JP2002214428A - Semiconductor multilayer film reflecting mirror and semiconductor luminous element - Google Patents

Semiconductor multilayer film reflecting mirror and semiconductor luminous element

Info

Publication number
JP2002214428A
JP2002214428A JP2001014767A JP2001014767A JP2002214428A JP 2002214428 A JP2002214428 A JP 2002214428A JP 2001014767 A JP2001014767 A JP 2001014767A JP 2001014767 A JP2001014767 A JP 2001014767A JP 2002214428 A JP2002214428 A JP 2002214428A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
optical thickness
layers
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001014767A
Other languages
Japanese (ja)
Inventor
Yuichi Oshima
祐一 大島
Tsunehiro Unno
恒弘 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001014767A priority Critical patent/JP2002214428A/en
Publication of JP2002214428A publication Critical patent/JP2002214428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To satisfy a diffraction condition (the sum of optical thicknesses is 1/2 of maximum absorption wavelength λ0) and to ensure a high reflectance even when the optical thickness of a layer having a higher absorption coefficient is made smaller in a multilayer film reflecting mirror obtained by stacking pairs of semiconductor layers different from each other in refractive index and absorption coefficient. SOLUTION: Each semiconductors is selected from AlxGa1-xAs (0<=x<=1) and (AlyGa1-y)zIn1-zP (0<=y<=1 and 0<=z<=1), a first semiconductor layer comprises a semiconductor having a higher absorption coefficient at wavelength λ0 than that of a second semiconductor layer and the optical thickness n1d1 of the first layer is made smaller than λ0/4. The optical thickness ratio n1d1/n2d2 of the first layer to the second layer is preferably in the range of 0.3-0.8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体多層膜反射
鏡および半導体発光素子に関し、特に、反射率を高めた
半導体多層膜反射鏡、および発光輝度の大きい半導体発
光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor multilayer mirror and a semiconductor light emitting device, and more particularly, to a semiconductor multilayer mirror having a high reflectance and a semiconductor light emitting device having a high light emission luminance.

【従来の技術】発光ダイオードやレーザダイオード等の
半導体発光素子には、特定の波長の入射光を光波干渉に
より反射する半導体多層膜反射鏡が重要な構成要素とな
っている。半導体多層膜反射鏡は、屈折率の異なる2層
の半導体層を反復積層して、ブラッグ反射として知られ
る光干渉効果により、特定の波長の入射光を反射するよ
うに構成されている。
2. Description of the Related Art An important component of a semiconductor light emitting device such as a light emitting diode or a laser diode is a semiconductor multilayer film reflecting mirror which reflects incident light of a specific wavelength by light wave interference. The semiconductor multilayer film reflecting mirror is configured such that two semiconductor layers having different refractive indices are repeatedly laminated to reflect incident light of a specific wavelength by an optical interference effect known as Bragg reflection.

【0002】図7は半導体多層膜反射鏡の典型的な構造
を示す。GaAs基板3の上にGaAs層1とAlIn
P層2が交互に積層されている。GaAs層1の厚さを
1、屈折率をn1 、AlInP層2の厚さをd2 、屈
折率をn2 とするとき、それらの間に n1 1 =n22 =λ0 /4(λ0 は反射光の極大波長) (1) なる関係が成り立つように設計される。すなわち、二層
(1と2)の光学的厚さn11 とn22 は等しく、
その比n11 /n2 2 は1である。図8中、各層の
厚さは光学的厚さを、反射光極大波長λ0 との関係で表
示してある。
FIG. 7 shows a typical structure of a semiconductor multilayer mirror. GaAs layer 1 and AlIn on GaAs substrate 3
P layers 2 are alternately stacked. When the thickness of the GaAs layer 1 is d 1 , the refractive index is n 1 , the thickness of the AlInP layer 2 is d 2 , and the refractive index is n 2 , n 1 d 1 = n 2 d 2 = λ 0/40 is the maximum wavelength of the reflected light) (1) The following relationship is established. That is, the optical thicknesses n 1 d 1 and n 2 d 2 of the two layers (1 and 2) are equal,
The ratio n 1 d 1 / n 2 d 2 is 1. In FIG. 8, the thickness of each layer indicates the optical thickness in relation to the maximum wavelength λ 0 of the reflected light.

【0003】厚さd1 、屈折率n1 を有する第一層(入
射側)と、厚さd2 、屈折率n2 を有する第二層(基板
側)の対で構成された多層膜反射鏡の反射率Rは、下記
の式(2)で表わされる(Nは二層の対の積層数)。 R=[[(n1/n2)2N−1]/[(n1/n2)2N+1]]2 (2) すなわち、二層の屈折率の比が高いほど反射率Rは増大
する。また、同じ反射率を得るのに要する二層の対の積
層数Nは少なくてよい。
[0003] A multilayer reflection comprising a pair of a first layer (incident side) having a thickness d 1 and a refractive index n 1 and a second layer (substrate side) having a thickness d 2 and a refractive index n 2. The reflectance R of the mirror is represented by the following equation (2) (N is the number of stacked two-layer pairs). R = [[(n 1 / n 2 ) 2N −1] / [(n 1 / n 2 ) 2N +1]] 2 (2) That is, the reflectance R increases as the ratio of the refractive indexes of the two layers increases. . Further, the number N of pairs of two layers required to obtain the same reflectance may be small.

【0004】[0004]

【発明が解決しようとする課題】図7に示した典型的構
造の多層膜反射鏡を構成するためには、基板と格子整合
し、かつ屈折率比の大きい物質の組み合わせが必要であ
るが、このような物質の組み合わせは限られている。そ
れらのうち、GaAsやGaInPは、屈折率は大きい
が、可視光領域での光吸収係数が大きいので、十分大き
い反射率が得られない。AlGaInPやAlInP
は、光吸収は極めて小さいが、これらの組み合わせでは
屈折率比が小さいため、高い反射率が得られず、反射ス
ペクトルの幅も狭くなる。いずれの場合も、高い反射率
を得るためには、積層数Nを増やさなければならない。
In order to construct a multilayer mirror having the typical structure shown in FIG. 7, a combination of substances which are lattice-matched to the substrate and have a large refractive index ratio is required. Combinations of such substances are limited. Among them, GaAs and GaInP have a large refractive index, but have a large light absorption coefficient in a visible light region, so that a sufficiently large reflectance cannot be obtained. AlGaInP and AlInP
Although light absorption is extremely small, a high reflectance cannot be obtained and the width of the reflection spectrum is narrow because the refractive index ratio is small in these combinations. In any case, the number N of layers must be increased in order to obtain a high reflectance.

