が構成されている。キャップ層22の上面24の一部
および基板12の下面には、それぞれ+電極26、−電
極28が設けられており、それ等の間に順電圧が印加さ
れることにより上記ダブルヘテロ構造の活性層18から
光が発せられ、キャップ層22の上面24からその光が
取り出される。上面24は光取出し面に相当する。また
、上記光反射層14は、基板12側へ進行した光を光波
干渉によって反射するもので、これにより光出力が向上
する。
FIG. 1 is a diagram illustrating the structure of a surface-emitting light emitting diode 10 which is an embodiment of the present invention.
On the s-substrate 12 are an n-AlAs/n-GaAs light reflection layer 14 and an n-Al0.45Ga0.55As cladding layer 1.
6, p-GaAs active layer 18, p-Al0.45Ga0
.. A 55As cladding layer 20 and a p-GaAs cap layer 22 are sequentially laminated, and a double heterostructure is formed by the cladding layer 16, the active layer 18, and the cladding layer 20. A + electrode 26 and a - electrode 28 are provided on a part of the upper surface 24 of the cap layer 22 and on the lower surface of the substrate 12, respectively, and by applying a forward voltage between them, the activation of the double heterostructure is activated. Light is emitted from layer 18 and extracted from top surface 24 of cap layer 22 . The upper surface 24 corresponds to a light extraction surface. Further, the light reflecting layer 14 reflects the light traveling toward the substrate 12 by light wave interference, thereby improving the light output.

【0014】上記面発光型発光ダイオード10の各半導
体は、MOCVD(有機金属化学気相成長)装置を用い
てエピタキシャル成長させたもので、クラッド層16の
膜厚は約2μm、活性層18の膜厚は約0.1μm、ク
ラッド層20の膜厚は約2μm、キャップ層22の膜厚
は約0.1μmである。また、光反射層14は、図2に
示されているように2種類のn−AlAs半導体および
n−GaAs半導体から成る単位半導体30を繰り返し
多数積層したものであり、n−AlAs半導体およびn
−GaAs半導体の膜厚は活性層18から発せられる光
の波長域、すなわち880±35nmに基づいて定めら
れている。上記半導体の組成は、MOCVD装置の反応
炉内に導入する原料ガスの種類や流量によって制御され
、膜厚は、原料ガスの流量や導入時間によって制御され
る。なお、図1および図2の各半導体の膜厚は必ずしも
正確な割合で図示したものではない。
Each semiconductor of the surface-emitting type light emitting diode 10 is epitaxially grown using an MOCVD (metal organic chemical vapor deposition) device, and the thickness of the cladding layer 16 is approximately 2 μm, and the thickness of the active layer 18 is approximately 2 μm. is about 0.1 μm, the thickness of the cladding layer 20 is about 2 μm, and the thickness of the cap layer 22 is about 0.1 μm. Further, the light reflecting layer 14 is formed by laminating a large number of unit semiconductors 30 consisting of two types of n-AlAs semiconductors and n-GaAs semiconductors, as shown in FIG.
- The film thickness of the GaAs semiconductor is determined based on the wavelength range of light emitted from the active layer 18, that is, 880±35 nm. The composition of the semiconductor is controlled by the type and flow rate of the raw material gas introduced into the reactor of the MOCVD apparatus, and the film thickness is controlled by the flow rate and introduction time of the raw material gas. Note that the film thicknesses of each semiconductor in FIGS. 1 and 2 are not necessarily shown in accurate proportions.

【0015】ここで、上記光反射層14は、図3または
図4に示されているように単位半導体30の厚さが変化
するチャープ状を成し、その単位半導体30の厚さは、
反射すべき波長λB =880nmとして前記(1)式
および(2)式に従って求められるn−AlAs半導体
の厚さTA とn−GaAs半導体の厚さTG とを加
算した厚さ(TA +TG)を基準厚さTとして設定さ
れている。また、個々の単位半導体30におけるn−A
lAs半導体およびn−GaAs半導体の厚さは、その
割合がTA:TG の一定値に保持されるように定めら
れている。
Here, the light reflecting layer 14 has a chirp shape in which the thickness of the unit semiconductor 30 changes as shown in FIG. 3 or 4, and the thickness of the unit semiconductor 30 is as follows.
Based on the thickness (TA + TG), which is the sum of the thickness TA of the n-AlAs semiconductor and the thickness TG of the n-GaAs semiconductor, which are determined according to equations (1) and (2) above, assuming that the wavelength to be reflected is λB = 880 nm. The thickness is set as T. In addition, n-A in each unit semiconductor 30
The thicknesses of the lAs semiconductor and the n-GaAs semiconductor are determined such that the ratio is maintained at a constant value of TA:TG.

