JPH05327121A - Surface emitting type semiconductor laser - Google Patents

Surface emitting type semiconductor laser

Info

Publication number
JPH05327121A
JPH05327121A JP15283392A JP15283392A JPH05327121A JP H05327121 A JPH05327121 A JP H05327121A JP 15283392 A JP15283392 A JP 15283392A JP 15283392 A JP15283392 A JP 15283392A JP H05327121 A JPH05327121 A JP H05327121A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
reflection factor
wavelength
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15283392A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15283392A priority Critical patent/JPH05327121A/en
Publication of JPH05327121A publication Critical patent/JPH05327121A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18363Structure of the reflectors, e.g. hybrid mirrors comprising air layers

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a surface emitting type semiconductor laser having a flat shape and a low threshold value, by using a reflecting plate wherein a small lamination layer thickness and excellent reflection factor characteristics can be expected. CONSTITUTION:As two kinds of layers constituting multilayered reflecting films 11 and 13, a semiconductor layer and an air layer or a vacuum layer are used. The composition of the semiconductor layer has band gap wavelength smaller than the oscillation wavelength, and the layer thickness is equal to quater-wavelength. As compared with the case that the conventional semiconductor layer is used, the reflection factor ratio is 3.2 and very large. Hence the reflection factor of a 3-period lamination structure is 99.9%, and the lamination layer thickness is 1.3mum. As compared with the conventional case, the thickess is remarkably reduced, and the reflection factor is high, so that, as compared with the conventional case, a flat shape easy to be integrated can be obtained, and the oscillation threshold value can be lowered because the reflection factor can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は面出射形半導体レーザに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser.

【0002】[0002]

【従来の技術】面出射形半導体レーザは99.9%以上
の高い反射率を持つ反射鏡を共振器に用いることで、従
来の端面出射形半導体レーザに比べ、低駆動電流化、2
次元アレイ化、高速変調等の改善が期待できる。このよ
うな半導体レーザの従来例がアプライドフィジクスレタ
ーズ誌、1990年、57巻、16号、1605−16
07ページに報告されている。本半導体レーザでは、半
導体基板上にフォトリソグラフィーとドライエッチング
で光出射方向と平行な方向に形成した円筒部分に発光層
及び2つの多層反射鏡が配置された構造になっている。
前記反射鏡にはアルミニウム砒素とガリウム砒素の4分
の1波長板とを22−28層積層した構造を用いること
で、99.9%以上の高い反射率を実現し低閾値電流を
得ている。また、光通信波長帯の面出射形半導体レーザ
の高反射率反射鏡の例がアプライドフィジクスレターズ
誌、1991年、59巻、9号、1011−1012ペ
ージに報告されている。この従来例ではInGaAlA
s、InAlAsからなる4分の1波長板を30周期積
層して反射鏡を形成し、99%以上の高い反射率を得て
いる。
2. Description of the Related Art A surface emitting semiconductor laser uses a reflecting mirror having a high reflectance of 99.9% or more as a resonator, so that a driving current can be reduced as compared with a conventional edge emitting semiconductor laser.
Improvements in dimensional array, high-speed modulation, etc. can be expected. A conventional example of such a semiconductor laser is applied Physics Letters magazine, 1990, Volume 57, No. 16, 1605-16.
It is reported on page 07. The present semiconductor laser has a structure in which a light emitting layer and two multilayer reflecting mirrors are arranged in a cylindrical portion formed on a semiconductor substrate by photolithography and dry etching in a direction parallel to the light emission direction.
By using a structure in which 22 to 28 layers of aluminum arsenide and a quarter-wave plate of gallium arsenide are laminated on the reflecting mirror, a high reflectance of 99.9% or more is realized and a low threshold current is obtained. .. Further, an example of a high-reflectance reflecting mirror of a surface emitting semiconductor laser in the optical communication wavelength band is reported in Applied Physics Letters, 1991, Volume 59, No. 9, pp. 1011-1012. In this conventional example, InGaAlA
A quarter-wave plate made of s, InAlAs is laminated for 30 cycles to form a reflecting mirror, and a high reflectance of 99% or more is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
屈折率の異なる半導体の4分の1波長板を多周期積層し
た構造になる反射鏡は高い反射率を得るためには0.9
μm帯の発光波長用で20周期以上、通信波長帯で30
周期が必要になる。その結果、以下2つの問題点が生じ
る。第1に、積層層厚が2つの反射板で10−14μm
必要であるために多大の結晶成長時間を要し平坦性に欠
けること、第2に、多層反射板内での荷電担体や不純物
による吸収が無視できなくなり99.9%以上の高い反
射率が得にくいことである。このように従来の面出射形
半導体レーザには反射鏡に関し解決すべき課題があっ
た。
However, a conventional reflecting mirror having a structure in which quarter-wave plates of semiconductors having different refractive indexes are laminated in multiple cycles is required to obtain a high reflectance of 0.9.
20 cycles or more for emission wavelength of μm band, 30 for communication wavelength band
A cycle is needed. As a result, the following two problems occur. First, the thickness of the laminated layer is 10-14 μm for the two reflectors.
It requires a large amount of crystal growth time and lacks flatness. Secondly, absorption by charge carriers and impurities in the multilayer reflector cannot be ignored, and a high reflectance of 99.9% or more is obtained. It's difficult. As described above, the conventional surface emitting semiconductor laser has a problem to be solved regarding the reflecting mirror.