【0005】積層数Nを増すと、製造のための時間とコ
ストが増大するだけでなく、反射スペクトルの幅がます
ます狭くなる。発光素子として用いる場合、駆動電圧を
高くする必要も生じる。
[0005] Increasing the number of layers N not only increases the time and cost for manufacturing, but also narrows the width of the reflection spectrum. When used as a light emitting element, it is necessary to increase a driving voltage.

【0006】屈折率比の大きい物質の半導体層の組み合
わせで構成した多層膜反射鏡において、高い反射率を得
るためには、それぞれの半導体層の光吸収を減少させる
ことが重要である。このために、光吸収係数の大きい方
の半導体層の光学的厚さを小さくすることにより、光吸
収は減少する。しかし、それと同時に、二層の半導体層
の光学的厚さを等しく(比は1:1)保てなくなるこ
と、つまり、回折条件からずれることによる反射率の低
下も生じる。以上から、半導体層の光学的厚さの比の回
折条件からのずれによる反射率の低下が、半導体層にお
ける光吸収の減少の効果を上回る場合においては、結果
として、多層膜反射鏡の反射率が低下するが、光吸収の
減少の効果が、半導体層の光学的厚さの比の回折条件か
らのずれによる反射率の低下を上回る場合においては、
多層膜反射鏡の反射率が向上するということが予想され
る。
In order to obtain a high reflectivity in a multilayer mirror composed of a combination of semiconductor layers having a large refractive index ratio, it is important to reduce the light absorption of each semiconductor layer. For this reason, light absorption is reduced by reducing the optical thickness of the semiconductor layer having the larger light absorption coefficient. However, at the same time, the optical thickness of the two semiconductor layers cannot be kept equal (the ratio is 1: 1), that is, the reflectance is lowered due to deviation from the diffraction condition. From the above, when the decrease in the reflectance due to the deviation of the ratio of the optical thickness of the semiconductor layer from the diffraction condition exceeds the effect of reducing the light absorption in the semiconductor layer, as a result, the reflectivity of the multilayer mirror is reduced. When the effect of reducing the light absorption exceeds the decrease in reflectance due to the deviation of the ratio of the optical thickness of the semiconductor layer from the diffraction condition,
It is expected that the reflectance of the multilayer mirror will be improved.

【0007】本発明の目的は、屈折率及び光吸収係数が
異なる半導体層の対を反復積層して成る半導体多層膜反
射鏡において、半導体層の対のうち光吸収係数の大きい
方の層の光学的厚さを小さくして、光吸収の減少の効果
が、半導体層の光学的厚さの比の回折条件からのずれに
よる反射率の低下を上回るように、適度に回折条件から
ずらすことにより高い反射率を得ることができる、半導
体多層膜反射鏡を実現することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor multi-layered film mirror comprising a pair of semiconductor layers having different refractive indices and light absorption coefficients which are repeatedly laminated, and the optical characteristics of a layer having a larger light absorption coefficient among the pair of semiconductor layers. The effect of reducing the light absorption by reducing the target thickness is higher by appropriately deviating from the diffraction conditions so that the effect of reducing the optical absorption of the semiconductor layer exceeds the decrease in the reflectance due to the deviation of the optical thickness ratio from the diffraction conditions. An object of the present invention is to realize a semiconductor multilayer film reflecting mirror capable of obtaining a reflectance.

【0008】本発明の目的はまた、屈折率及び光吸収係
数が異なる半導体層の対を反復積層して成る半導体多層
膜反射鏡において、光吸収は極めて小さいが、大きい屈
折率比が得られない半導体層の組み合わせでも、反射ス
ペクトルの幅の減少を回避でき、また積層数Nを増さな
いで高い反射率を得ることができる、半導体多層膜反射
鏡を実現することにある。
Another object of the present invention is to provide a semiconductor multi-layered film mirror comprising a plurality of pairs of semiconductor layers having different refractive indices and different light absorption coefficients, which have very small light absorption but cannot obtain a large refractive index ratio. It is another object of the present invention to provide a semiconductor multilayer mirror capable of avoiding a decrease in the width of the reflection spectrum and obtaining a high reflectance without increasing the number N of layers even with a combination of semiconductor layers.

【0009】本発明の他の目的は、積層数Nを増すこと
に伴う、製造に要する時間とコストの増大が回避でき
る、半導体多層膜反射鏡を実現することにある。
Another object of the present invention is to realize a semiconductor multilayer film reflecting mirror which can avoid an increase in the time and cost required for manufacturing accompanying an increase in the number N of layers.

【0010】本発明のさらに他の目的は、光吸収は極め
て小さいが、大きい屈折率比が得られない半導体層の組
み合わせで半導体多層膜反射鏡を構成しても、積層数N
を増さないで高い反射率を得ることができ、積層数Nを
増すことに伴う、せまい反射スペクトル幅、製造コスト
の増大、必要な駆動電圧の上昇が回避される、発光出力
の大きい半導体発光素子を実現することにある。
Still another object of the present invention is to provide a semiconductor multi-layered film reflecting mirror composed of a combination of semiconductor layers which has a very small light absorption but does not provide a large refractive index ratio.
High reflectance without increasing the number of layers, and avoiding a narrow reflection spectrum width, an increase in manufacturing cost, and an increase in required driving voltage due to an increase in the number of stacked layers N. The realization of an element.