【0016】図3の光反射層14aは、全ての単位半導
体30の膜厚が連続的に且つ直線的に変化しているもの
で、最下層すなわち基板12上に最初に形成される単位
半導体30の膜厚は最も厚くてT(1+DD)であり、
上部すなわち光の入射側に向かうに従って直線的に減少
して最上層ではT(1−DD)となっている。DDは基
準厚さTに対する変厚割合であり、全体の膜厚の変化量
は2T・DDとなる。また、膜厚が最も厚い最下層の単
位半導体30における反射波長は、基準厚さTにおける
反射波長λB と(1+DD)との積λB ・(1+D
D)となり、膜厚が最も薄い最上層の単位半導体30に
おける反射波長は、基準厚さTにおける反射波長λB 
と(1−DD)との積λB ・(1−DD)となる。
In the light reflecting layer 14a of FIG. 3, the film thicknesses of all the unit semiconductors 30 change continuously and linearly, and the thickness of the unit semiconductors 30 first formed on the bottom layer, that is, the substrate 12, The thickest film thickness is T(1+DD),
It decreases linearly toward the top, that is, toward the light incident side, and reaches T(1-DD) in the uppermost layer. DD is the thickness change ratio with respect to the reference thickness T, and the amount of change in the total film thickness is 2T·DD. Further, the reflection wavelength at the bottom layer unit semiconductor 30, which is the thickest, is the product λB of the reflection wavelength λB at the reference thickness T and (1+DD).
D), and the reflection wavelength at the top layer unit semiconductor 30 with the thinnest film thickness is the reflection wavelength λB at the reference thickness T.
The product of λB and (1-DD) is λB·(1-DD).

【0017】そして、このような光反射層14aにおけ
る単位半導体30の積層数Nが30で、変厚割合DDが
0.05、すなわち最下層および最上層における単位半
導体30の反射波長がそれぞれ880+44nm、88
0−44nmの場合の光反射特性をシミュレーションに
より調べた結果を図5の(a)に示す。また、比較のた
め、図9に示されているように上部に向かうに従って単
位半導体30の膜厚が厚くなる光反射層40aについて
、上記と同じ条件で光反射特性を調べた結果を図5の(
b)に示す。シミュレーションの条件は、光反射層14
a,40aに対して光が垂直に入射し、且つn−GaA
s半導体による光の吸収を考慮したものである。また、
入射側の媒質は前記クラッド層16と同じAl0.45
Ga0.55Asで、反対側の媒質は前記基板12と同
じn−GaAsとした。かかるシミュレーション結果か
ら、光の入射側程単位半導体30の膜厚が薄い光反射層
14aは、その反対の光反射層40aに比較して特に短
波長側の光に対する反射率が向上し、発光波長域880
±35nmの光をその全域に亘って良好に反射できるこ
とが判る。
The number N of stacked unit semiconductors 30 in such a light reflection layer 14a is 30, the thickness change ratio DD is 0.05, that is, the reflection wavelengths of the unit semiconductors 30 in the bottom layer and the top layer are 880+44 nm, respectively. 88
The results of a simulation study of the light reflection characteristics in the case of 0-44 nm are shown in FIG. 5(a). For comparison, the light reflection characteristics of the light reflection layer 40a where the film thickness of the unit semiconductor 30 becomes thicker toward the top as shown in FIG. 9 was investigated under the same conditions as above, and the results are shown in FIG. (
Shown in b). The conditions for the simulation are that the light reflecting layer 14
The light is incident perpendicularly to a, 40a, and n-GaA
This takes into consideration the absorption of light by the s-semiconductor. Also,
The medium on the incident side is Al0.45, which is the same as the cladding layer 16.
Ga0.55As was used, and the medium on the opposite side was n-GaAs, which is the same as the substrate 12. From these simulation results, it has been found that the light reflection layer 14a, which has a thinner film thickness on the light incident side of the unit semiconductor 30, has improved reflectance particularly for light on the short wavelength side compared to the light reflection layer 40a on the opposite side. area 880
It can be seen that light of ±35 nm can be well reflected over the entire area.