【0004】本発明は、以上述べた様な従来の事情に鑑
みてなされたもので、反射板を構成する材料の屈折率の
比を大きくできる構造であるためにより少ない積層層厚
と優れた反射率特性が期待できる反射板を用いたより平
坦な形状でありかつ低閾値の面出射形半導体レーザを提
供することにある。
The present invention has been made in view of the conventional circumstances as described above, and has a structure in which the ratio of the refractive indexes of the materials forming the reflector can be increased, so that the laminated layer thickness is smaller and the excellent reflection is achieved. An object of the present invention is to provide a surface-emitting type semiconductor laser having a flatter shape and a lower threshold, which uses a reflection plate which can be expected to have a high rate characteristic.

【0005】[0005]

【課題を解決するための手段】本発明の半導体レーザ
は、発光層と前記発光層を挟む2つの反射鏡が基板面と
平行に積層された構造を有する面出射形半導体レーザに
おいて、前記反射鏡が出射光の波長より小さいバンドギ
ャップ波長を有する半導体層と前記半導体層で挟まれた
空気または真空層との少なくとも1周期の繰り返しから
なる多層反射膜であることを特徴としている。
The semiconductor laser of the present invention is a surface emitting semiconductor laser having a structure in which a light emitting layer and two reflecting mirrors sandwiching the light emitting layer are laminated in parallel with a substrate surface. Is a multi-layered reflective film formed by repeating at least one cycle of a semiconductor layer having a bandgap wavelength smaller than the wavelength of emitted light and an air or vacuum layer sandwiched by the semiconductor layers.

【0006】[0006]

【作用】一般に、4分の1波長の層厚を有する2種類の
誘電体を多周期積層した多層反射膜の反射率は次式で与
えられることが知られている。 R=[1−n0 (n1 /n22N2 /[1+n0 (n1 /n22N2
In general, it is known that the reflectance of a multilayer reflective film in which two types of dielectrics having a layer thickness of ¼ wavelength are multi-layered is given by the following equation. R = [1-n 0 ( n 1 / n 2) 2N] 2 / [1 + n 0 (n 1 / n 2) 2N] 2

【0007】式中に、R、n0 、n1 、n2 、及びN
は、多層反射鏡の反射率、基板の屈折率、第1の誘電体
の屈折率、第2の誘電体の屈折率、及び、積層した周期
数をそれぞれ示す。本発明による面出射形半導体レーザ
では、反射板を構成する2種の層に発振波長より小さい
バンドギャップ波長を有する組成でかつ4分の1波長の
層厚を有する半導体層と、空気または真空層とを用いて
いる。そのため、発振波長1.3μmの場合ではn1
2 の比がそれぞれ3.2対1と非常に大きくできる
為、3周期の積層構造(N=3)で反射率が99.9
%、5周期で99.99%となる。このときの積層層厚
は3周期及び5周期の場合それぞれ1.3μm及び2.
1μmと従来にくらべて非常に薄くできる。従って、従
来に比べ集積化が容易な平坦な形状にでき、かつ、反射
率を高くできるから、発振閾値をより低減できる。
Where R, n 0 , n 1 , n 2 , and N
Indicates the reflectance of the multilayer mirror, the refractive index of the substrate, the refractive index of the first dielectric material, the refractive index of the second dielectric material, and the number of stacked cycles, respectively. In the surface emitting semiconductor laser according to the present invention, a semiconductor layer having a composition having a bandgap wavelength smaller than the oscillation wavelength and a layer thickness of a quarter wavelength, and an air or vacuum layer are used for the two types of layers constituting the reflector. And are used. Therefore, in the case of an oscillation wavelength of 1.3 μm, the ratio of n 1 and n 2 can be made extremely large to 3.2: 1, so that the reflectance is 99.9 in a laminated structure of 3 periods (N = 3).
%, It becomes 99.99% in 5 cycles. The laminated layer thicknesses at this time are 1.3 μm and 2.
It is 1 μm, which is extremely thin compared to the conventional one. Therefore, a flat shape which is easier to integrate than the conventional one can be formed, and the reflectance can be increased, so that the oscillation threshold value can be further reduced.