【0011】[0011]

【課題を解決するための手段】本発明では、上記目的を
達成するため、屈折率及び光吸収係数が異なる半導体層
の対を反復積層して成り、半導体層の対を構成する第一
および第二の半導体層の光学的厚さの和がλ0 /2(λ
0 は反射光極大波長)に等しい半導体多層膜反射鏡にお
いて、第一および第二の半導体層は、Alx Ga1-x
s層(0≦x≦1)および(Aly Ga1-y )z In1-z
P層(0≦y≦1,0≦z≦1)から選ばれ、第一の
半導体層は、反射光極大波長における光吸収係数が第二
の半導体層よりも大きく、光学的厚さがλ0 /4より小
さいことを特徴とする。
According to the present invention, in order to achieve the above object, a pair of semiconductor layers having different refractive indices and light absorption coefficients are repeatedly laminated to form the first and second semiconductor layer pairs. the sum of the optical thickness of the second semiconductor layer is λ 0/2
0 is the maximum wavelength of reflected light), and the first and second semiconductor layers are made of Al x Ga 1 -x A
s layer (0 ≦ x ≦ 1) and (Al y Ga 1-y ) z In 1-z
P layer (0 ≦ y ≦ 1, 0 ≦ z ≦ 1), the first semiconductor layer has a larger light absorption coefficient at the maximum wavelength of reflected light than the second semiconductor layer, and has an optical thickness of λ. characterized in that from 0/4 small.

【0012】第一の半導体層の厚さをd1 、その屈折率
をn1 とし、第二の半導体層の厚さをd2 、その屈折率
をn2 とするとき、第一の半導体層及び第二の半導体層
の光学的厚さはそれぞれ、n11 、n22 である。
対を構成する半導体層の光学的厚さの和は、n11
22 である。対を構成するそれぞれの半導体層の光
学的厚さの和がλ0 /2に等しいとは、式(3)で表わ
される。 n11 +n22 =λ0 /2 (3) 第一の半導体層の光学的厚さがλ0 /4より小さいと
は、式(4)で表わされる。 n11 <λ0 /4 (4)
When the thickness of the first semiconductor layer is d 1 and its refractive index is n 1 , the thickness of the second semiconductor layer is d 2 and its refractive index is n 2 , the first semiconductor layer And the optical thicknesses of the second semiconductor layer are n 1 d 1 and n 2 d 2 , respectively.
The sum of the optical thicknesses of the semiconductor layers forming the pair is n 1 d 1 +
n 2 d 2 . The sum of the optical thickness of each of the semiconductor layers constituting the pair is equal to λ 0/2, the formula (3). n 1 d 1 + n 2 d 2 = λ 0/2 (3) optical thickness of the first semiconductor layer and the lambda 0/4 less than the formula (4). n 1 d 1 <λ 0/ 4 (4)

【0013】また本発明では、上記目的を達成するた
め、屈折率及び光吸収係数が異なる半導体層の対を反復
積層して成り、半導体層の対を構成する第一および第二
の半導体層の光学的厚さの和がλ0 /2(λ0 は反射光
極大波長)に等しい、半導体多層膜反射鏡において、第
一および第二の半導体層は、Alx Ga1-x As層(0
≦x≦1)および(Aly Ga1-y )z In1-z P層
(0≦y≦1,0≦z≦1)から選ばれ、第一の半導体
層は、反射光極大波長λ0 における光吸収係数が第二の
半導体層より大きく、光学的厚さがλ0 /4より小さい
こととともに、さらに、第一の半導体層の光学的厚さ
の、第二の半導体層の光学的厚さに対する比が、0.3
から0.8までの範囲にあることを特徴とする。すなわ
ち、式(3)、(4)と同じ定義を用いれば、 n11 /n22 =p 0.3≦p≦0.8 (5) このとき、第一の半導体層の光学的厚さは当然第二の半
導体層より小さいが、第一の半導体層の反射光極大波長
における光吸収係数は、第二の半導体層より大きい。
According to the present invention, in order to achieve the above object, a pair of semiconductor layers having different refractive indices and light absorption coefficients are repeatedly laminated, and the first and second semiconductor layers constituting the pair of semiconductor layers are stacked. equal to the optical thickness of the sum is lambda 0/2 (lambda 0 is reflected light maximum wavelength), in the semiconductor multilayer reflector, the first and second semiconductor layer, Al x Ga 1-x As layer (0
≦ x ≦ 1) is selected from and (Al y Ga 1-y) z In 1-z P layer (0 ≦ y ≦ 1,0 ≦ z ≦ 1), the first semiconductor layer, the reflected light maximum wavelength λ larger light absorption coefficient than the second semiconductor layer at 0, with that optical thickness is smaller than lambda 0/4, further optical thickness of the first semiconductor layer, the optical second semiconductor layer The ratio to the thickness is 0.3
From 0.8 to 0.8. That is, using the same definition as in the equations (3) and (4), n 1 d 1 / n 2 d 2 = p 0.3 ≦ p ≦ 0.8 (5) At this time, the optical property of the first semiconductor layer Although the target thickness is smaller than the second semiconductor layer, the light absorption coefficient of the first semiconductor layer at the maximum wavelength of the reflected light is larger than the second semiconductor layer.

【0014】また本発明では、上記目的を達成するた
め、屈折率及び光吸収係数が異なる半導体層の対が反復
積層された半導体多層膜反射鏡から成り、半導体層の対
を構成する第一および第二の半導体層の光学的厚さの和
がλ0 /2(λ0 は反射光極大波長)に等しい、半導体
発光素子において、第一および第二の半導体層はAlx
Ga1-x As層(0≦x≦1)および(Aly
1-y )z In1-z P層(0≦y≦1,0≦z≦1)か
ら選ばれ、第一の半導体層は、反射光極大波長λ0 にお
ける光吸収係数が前記第二の半導体層より大きく、光学
的厚さがλ0 /4より小さいことを特徴とする。
Further, in the present invention, in order to achieve the above object, a semiconductor multilayer film reflecting mirror in which pairs of semiconductor layers having different refractive indices and light absorption coefficients are repeatedly laminated, and the first and second layers constituting the pair of semiconductor layers are formed. second semiconductor layer optical thickness of sum lambda 0/2 of (lambda 0 is reflected light maximum wavelength) is equal to, in the semiconductor light emitting device, the first and second semiconductor layers is Al x
Ga 1-x As layer (0 ≦ x ≦ 1) and (Al y G
a 1-y ) z In 1-z P layer (0 ≦ y ≦ 1, 0 ≦ z ≦ 1), and the first semiconductor layer has a light absorption coefficient at a reflected light maximum wavelength λ 0 of the second layer. greater than the semiconductor layer, wherein the optical thickness is less than λ 0/4.