【0018】また、単位半導体30の積層数Nが30で
、変厚割合DDが0.1、すなわち最下層および最上層
における単位半導体30の反射波長がそれぞれ880+
88nm、880−88nmの場合の光反射特性を、上
記と同じ条件のシミュレーションにより調べた結果を図
6の(a)に示す。図6の(b)は、図9の光反射層4
0aにおいてN=30、DD=0.1とした場合であり
、この場合にも光反射層14aは光反射層40aに比較
して短波長側の光に対する反射率が向上していることが
判る。
Further, the number N of stacked layers of the unit semiconductor 30 is 30, the thickness change ratio DD is 0.1, that is, the reflection wavelength of the unit semiconductor 30 in the bottom layer and the top layer is 880+, respectively.
The light reflection characteristics in the case of 88 nm and 880-88 nm were investigated by simulation under the same conditions as above, and the results are shown in FIG. 6(a). FIG. 6(b) shows the light reflecting layer 4 of FIG.
This is the case where N=30 and DD=0.1 at 0a, and it can be seen that in this case as well, the light reflective layer 14a has improved reflectance for light on the short wavelength side compared to the light reflective layer 40a. .

【0019】一方、前記図4の光反射層14bは、所定
の積層数n毎に単位半導体30の膜厚を3段階で変化さ
せたもので、下層側の膜厚Tb は基準厚さTよりも厚
くされ、上層側の膜厚Ta は基準厚さTよりも薄くさ
れている。この場合に、膜厚Tb を950nmの光を
反射する値すなわちT・(950/880)とし、膜厚
Ta を800nmの光を反射する値すなわちT・(8
00/880)として、n=5の場合の光反射特性を、
前記と同じ条件のシミュレーションにより調べた結果を
図7の(a)に示す。図7の(b)は、図10のように
下層側の膜厚が薄くて上層側の膜厚が厚くされた光反射
層40bにおいて、Ta ,Tb ,nを上記光反射層
14bと同じに設定した場合の光反射特性であり、この
場合にも光反射層14bは光反射層40bに比較して短
波長側の光に対する反射率が向上していることが判る。
On the other hand, in the light reflecting layer 14b shown in FIG. 4, the film thickness of the unit semiconductor 30 is changed in three steps for each predetermined number n of stacked layers, and the film thickness Tb on the lower layer side is larger than the reference thickness T. The film thickness Ta on the upper layer side is made thinner than the reference thickness T. In this case, the film thickness Tb is set to a value that reflects 950 nm light, that is, T·(950/880), and the film thickness Ta is set to a value that reflects 800 nm light, that is, T·(880).
00/880), the light reflection characteristics when n=5 are:
The results of a simulation under the same conditions as above are shown in FIG. 7(a). FIG. 7(b) shows a light reflecting layer 40b in which the lower layer is thinner and the upper layer is thicker as shown in FIG. This is the light reflection characteristic when set, and it can be seen that in this case as well, the light reflection layer 14b has improved reflectance for light on the short wavelength side compared to the light reflection layer 40b.

【0020】このように、本実施例の面発光型発光ダイ
オード10は、チャープ状の光反射層14を構成する単
位半導体30の膜厚が光の入射側程薄くされて、短波長
側の光を光反射層14の入射側部分で反射するようにな
っているため、光反射層14による吸収が防止されて反
射率が向上するのである。一方、長波長側の光は光反射
層14の奥深くまで入射して反射されることになるが、
この長波長側の光は光反射層14によって吸収されない
ため、これにより反射率が低下することはない。したが
って、長波長側の光の反射率を損なうことなく短波長側
の光の反射率が向上させられ、広い波長域の光をその全
域に亘って良好に反射できるようになり、面発光型発光
ダイオード10の光出力が向上する。
As described above, in the surface-emitting type light emitting diode 10 of this embodiment, the film thickness of the unit semiconductor 30 constituting the chirp-shaped light reflection layer 14 is made thinner toward the light incident side, so that light on the short wavelength side Since the light is reflected by the incident side portion of the light reflection layer 14, absorption by the light reflection layer 14 is prevented and the reflectance is improved. On the other hand, the light on the long wavelength side enters deep into the light reflection layer 14 and is reflected.
Since this light on the longer wavelength side is not absorbed by the light reflecting layer 14, the reflectance does not decrease as a result. Therefore, the reflectance of light on the short wavelength side is improved without impairing the reflectance of light on the long wavelength side, making it possible to reflect light in a wide wavelength range well over the entire wavelength range, making it possible to improve the reflectance of light in a surface-emitting type. The light output of the diode 10 is improved.