【0008】[0008]

【実施例】以下、図面を参照して本発明の実施例を説明
する。図1は本発明の実施例を説明するための摸式図で
ある。出射光は基板10と垂直な方向にでる。基板10
は(100)面のSドープn形InP基板を用いた。ダ
ブルヘテロ構造12はn形InP層、InGaAs発光
層、及びp形InP層を順次に積層した構造で、発光波
長が1.3μmとなる量子井戸幅を有する。前記ダブル
ヘテロ構造12を上下から挟む配置に、n形多層反射膜
11及びp形多層反射膜13を形成した。n形多層反射
膜11は、厚さ102nmのn形InP層と厚さ325
nmのn形InGaAs層を3周期積層した構造を形成
した後、反射鏡となる部分のInGaAs層を除去して
形成されており、厚さ102nmのn形InP層と厚さ
325nmの空気層16を3周期積層した構造になって
いる。p形多層反射膜13も厚さ102nmのp形In
P層と厚さ325nmのp形InGaAs層を3周期積
層した構造を形成した後、反射鏡となる部分のInGa
As層を除去して形成されており、厚さ102nmのp
形InP層と厚さ325nmの空気層16を3周期積層
した構造になっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram for explaining an embodiment of the present invention. The emitted light goes out in a direction perpendicular to the substrate 10. Board 10
Was an (100) -face S-doped n-type InP substrate. The double hetero structure 12 has a structure in which an n-type InP layer, an InGaAs light emitting layer, and a p-type InP layer are sequentially stacked, and has a quantum well width with an emission wavelength of 1.3 μm. An n-type multilayer reflective film 11 and a p-type multilayer reflective film 13 were formed so as to sandwich the double hetero structure 12 from above and below. The n-type multilayer reflective film 11 includes an n-type InP layer having a thickness of 102 nm and a thickness of 325.
The n-type InGaAs layer having a thickness of 102 nm and the air layer 16 having a thickness of 325 nm are formed by forming a structure in which three periods of n-type InGaAs layers having a thickness of 3 nm are stacked, and then removing the InGaAs layer in the portion to be the reflection mirror. It has a structure in which three cycles are laminated. The p-type multilayer reflective film 13 also has a thickness of 102 nm.
After forming a structure in which a P layer and a p-type InGaAs layer having a thickness of 325 nm are stacked for three periods, the InGa of the portion to be the reflection mirror is formed.
It is formed by removing the As layer and has a p thickness of 102 nm.
The InP layer and the air layer 16 having a thickness of 325 nm are laminated for three cycles.

【0009】電流注入に関しては、活性層17に注入さ
れる担体のうち電子はn形電極14から、基板10を経
て、n形多層反射膜11のうち除去されていないn形I
nGaAs層及びn形InPを通じて注入される。一
方、正孔はp形電極15からp形多層反射膜13のうち
除去されていないp形InGaAs層及びp形InPを
通じて注入される。電子と正孔の再結合は主に活性層1
7で起き、空気層16の部分でのみ共振器が形成される
ため、発振以降の注入電流は活性領域16にのみ流れる
ことになり、低駆動電流、高効率の発振が可能になる。
Regarding the current injection, the electrons of the carriers injected into the active layer 17 pass through the n-type electrode 14, the substrate 10 and the n-type I unremoved part of the n-type multilayer reflection film 11.
Implanted through the nGaAs layer and n-type InP. On the other hand, holes are injected from the p-type electrode 15 through the p-type InGaAs layer and p-type InP which are not removed in the p-type multilayer reflective film 13. The recombination of electrons and holes is mainly in the active layer 1
7, the resonator is formed only in the air layer 16, so that the injection current after the oscillation flows only in the active region 16, and the low driving current and the highly efficient oscillation are possible.