【0015】第一の半導体層(以下、第一層という)の
光学的厚さの、第二の半導体層(以下、第二層という)
の光学的厚さに対する比の最適値は、各層の物質、界面
の急峻度等により異なる。例えば、第一層がGaAs、
第二層がAlInPで構成されるとき、この比pは0.
4ないし0.6が特に好ましく、0.5で最大の反射率
を与える。
The second semiconductor layer (hereinafter, referred to as a second layer) having an optical thickness of the first semiconductor layer (hereinafter, referred to as a first layer).
The optimum value of the ratio to the optical thickness varies depending on the material of each layer, the steepness of the interface, and the like. For example, the first layer is GaAs,
When the second layer is composed of AlInP, this ratio p is equal to 0.1.
Particularly preferred is 4 to 0.6, with 0.5 giving maximum reflectivity.

【0016】本発明の多層膜反射鏡は一般的なMOVP
E法に限らず、MBE(分子線エピタクシー)法等、他
のエピタキシャル成長技術を用いて製造することもでき
る。本発明の多層膜反射鏡は軟X線用反射鏡にも応用で
きる。本発明の発光素子は、発光ダイオードやレーザダ
イオードとして利用される。
The multilayer reflector of the present invention is a general MOVP.
Not only the E method but also other epitaxial growth techniques such as MBE (Molecular Beam Epitaxy) can be used. The multilayer reflector of the present invention can be applied to a soft X-ray reflector. The light emitting device of the present invention is used as a light emitting diode or a laser diode.

【0017】[0017]

【発明の実施の形態】以下に実施の形態の一例を示す。
GaAs基板の上に、AlInP層とGaAs層の組み
合わせが10対積層された多層膜反射鏡を、MOVPE
法により製作した。各対の二層の光学的厚さの和がλ0
/2となるとともに、比が一定の値0.5となるように
した。すなわち、GaAs層の厚さd1 、屈折率n1
AlInP層の厚さd2 、屈折率n2 が、式(3)(0
012節参照)に示す関係 n11 +n22 =λ0 /2 を満たすとともに、次の式(6)に示す関係 n11 /n22 =0.5 (6) を満たすようにした。式(3)と式(6)の関係を同時
に満たすためには、n11 およびn22の、λ0
の関係は次のようになる。 n11 =λ0 /6, n22 =λ0 /3
Embodiments of the present invention will be described below.
On a GaAs substrate, a multilayer reflector in which a combination of 10 pairs of an AlInP layer and a GaAs layer is laminated is formed by MOVPE.
Made by the method. The sum of the optical thicknesses of the two layers of each pair is λ 0
/ 2 and the ratio was set to a constant value of 0.5. That is, the thickness d 1 of the GaAs layer, the refractive index n 1 ,
The thickness d 2 and the refractive index n 2 of the AlInP layer are expressed by the formula (3) (0
Fulfills the relation n 1 d 1 + n 2 d 2 = λ 0/2 shown in reference 012 Section), related in the following equation (6) n 1 d 1 / n 2 d 2 = 0.5 (6) I met it. In order to simultaneously satisfy the relationship between Expressions (3) and (6), the relationship between n 1 d 1 and n 2 d 2 with λ 0 is as follows. n 1 d 1 = λ 0/ 6, n 2 d 2 = λ 0/3

【0018】図1は本発明の半導体多層膜反射鏡の断面
を示す。GaAs基板3の上にGaAs層1とAlIn
P層2の組み合わせが、10対(図では一部を省略)積
層されている。各層の厚さは光学的厚さを、反射光極大
波長λ0 との関係で表示してある。
FIG. 1 shows a cross section of a semiconductor multilayer mirror according to the present invention. GaAs layer 1 and AlIn on GaAs substrate 3
Ten pairs (partially omitted in the drawing) of the combinations of the P layers 2 are stacked. The thickness of each layer indicates the optical thickness in relation to the maximum wavelength λ 0 of the reflected light.

【0019】図2は、図1の半導体多層膜反射鏡の、G
aAs層1とAlInP層2の光学的厚さの比n11
/n2 2 を、0から1まで0.1ずつ変化させたとき
の反射率を示す。
FIG. 2 is a sectional view of the semiconductor multilayer mirror shown in FIG.
Ratio of optical thickness n 1 d 1 between aAs layer 1 and AlInP layer 2
It shows the reflectance when / n 2 d 2 is changed from 0 to 1 in steps of 0.1.

【0020】[0020]

【実施例】図1に示すように、GaAs基板3の上にA
lInP層2とGaAs層1を交互に、MOVPE法に
より10対積層して多層膜反射鏡を製作した。GaAs
層1の厚さd1 、屈折率n1 、AlInP層2の厚さd
2 、屈折率n2 を、式(3)に示す関係を満たすととも
に式(6)の関係を満たすようにした。 (n11 +n2 2 =λ0 /2, n11 /n2
2 =0.5,n11 =λ0 /6, n22=λ0
3)
DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG.
The multilayer reflector was manufactured by laminating 10 pairs of the lInP layer 2 and the GaAs layer 1 alternately by the MOVPE method. GaAs
The thickness d 1 of the layer 1, the refractive index n 1, the thickness of the AlInP layer 2 d
2, the refractive index n 2, and to satisfy the relationship of Equation (6) fulfills the relationship shown in equation (3). (N 1 d 1 + n 2 d 2 = λ 0/2, n 1 d 1 / n 2 d
2 = 0.5, n 1 d 1 = λ 0/6, n 2 d 2 = λ 0 /
3)

【0021】図3は、この多層膜反射鏡の波長300n
mから800nmの範囲での反射率を示す。最大反射率
は85%、極大における半値幅は58nmであった。
FIG. 3 shows a wavelength of 300 n of the multilayer mirror.
The reflectance in the range from m to 800 nm is shown. The maximum reflectance was 85%, and the half width at the maximum was 58 nm.