【0021】また、厚さが薄い単位半導体30を光の入
射側に設けるだけで良いため、活性層18からの発光波
長域よりも吸収端波長λC が短い半導体、具体的には
n−Al0.2 Ga0.8 Asをn−GaAsの替
わりに用いて光反射層14を構成する場合のように、混
晶比の制御が困難で屈折率がばらついたりn−AlAs
との屈折率の差が小さくなって光波干渉が損なわれたり
することがなく、所定の光反射特性を有する光反射層1
4を安定して簡単に形成することができる。
Furthermore, since it is sufficient to simply provide the thin unit semiconductor 30 on the light incident side, it is possible to use a semiconductor whose absorption edge wavelength λC is shorter than the emission wavelength range from the active layer 18, specifically, n-Al0. 2 Ga0.8 As is used instead of n-GaAs to form the light reflecting layer 14, it is difficult to control the mixed crystal ratio and the refractive index varies, and n-AlAs
A light reflecting layer 1 having predetermined light reflecting properties without impairing light wave interference due to a small difference in refractive index between the
4 can be formed stably and easily.

【0022】以上、本発明の一実施例を図面に基づいて
詳細に説明したが、本発明は他の態様で実施することも
できる。
Although one embodiment of the present invention has been described above in detail based on the drawings, the present invention can also be implemented in other embodiments.

【0023】例えば、前記実施例の光反射層14aは全
ての単位半導体30の膜厚が連続的に変化しており、光
反射層14bは段階的に変化しているが、図8に示され
ているように、単位半導体30の膜厚が一定の基準厚さ
Tである等厚部32と、その等厚部32の上層側に設け
られて上部に向かうに従って膜厚が連続的に且つ直線的
に薄くなる第1変厚部34と、等厚部32の下層側に設
けられて下部に向かうに従って膜厚が連続的に且つ直線
的に厚くなる第2変厚部36とから成る光反射層14c
を採用することもできる。
For example, in the light reflection layer 14a of the above embodiment, the film thickness of all the unit semiconductors 30 changes continuously, and in the light reflection layer 14b, the film thickness changes in stages, but as shown in FIG. As shown in FIG. 2, there is a uniform thickness part 32 in which the film thickness of the unit semiconductor 30 is a constant reference thickness T, and a uniform thickness part 32 that is provided on the upper layer side of the uniform thickness part 32 and whose film thickness increases continuously and linearly toward the top. A light reflection consisting of a first variable thickness section 34 that becomes thinner and a second variable thickness section 36 that is provided on the lower layer side of the equal thickness section 32 and whose film thickness becomes continuously and linearly thicker toward the bottom. layer 14c
can also be adopted.

【0024】また、前記実施例の面発光型発光ダイオー
ド10はp−GaAs活性層18を有するダブルヘテロ
構造を備えているが、GaP、InP、InGaAsP
などの他の化合物半導体から成るダブルヘテロ構造や単
一ヘテロ構造の面発光型発光ダイオード、或いはホモ構
造の面発光型発光ダイオード等にも本発明は同様に適用
され得る。半導体レーザなど光反射層を備えた他の半導
体装置にも本発明は適用され得る。
The surface-emitting type light emitting diode 10 of the above embodiment has a double heterostructure having a p-GaAs active layer 18, but GaP, InP, InGaAsP
The present invention can be similarly applied to surface-emitting light-emitting diodes with a double heterostructure or single heterostructure, or surface-emitting light-emitting diodes with a homostructure, made of other compound semiconductors such as. The present invention can also be applied to other semiconductor devices including a light reflective layer such as a semiconductor laser.