【0022】実施例の多層膜反射鏡を用い、図4に示す
構造の発光ダイオードを製作した。この発光ダイオード
の発光出力は1.6mW、順方向動作電圧は1.8V
(20mA通電)であった。
A light emitting diode having the structure shown in FIG. 4 was manufactured using the multilayer reflector of the embodiment. The light emitting output of this light emitting diode is 1.6 mW, and the forward operating voltage is 1.8 V.
(20 mA conduction).

【0023】図4は、実施例の多層膜反射鏡を用いた発
光ダイオードの断面を示す。発光ダイオード10は、n
−GaAs基板11、n−AlInP層2とn−GaA
s層1の対で構成される多層膜反射鏡12、n−AlG
aAsクラッド層13、p−GaAs活性層14、p−
AlGaAsクラッド層15、p−GaAsキャップ層
16が積層されて、構成されている。n−AlGaAs
クラッド層13、p−GaAs活性層14、p−AlG
aAsクラッド層15により、ダブルヘテロ構造が形成
されている。p−GaAsキャップ層16の上面の一部
に+電極17、n−GaAs基板11の下面には−電極
18が設けられている。
FIG. 4 shows a cross section of a light emitting diode using the multilayer mirror of the embodiment. The light emitting diode 10 has n
-GaAs substrate 11, n-AlInP layer 2 and n-GaAs
a multilayer reflector 12 composed of a pair of s-layers 1 and n-AlG
aAs cladding layer 13, p-GaAs active layer 14, p-
An AlGaAs clad layer 15 and a p-GaAs cap layer 16 are stacked and configured. n-AlGaAs
Clad layer 13, p-GaAs active layer 14, p-AlG
The aAs cladding layer 15 forms a double hetero structure. A positive electrode 17 is provided on a part of the upper surface of the p-GaAs cap layer 16, and a negative electrode 18 is provided on the lower surface of the n-GaAs substrate 11.

【0024】図5は、実施例の多層膜反射鏡を用いた発
光ダイオードの、多層膜反射鏡12の一部分の断面を示
す。多層膜反射鏡12は、n−GaAs層1とn−Al
InP層2の対で構成され、n−GaAs層1の光学的
厚さはλ0 /6,n−AlInP層2の光学的厚さはλ
0 /3である。
FIG. 5 shows a cross section of a part of the multilayer mirror 12 of a light emitting diode using the multilayer mirror of the embodiment. The multilayer mirror 12 is composed of the n-GaAs layer 1 and the n-Al
Is composed of a pair of InP layer 2, the optical thickness of the n-GaAs layer 1 is optical thickness of λ 0/6, n-AlInP layer 2 lambda
0/3 .

【0025】+電極17と−電極18の間に電圧が印加
されると、p−GaAs活性層14が発光し、p−Ga
Asキャップ層16の上面から光が取り出される。基板
の方向へ進んだ光は多層膜反射鏡12により反射され、
光出力を増大させる。
When a voltage is applied between the positive electrode 17 and the negative electrode 18, the p-GaAs active layer 14 emits light, and the p-GaAs active layer 14 emits light.
Light is extracted from the upper surface of the As cap layer 16. The light traveling toward the substrate is reflected by the multilayer mirror 12,
Increase light output.

【0026】図6は、本発明の多層膜反射鏡を用いた発
光ダイオードの発光出力を示す。発光ダイオードは図4
と同じ構造とし、図2の場合と同様、多層膜反射鏡のG
aAs層1とAlInP層2の光学的厚さの比n1 1
/n22 を0から1まで、0.1ずつ変化させた(他
の条件は同じとする)。比n11 /n22 が約0.
6のとき、発光出力は最大を示した。
FIG. 6 shows the light emission output of a light emitting diode using the multilayer mirror of the present invention. The light emitting diode is shown in FIG.
The same structure as that of FIG.
Ratio of optical thickness n 1 d 1 between aAs layer 1 and AlInP layer 2
/ N 2 d 2 was changed from 0 to 1 in steps of 0.1 (other conditions are the same). The ratio n 1 d 1 / n 2 d 2 is about 0.5.
At 6, the light emission output showed the maximum.

【0027】[比較例]GaAs層1とAlInP層2
の光学的厚さn11 ,n2 2 をλ0 /4とした(n
11 /n22 =1)以外、実施例1と同じ基本構
造、組成、方法で多層膜反射鏡を製作した。この多層膜
反射鏡の構造は図7の構造に相当する。
Comparative Example GaAs layer 1 and AlInP layer 2
The optical thickness n 1 d 1, n 2 d 2 and the λ 0/4 (n
Except for 1 d 1 / n 2 d 2 = 1), a multilayer mirror was manufactured with the same basic structure, composition and method as in Example 1. The structure of the multilayer mirror corresponds to the structure of FIG.

【0028】図8は、比較例の多層膜反射鏡の、波長3
00nmから800nmの範囲での反射率を示す。最大
反射率は75%、極大における半値幅は60nmであっ
た。図3と図8を比較すると、本発明の多層膜反射鏡が
比較例の多層膜反射鏡より高い反射率を有することが理
解される。
FIG. 8 shows a multi-layer reflecting mirror of a comparative example having a wavelength of 3
The reflectance in the range from 00 nm to 800 nm is shown. The maximum reflectance was 75%, and the half width at the maximum was 60 nm. 3 and 8, it is understood that the multilayer mirror of the present invention has a higher reflectance than the multilayer mirror of the comparative example.