【0025】また、前記実施例ではn−GaAs/n−
AlAs光反射層14が設けられているが、光反射層を
構成する半導体結晶の種類や組成、膜厚は、その半導体
結晶の屈折率、発光ダイオードの発光波長などに基づい
て適宜設定される。
Further, in the above embodiment, n-GaAs/n-
Although the AlAs light reflection layer 14 is provided, the type, composition, and film thickness of the semiconductor crystal constituting the light reflection layer are appropriately set based on the refractive index of the semiconductor crystal, the emission wavelength of the light emitting diode, and the like.

【0026】また、前記面発光型発光ダイオード10は
基板12の反対側に光取出し面24が形成されているが
、基板12側から光を取り出す面発光型発光ダイオード
にも本発明は適用され得る。
Furthermore, although the surface-emitting type light emitting diode 10 has a light extraction surface 24 formed on the opposite side of the substrate 12, the present invention can also be applied to a surface-emitting type light-emitting diode that extracts light from the substrate 12 side. .

【0027】また、前記実施例の光反射層14aは単位
半導体30の膜厚が直線的に変化させられているが、滑
らかな曲線に沿って変化させることもできる。
Further, in the light reflecting layer 14a of the above embodiment, the film thickness of the unit semiconductor 30 is varied linearly, but it can also be varied along a smooth curve.

【0028】また、前記光反射層14cは単位半導体3
0の膜厚が基準厚さTの等厚部32を備えているが、発
光波長が異なる複数の活性層を有する場合など、必要に
応じて膜厚が異なる複数の等厚部を設けることも可能で
ある。基準厚さTは、必ずしも活性層18の発光波長に
厳密に対応させる必要はなく、発光波長の近傍の波長の
光を反射するように設定されても良い。
[0028] The light reflecting layer 14c also includes a unit semiconductor 3.
Although the equal thickness portion 32 has a thickness of 0 and the reference thickness T, it is also possible to provide a plurality of equal thickness portions with different thicknesses as necessary, such as when having a plurality of active layers with different emission wavelengths. It is possible. The reference thickness T does not necessarily have to correspond strictly to the emission wavelength of the active layer 18, and may be set so as to reflect light having a wavelength near the emission wavelength.

【0029】また、前記実施例の光反射層14a,14
cは、基準厚さTを中心として±T・DDだけ膜厚が変
化しているが、製造時における膜厚誤差のずれ方向、言
い換えれば反射波長域のずれ方向に偏りがある場合など
、必要に応じて膜厚を非対称に変化させるようにしても
良い。前記光反射層14cを例として具体的に説明する
と、一対の変厚部34、36における膜厚の変化割合D
Dや積層数をそれぞれ異なる値に設定しても差支えない
のであり、極端な場合には何れかの変厚部34または3
6を省略することもできるのである。
Furthermore, the light reflecting layers 14a, 14 of the above embodiments
c, the film thickness varies by ±T・DD around the reference thickness T, but it is necessary if there is a deviation in the direction of the film thickness error during manufacturing, in other words, in the direction of deviation in the reflected wavelength range. The film thickness may also be changed asymmetrically depending on. To specifically explain the light reflecting layer 14c as an example, the change rate D of the film thickness in the pair of variable thickness portions 34 and 36 is as follows.
There is no problem even if D and the number of laminated layers are set to different values, and in extreme cases, either of the variable thickness parts 34 or 3
6 can also be omitted.

【0030】また、前記実施例の光反射層14bは単位
半導体30の膜厚が3段階で変化させられているが、2
段階或いは4段階以上で変化させることもできる。各膜
厚における積層数nは必ずしも同じである必要はなく、
その積層数nについても適宜変更できる。なお、積層数
nは4以上であることが望ましい。
Further, in the light reflecting layer 14b of the above embodiment, the film thickness of the unit semiconductor 30 is changed in three steps;
It can also be changed in stages or in four or more stages. The number of laminated layers n for each film thickness does not necessarily have to be the same,
The number n of laminated layers can also be changed as appropriate. Note that the number n of laminated layers is preferably 4 or more.

【0031】また、前記実施例ではMOCVD装置を用
いて面発光型発光ダイオード10を作製する場合につい
て説明したが、分子線エピタキシー法など他のエピタキ
シャル成長技術を用いて作製することも可能である。
Further, in the above embodiment, the case where the surface emitting type light emitting diode 10 was manufactured using an MOCVD apparatus was explained, but it is also possible to manufacture it using other epitaxial growth techniques such as molecular beam epitaxy.

【0032】その他一々例示はしないが、本発明は当業
者の知識に基づいて種々の変更,改良を加えた態様で実
施することができる。
Although no other examples are given, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例であるチャープ状光反射層を
備えた面発光型発光ダイオードの構造を説明する図であ
る。
FIG. 1 is a diagram illustrating the structure of a surface-emitting light emitting diode equipped with a chirped light-reflecting layer, which is an embodiment of the present invention.

【図2】図1の面発光型発光ダイオードにおける光反射
層を説明する図である。
FIG. 2 is a diagram illustrating a light reflecting layer in the surface-emitting light emitting diode of FIG. 1;

【図3】図2の光反射層における単位半導体の膜厚変化
を説明する図である。
FIG. 3 is a diagram illustrating a change in the film thickness of a unit semiconductor in the light reflecting layer of FIG. 2;

【図4】図2の光反射層における単位半導体の膜厚変化
の別の態様を説明する図である。
FIG. 4 is a diagram illustrating another aspect of change in film thickness of a unit semiconductor in the light reflecting layer of FIG. 2;

【図5】図3の光反射層において積層数N=30、変厚
割合DD=0.05の場合の光反射特性を、図9の光反
射層の場合と比較して示す図である。
5 is a diagram showing the light reflection characteristics of the light reflection layer of FIG. 3 when the number of laminated layers N=30 and the thickness change ratio DD=0.05 in comparison with that of the light reflection layer of FIG. 9. FIG.

【図6】図3の光反射層において積層数N=30、変厚
割合DD=0.1の場合の光反射特性を、図9の光反射
層の場合と比較して示す図である。
6 is a diagram showing the light reflection characteristics of the light reflection layer of FIG. 3 when the number of laminated layers N=30 and the thickness change ratio DD=0.1 in comparison with that of the light reflection layer of FIG. 9. FIG.

【図7】図4の光反射層の光反射特性を、図10の光反
射層の場合と比較して示す図である。
7 is a diagram showing the light reflection characteristics of the light reflection layer of FIG. 4 in comparison with that of the light reflection layer of FIG. 10. FIG.

【図8】図2の光反射層における単位半導体の膜厚変化
の更に別の態様を説明する図である。
8 is a diagram illustrating still another aspect of the change in the film thickness of the unit semiconductor in the light reflecting layer of FIG. 2. FIG.

【図9】単位半導体の膜厚変化が図3と逆の場合を説明
する図である。
FIG. 9 is a diagram illustrating a case where the film thickness change of a unit semiconductor is opposite to that in FIG. 3;

【図10】単位半導体の膜厚変化が図4と逆の場合を説
明する図である。
FIG. 10 is a diagram illustrating a case where the change in film thickness of a unit semiconductor is opposite to that in FIG. 4;

【符号の説明】[Explanation of symbols]