【0029】比較例の多層膜反射鏡を用いて発光ダイオ
ードを製作した。発光ダイオードの構造は、多層膜反射
鏡以外は図4と同じである。この発光ダイオードの発光
出力は1.3mW、順方向動作電圧は1.8V(20m
A通電)であった。実施例の多層膜反射鏡を用いた発光
ダイオードの発光出力は,1.6mWであったから、比
較例の多層膜反射鏡を用いた発光ダイオードより約2割
大きい。両者の順方向動作電圧は差がなかった(1.8
V)。
A light emitting diode was manufactured using the multilayer mirror of the comparative example. The structure of the light emitting diode is the same as that of FIG. 4 except for the multilayer mirror. The light emitting output of this light emitting diode is 1.3 mW, and the forward operating voltage is 1.8 V (20 m
A energized). Since the light emitting output of the light emitting diode using the multilayer reflector in the example was 1.6 mW, it was about 20% larger than the light emitting diode using the multilayer reflector in the comparative example. There was no difference between the forward operating voltages of the two (1.8).
V).

【0030】[0030]

【本発明の効果】本発明の半導体多層膜反射鏡による
と、屈折率および光吸収係数の異なる半導体層を反復積
層して成る半導体多層膜反射鏡において、半導体層の対
のうち、光吸収係数の大きい方の層の光学的厚さを小さ
くし、その結果生じる光吸収低下の効果が、回折条件か
らずれることによる光の反射率の低下の影響を上回るこ
とにより、高い反射率を得ることができる。
According to the semiconductor multilayer reflector of the present invention, in a semiconductor multilayer reflector in which semiconductor layers having different refractive indexes and different light absorption coefficients are repeatedly laminated, the light absorption coefficient It is possible to obtain a high reflectivity by reducing the optical thickness of the larger layer, and the resulting effect of lowering the light absorption outweighs the effect of lowering the light reflectivity by deviating from the diffraction conditions. it can.

【0031】また本発明の多層膜反射鏡によると、屈折
率及び光吸収係数が異なる半導体層の対を反復積層して
成る半導体多層膜反射鏡において、屈折率は大きいが、
可視光領域での光吸収係数が大きい半導体層の組み合わ
せ(例えば、GaAsやGaInPの)を用いても、高
い反射率を得ることができる。
According to the multilayer mirror of the present invention, a semiconductor multilayer mirror formed by repeatedly stacking pairs of semiconductor layers having different refractive indices and light absorption coefficients has a large refractive index.
Even if a combination of semiconductor layers having a large light absorption coefficient in the visible light region (for example, GaAs or GaInP) is used, high reflectance can be obtained.

【0032】また本発明の多層膜反射鏡によると、屈折
率及び光吸収係数が異なる半導体層の対を反復積層して
成る半導体多層膜反射鏡において、光吸収は小さいが、
屈折率比が小さい半導体層の組み合わせ(例えば、Al
GaInPやAlInPの)を用いても、反射率の増大
に伴う反射スペクトルの幅の減少を回避することができ
る。
According to the multilayer mirror of the present invention, in a semiconductor multilayer mirror in which pairs of semiconductor layers having different refractive indices and light absorption coefficients are repeatedly laminated, light absorption is small.
Combination of semiconductor layers having a small refractive index ratio (for example, Al
Even if GaInP or AlInP) is used, it is possible to avoid a decrease in the width of the reflection spectrum due to an increase in reflectance.

【0033】本発明の半導体多層膜反射鏡によると、屈
折率は大きいが、可視光領域での光吸収係数が大きい半
導体層の組み合わせや、光吸収は小さいが、屈折率比が
小さい半導体層の組み合わせを多層膜反射鏡に用いて
も、半導体層の積層数Nを増さないで高い反射率を得る
ことができるから、半導体層の対の積層数Nを増すこと
に伴う種々の不利益を避けることができる。すなわち、
積層数Nを増すことにより、製造のための時間とコスト
が増大し、反射スペクトルの幅も狭くなるが、本発明の
多層膜反射鏡によると、これらの不利益が避けられる。
According to the semiconductor multilayer mirror of the present invention, a combination of semiconductor layers having a large refractive index but a large light absorption coefficient in the visible light region or a semiconductor layer having a small light absorption but a small refractive index ratio is used. Even if the combination is used for a multilayer mirror, a high reflectance can be obtained without increasing the number N of semiconductor layers, so that various disadvantages associated with increasing the number N of pairs of semiconductor layers can be obtained. Can be avoided. That is,
Increasing the number N of layers increases the time and cost for manufacturing and reduces the width of the reflection spectrum. However, according to the multilayer mirror of the present invention, these disadvantages can be avoided.

【0034】本発明の半導体発光素子によると、屈折率
は大きいが、可視光領域で光吸収係数が大きい半導体層
の組み合わせや、光吸収は小さいが、屈折率比が小さい
半導体層の組み合わせを多層膜反射鏡に用いても、半導
体層の積層数Nを増さないで高い反射率を得ることがで
きるから、積層数Nを増すことに伴う種々の不利益を避
けることができる。すなわち、積層数Nを増すと、結晶
界面の数が増えるので、結晶性が低下することが多く、
発光素子の駆動電圧が大きくなる。また、積層数Nを増
すことにより、製造のための時間とコストが増大し、ス
ペクトルの幅も狭くなる。しかし本発明の半導体発光素
子によると、これらの不利益が避けられる。
According to the semiconductor light emitting device of the present invention, a combination of a semiconductor layer having a large refractive index and a large light absorption coefficient in the visible light region or a combination of semiconductor layers having a small light absorption and a small refractive index ratio is used. Even when used for a film reflecting mirror, a high reflectance can be obtained without increasing the number N of stacked semiconductor layers, so that various disadvantages associated with increasing the number N of stacked semiconductor layers can be avoided. That is, when the number N of stacked layers increases, the number of crystal interfaces increases, so that crystallinity often decreases,
The driving voltage of the light emitting element increases. Also, by increasing the number of layers N, the time and cost for manufacturing increase and the width of the spectrum becomes narrower. However, according to the semiconductor light emitting device of the present invention, these disadvantages can be avoided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の半導体多層膜反射鏡の断面説明図FIG. 1 is an explanatory cross-sectional view of a semiconductor multilayer mirror according to the present invention;

【図2】 本発明の半導体多層膜反射鏡の反射率に関す
るグラフ
FIG. 2 is a graph showing the reflectance of the semiconductor multilayer mirror of the present invention;

【図3】 本発明の半導体多層膜反射鏡の反射率と波長
の関係を示すグラフ
FIG. 3 is a graph showing the relationship between the reflectance and the wavelength of the semiconductor multilayer mirror of the present invention.