10:面発光型発光ダイオード(半導体装置)14,1
4a,14b,14c:チャープ状光反射層30:単位
半導体
10: Surface emitting type light emitting diode (semiconductor device) 14,1
4a, 14b, 14c: chirped light reflecting layer 30: unit semiconductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  組成が異なる複数種類の半導体が重ね
合わされた単位半導体が繰り返し積層されて入射した光
を光波干渉によって反射するとともに、該単位半導体の
厚さが変化させられて反射波長域が拡大されたチャープ
状光反射層を備えた半導体装置において、前記単位半導
体の厚さが薄いもの程光の入射側に設けられていること
を特徴とするチャープ状光反射層を備えた半導体装置。
Claim 1: A unit semiconductor in which multiple types of semiconductors with different compositions are stacked is repeatedly stacked to reflect incident light through light wave interference, and the thickness of the unit semiconductor is changed to expand the reflected wavelength range. What is claimed is: 1. A semiconductor device having a chirp-like light-reflecting layer, characterized in that the thinner the unit semiconductor is, the closer the unit semiconductor is provided to the light incident side.
JP12513991A 1990-11-02 1991-04-26 Semiconductor device with chirped light reflecting layer Expired - Lifetime JP2973581B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP12513991A JP2973581B2 (en) 1991-04-26 1991-04-26 Semiconductor device with chirped light reflecting layer
EP91118652A EP0483868B1 (en) 1990-11-02 1991-10-31 Semiconductor device having reflecting layer
US07/786,006 US5260589A (en) 1990-11-02 1991-10-31 Semiconductor device having reflecting layers made of varying unit semiconductors
DE69124338T DE69124338T2 (en) 1990-11-02 1991-10-31 Semiconductor device with reflective layer
DE69132764T DE69132764T2 (en) 1990-11-02 1991-10-31 Semiconductor device with reflective layer
EP96104419A EP0724300B1 (en) 1990-11-02 1991-10-31 Semiconductor device having reflecting layer
CA002054853A CA2054853C (en) 1990-11-02 1991-11-04 Semiconductor device having reflecting layer
CA002272129A CA2272129C (en) 1990-11-02 1991-11-04 Semiconductor device having reflecting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12513991A JP2973581B2 (en) 1991-04-26 1991-04-26 Semiconductor device with chirped light reflecting layer

Publications (2)

Publication Number Publication Date
JPH04328877A true JPH04328877A (en) 1992-11-17
JP2973581B2 JP2973581B2 (en) 1999-11-08

Family

ID=14902831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12513991A Expired - Lifetime JP2973581B2 (en) 1990-11-02 1991-04-26 Semiconductor device with chirped light reflecting layer

Country Status (1)

Country Link
JP (1) JP2973581B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500629A (en) * 2010-12-24 2014-01-09 ソウル バイオシス カンパニー リミテッド Light emitting diode chip and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014500629A (en) * 2010-12-24 2014-01-09 ソウル バイオシス カンパニー リミテッド Light emitting diode chip and method of manufacturing the same
JP2015179856A (en) * 2010-12-24 2015-10-08 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode chip and method of fabricating the same
JP2017028305A (en) * 2010-12-24 2017-02-02 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light-emitting diode chip and method of manufacturing the same
JP2018101814A (en) * 2010-12-24 2018-06-28 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode package
JP2018170524A (en) * 2010-12-24 2018-11-01 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Light emitting diode package

Also Published As

Publication number Publication date
JP2973581B2 (en) 1999-11-08

Similar Documents

Publication Publication Date Title
JPH0750448A (en) Semiconductor laser and manufacture thereof
JP2874442B2 (en) Surface input / output photoelectric fusion device
JPH0262090A (en) Manufacture of optical semiconductor device
US5111467A (en) Hybrid rugate filter assembly for temperature stabilized emission of grating coupled surface emitting lasers
JPH0687512B2 (en) Method for manufacturing surface emission type AlGaAs / GaAs semiconductor laser diode by selective epitaxy method
JPH06151955A (en) Semiconductor light emitting element
EP0724300B1 (en) Semiconductor device having reflecting layer
JP3134382B2 (en) Semiconductor device having a chirped light reflecting layer
JPH04299881A (en) Quantum thin line laser
JP2855729B2 (en) Surface emitting laser and method of manufacturing the same
JPH04328877A (en) Semiconductor device provided with chirp light reflection layer
JPS6097684A (en) Surface luminous laser and manufacture thereof
JPH0685403A (en) Semiconductor laser
JP2778868B2 (en) Surface-emitting light emitting diode
JP2973612B2 (en) Semiconductor multilayer mirror
JPH01200678A (en) Light-emitting diode
JPH05327121A (en) Surface emitting type semiconductor laser
JPS6334992A (en) Semiconductor laser device
JPH03163882A (en) Light-emitting diode with optical reflection layer
JPH05327111A (en) Semiconductor laser and its manufacture
JPH05343739A (en) Semiconductor multilayer film reflecting mirror
JP2002214428A (en) Semiconductor multilayer film reflecting mirror and semiconductor luminous element
JPH05175550A (en) Multilayer semiconductor film reflector
JPH02260482A (en) Semiconductor laser device
JPH04264782A (en) Surface emitting type light-emitting diode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 12