【図4】 本発明の半導体発光素子の断面説明図FIG. 4 is an explanatory sectional view of a semiconductor light emitting device of the present invention.

【図5】 本発明の半導体発光素子の、多層膜反射鏡部
分の一部断面説明図
FIG. 5 is a partial cross-sectional explanatory view of a multilayer reflector portion of the semiconductor light emitting device of the present invention.

【図6】 本発明の半導体多層膜反射鏡を用いた発光ダ
イオード(本発明の半導体発光素子)の、発光出力に関
するグラフ
FIG. 6 is a graph showing a light emission output of a light emitting diode (semiconductor light emitting device of the present invention) using the semiconductor multilayer film reflecting mirror of the present invention.

【図7】 従来の半導体多層膜反射鏡の断面説明図FIG. 7 is an explanatory cross-sectional view of a conventional semiconductor multilayer mirror;

【図8】 従来の半導体多層膜反射鏡の反射率と波長の
関係を示すグラフ
FIG. 8 is a graph showing the relationship between the reflectance and wavelength of a conventional semiconductor multilayer mirror.

【符号の説明】[Explanation of symbols]

1 GaAs層 2 AlInP層 3 GaAs基板 10 発光ダイオード 11 n−GaAs基板 12 多層膜反射鏡 13 n−AlGaAsクラッド層 14 p−GaAs活性層 15 p−AlGaAsクラッド層 16 p−GaAsキャップ層 17 +電極 18 −電極 DESCRIPTION OF SYMBOLS 1 GaAs layer 2 AlInP layer 3 GaAs substrate 10 Light emitting diode 11 n-GaAs substrate 12 Multilayer reflector 13 n-AlGaAs cladding layer 14 p-GaAs active layer 15 p-AlGaAs cladding layer 16 p-GaAs cap layer 17 + electrode 18 -Electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01L 21/027 H01L 21/30 531A Fターム(参考) 2H042 DA08 DA12 DB02 DE07 2H048 FA05 FA09 FA15 FA22 FA24 GA04 GA11 GA24 GA35 GA51 GA62 5F041 AA03 CA04 CA12 CA34 CA35 CA36 CB15 5F046 GB01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // H01L 21/027 H01L 21/30 531A F term (Reference) 2H042 DA08 DA12 DB02 DE07 2H048 FA05 FA09 FA15 FA22 FA24 GA04 GA11 GA24 GA35 GA51 GA62 5F041 AA03 CA04 CA12 CA34 CA35 CA36 CB15 5F046 GB01

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】屈折率および光吸収係数が異なる半導体層
の対を反復積層して成り、前記対を構成する第一および
第二の半導体層の光学的厚さの和がλ0 /2(λ0 は反
射光極大波長)に等しい半導体多層膜反射鏡において、 前記第一および第二の半導体層はAlx Ga1-x As層
(0≦x≦1)および(Aly Ga1-y z In1-z
層(0≦y≦1,0≦z≦1)から選ばれ、 前記第一の半導体層は、反射光極大波長における光吸収
係数が前記第二の半導体層より大きく、光学的厚さがλ
0/4より小さいことを特徴とする、半導体多層膜反射
鏡。
1. A refractive index and made by a pair of optical absorption coefficient different semiconductor layers repeatedly stacked, the sum of the optical thickness of the first and second semiconductor layers constituting the pair λ 0/2 ( wherein λ 0 is the maximum wavelength of the reflected light, wherein the first and second semiconductor layers are Al x Ga 1 -x As layers (0 ≦ x ≦ 1) and (Al y Ga 1-y). ) Z In 1-z P
The first semiconductor layer has a larger light absorption coefficient at the maximum wavelength of reflected light than the second semiconductor layer, and an optical thickness of λ.
A semiconductor multilayer film reflecting mirror characterized by being smaller than 0/4.
【請求項2】前記第一の半導体層の光学的厚さの、前記
第二の半導体層の光学的厚さに対する比が、0.3から
0.8までの範囲にあることを特徴とする、請求項1の
半導体多層膜反射鏡。
2. The method according to claim 1, wherein a ratio of an optical thickness of the first semiconductor layer to an optical thickness of the second semiconductor layer is in a range from 0.3 to 0.8. The semiconductor multi-layer film reflecting mirror according to claim 1.
【請求項3】前記第一および第二の半導体層は、Alx
Ga1-x As層(0≦x<1)および(Aly
1-y z In1-z P層(0<y≦1,0<z<1)か
ら選ばれ、前記比は、0.4から0.6までの範囲にあ
ることを特徴とする、請求項2の半導体多層膜反射鏡。
3. The semiconductor device according to claim 1, wherein said first and second semiconductor layers are formed of Al x
Ga 1-x As layer (0 ≦ x <1) and (Al y G
a 1-y ) z In 1-z P layer (0 <y ≦ 1, 0 <z <1), wherein the ratio is in the range of 0.4 to 0.6. A semiconductor multilayer mirror according to claim 2.
【請求項4】前記第一の半導体層は、GaAs層であ
り、前記第二の半導体層は、Alz In1-z P層(0<
z<1)である、請求項2または3の半導体多層膜反射
鏡。
Wherein said first semiconductor layer is a GaAs layer, said second semiconductor layer, Al z In 1-z P layer (0 <
4. The semiconductor multilayer mirror according to claim 2, wherein z <1).
【請求項5】屈折率及び光吸収係数が異なる半導体層の
対が反復積層された多層膜反射鏡から成り、前記多層膜
反射鏡の前記半導体層の対を構成する第一および第二の
半導体層の光学的厚さの和がλ0 /2(λ0 は反射光極
大波長)に等しい、半導体発光素子において、 前記第一および第二の半導体層はAlx Ga1-x As層
(0≦x≦1)および(Aly Ga1-yz In1-z
層(0≦y≦1,0≦z≦1)から選ばれ、 前記第一の半導体層は、反射光極大波長における光吸収
係数が前記第二の半導体層より大きく、光学的厚さがλ
0 /4より小さいことを特徴とする、半導体発光素子。
5. A multi-layer reflector in which pairs of semiconductor layers having different refractive indices and light absorption coefficients are repeatedly laminated, and first and second semiconductors constituting the pair of semiconductor layers of the multi-layer reflector. the sum of the optical thickness of lambda 0/2 layer (lambda 0 is reflected light maximum wavelength) is equal to, in the semiconductor light emitting device, the first and second semiconductor layers is Al x Ga 1-x As layer (0 ≦ x ≦ 1) and (Al y Ga 1-y) z In 1-z P
The first semiconductor layer has a larger light absorption coefficient at the maximum wavelength of reflected light than the second semiconductor layer, and an optical thickness of λ.
A semiconductor light emitting device characterized by being smaller than 0/4.
【請求項6】前記第一の半導体層の光学的厚さの、前記
第二の半導体層の光学的厚さに対する比が、0.3から
0.8までの範囲にあることを特徴とする、請求項5の
半導体発光素子。
6. A method according to claim 1, wherein a ratio of an optical thickness of the first semiconductor layer to an optical thickness of the second semiconductor layer is in a range from 0.3 to 0.8. A semiconductor light emitting device according to claim 5.
【請求項7】前記第一の半導体層はGaAs層であり、
前記第二の半導体層はAlz In1-z P(0<z<1)
層である、請求項6の半導体発光素子。
7. The semiconductor device according to claim 1, wherein the first semiconductor layer is a GaAs layer.
Said second semiconductor layer is Al z In 1-z P ( 0 <z <1)
7. The semiconductor light emitting device according to claim 6, which is a layer.
JP2001014767A 2001-01-23 2001-01-23 Semiconductor multilayer film reflecting mirror and semiconductor luminous element Pending JP2002214428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001014767A JP2002214428A (en) 2001-01-23 2001-01-23 Semiconductor multilayer film reflecting mirror and semiconductor luminous element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001014767A JP2002214428A (en) 2001-01-23 2001-01-23 Semiconductor multilayer film reflecting mirror and semiconductor luminous element

Publications (1)

Publication Number Publication Date
JP2002214428A true JP2002214428A (en) 2002-07-31

Family

ID=18881415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001014767A Pending JP2002214428A (en) 2001-01-23 2001-01-23 Semiconductor multilayer film reflecting mirror and semiconductor luminous element

Country Status (1)

Country Link
JP (1) JP2002214428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060338A (en) * 2006-08-31 2008-03-13 Fuji Xerox Co Ltd Vertical-cavity surface-emitting semiconductor laser, and manufacturing method thereof
JP2009519593A (en) * 2005-12-13 2009-05-14 コミシリア ア レネルジ アトミック Reflective photolithography mask and method of making the mask
US7756187B2 (en) 2006-08-25 2010-07-13 Canon Kabushiki Kaisha Optical device including multilayer reflector and vertical cavity surface emitting laser
CN108550648A (en) * 2018-05-22 2018-09-18 江苏宜兴德融科技有限公司 Laser photovoltaic cell and preparation method thereof, photoelectric converter
JP2021114594A (en) * 2019-08-27 2021-08-05 株式会社東芝 Optical semiconductor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009519593A (en) * 2005-12-13 2009-05-14 コミシリア ア レネルジ アトミック Reflective photolithography mask and method of making the mask
US7756187B2 (en) 2006-08-25 2010-07-13 Canon Kabushiki Kaisha Optical device including multilayer reflector and vertical cavity surface emitting laser
US8249125B2 (en) 2006-08-25 2012-08-21 Canon Kabushiki Kaisha Optical device including multilayer reflector and vertical cavity surface emitting laser
JP2008060338A (en) * 2006-08-31 2008-03-13 Fuji Xerox Co Ltd Vertical-cavity surface-emitting semiconductor laser, and manufacturing method thereof
CN108550648A (en) * 2018-05-22 2018-09-18 江苏宜兴德融科技有限公司 Laser photovoltaic cell and preparation method thereof, photoelectric converter
JP2021114594A (en) * 2019-08-27 2021-08-05 株式会社東芝 Optical semiconductor element

Similar Documents

Publication Publication Date Title
US4993036A (en) Semiconductor laser array including lasers with reflecting means having different wavelength selection properties
JP2874442B2 (en) Surface input / output photoelectric fusion device
JP3689621B2 (en) Semiconductor light emitting device
JPH08298351A (en) Dielectric multilayered reflecting film
JP3523700B2 (en) Nitride semiconductor laser device
KR20060132483A (en) Multiwavelength laser diode
JP2002217481A (en) Semiconductor optical device
JP2002214428A (en) Semiconductor multilayer film reflecting mirror and semiconductor luminous element
JP2871288B2 (en) Surface type optical semiconductor device and method of manufacturing the same
JP5787069B2 (en) Multi-wavelength semiconductor laser device
JP4815772B2 (en) Surface emitting semiconductor laser device and method for manufacturing the same
JP3134382B2 (en) Semiconductor device having a chirped light reflecting layer
JPH05259508A (en) Light emitting element
WO2004082085A1 (en) Multi-wavelength semiconductor laser device and its manufacturing method
JP2526277B2 (en) Semiconductor laser
JP4292786B2 (en) Semiconductor laser device
JP2010034221A (en) Edge-emitting semiconductor laser and manufacturing method thereof
JPH05343739A (en) Semiconductor multilayer film reflecting mirror
JP2973612B2 (en) Semiconductor multilayer mirror
JPS6077473A (en) Semiconductor light emitting element and manufacture thereof
JP2913946B2 (en) Quantum well semiconductor laser
JPH03225885A (en) Semiconductor multi-layered film
JP2913947B2 (en) Quantum well semiconductor laser
JP2778868B2 (en) Surface-emitting light emitting diode
JPH1154846A (en) Resonant surface-emitting element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101