【0010】次に本発明の製造方法について、図2を用
いて説明する。図2は、製造工程の各段階における断面
図を示す。まず、(100)面を有するn形InP基板
10の上に、厚さ325nmでInPに格子整合した組
成のn形InGaAs層と厚さ102nmのn形InP
層を3周期積層した多層反射膜11、n形InP層、I
nGaAs発光層、及びp形InP層を順次積層した構
造で、発光波長が1.3μmとなる量子井戸幅を有する
ダブルヘテロ構造12、及び、厚さ325nmでInP
に格子整合した組成のp形InGaAs層と厚さ102
nmのp形InP層を3周期積層した多層反射膜13を
ガスソース分子線エピタキシャル成長方法で積層した
(図2(a))。ガスソース分子線エピタキシャル成長
法では、950℃に加熱したクラッキングセルを通して
アルシン、ホスフィンガスを高真空チャンバーに導入
し、In、Ga金属をそれぞれクヌーセンセルで加熱し
シャッターで制御してInP基板に照射して成長させ
る。次に、通常のフォトリソグラフィーで形成したレジ
ストをマスクとして、幅10μm、奥行き3μm、深さ
3.5μmのメサをドライエッチングで形成する。レジ
スト除去後、熱CVDで形成したSiO2 層(厚さ10
0nm)を通常のフォトリソグラフィーと化学エッチン
グによって加工しSiO2 マスク20を形成する(図2
(b)参照)。さらに、このSiO2 マスク20をマス
クとして選択化学エッチングによって前の工程で作製し
た積層構造のうち多層反射膜11及び13の厚さ325
nmのInGaAs層をメサの側面からエッチングし空
気層16を形成する(図2(c)参照)。最後に、n形
電極14及びp形電極15を形成する。
Next, the manufacturing method of the present invention will be described with reference to FIG. 2A to 2C are cross-sectional views at each stage of the manufacturing process. First, on an n-type InP substrate 10 having a (100) plane, an n-type InGaAs layer having a composition of 325 nm and having a lattice matching with InP and an n-type InP having a thickness of 102 nm.
A multilayer reflective film 11 in which layers are stacked for three periods, an n-type InP layer, I
A double hetero structure 12 having a quantum well width having an emission wavelength of 1.3 μm, which has a structure in which an nGaAs light emitting layer and a p-type InP layer are sequentially stacked, and InP having a thickness of 325 nm.
P-type InGaAs layer having a lattice-matched composition and a thickness of 102
The multilayer reflective film 13 in which p-type InP layers each having a thickness of 3 nm were stacked for three periods was stacked by the gas source molecular beam epitaxial growth method (FIG. 2A). In the gas source molecular beam epitaxial growth method, arsine and phosphine gas are introduced into a high vacuum chamber through a cracking cell heated to 950 ° C., In and Ga metals are heated in a Knudsen cell, respectively, and controlled by a shutter to irradiate an InP substrate. Grow. Next, using a resist formed by ordinary photolithography as a mask, a mesa with a width of 10 μm, a depth of 3 μm, and a depth of 3.5 μm is formed by dry etching. After removing the resist, a SiO 2 layer (thickness 10
0 nm) is processed by ordinary photolithography and chemical etching to form a SiO 2 mask 20 (FIG. 2).
(See (b)). Further, the thickness 325 of the multilayer reflective films 11 and 13 in the laminated structure produced in the previous step by selective chemical etching using the SiO 2 mask 20 as a mask.
The InGaAs layer of nm is etched from the side surface of the mesa to form the air layer 16 (see FIG. 2C). Finally, the n-type electrode 14 and the p-type electrode 15 are formed.

【0011】本発明の面出射形半導体レーザは厚さ10
2nmのInP層と厚さ325nmの空気層との対を3
周期用いており、その屈折率の比が発振波長1.3μm
において3.2と大きいため、3周期であっても99.
9%の高い反射率が得られる。その結果、半導体レーザ
の高さは3μmと従来に比べ著しく平坦化される。ま
た、99.9%の非常に高い屈折率も5周期の多層反射
膜で得られ、発振閾値が低減できる。
The surface emitting semiconductor laser of the present invention has a thickness of 10
3 pairs of 2 nm InP layer and 325 nm thick air layer
The period is used and the ratio of the refractive index is 1.3 μm for the oscillation wavelength.
Since it is as large as 3.2 at 99.
A high reflectance of 9% is obtained. As a result, the height of the semiconductor laser is 3 μm, which is significantly flattened as compared with the conventional case. Also, a very high refractive index of 99.9% can be obtained with a multilayer reflective film of 5 periods, and the oscillation threshold can be reduced.

【0012】上記実施例ではInP基板に格子整合する
結晶系を用いた例を説明したが、AlGaAs/GaA
s系、AlInGaP/GaAs系等の他の結晶をも用
いることができる。
In the above embodiment, an example using a crystal system that lattice-matches the InP substrate has been described. AlGaAs / GaA
Other crystals such as s series and AlInGaP / GaAs series can also be used.

【0013】上記実施例ではエピタキシャル成長法にガ
スソースエピタキシャル成長法を用いたが、本発明はこ
れに限定されるものではない。
In the above embodiment, the gas source epitaxial growth method was used as the epitaxial growth method, but the present invention is not limited to this.

【0014】上記実施例では多層反射膜の低屈折率層に
空気層を用いたが、不活性ガス、ないし、真空等を用い
ても良い。
In the above embodiment, the air layer is used as the low refractive index layer of the multilayer reflective film, but an inert gas or vacuum may be used.

【0015】[0015]

【発明の効果】本発明による半導体レーザは、反射板を
構成する材料の屈折率の比を大きくできる構造を有する
ために、より少ない積層層厚で優れた反射率特性が得ら
れ、その結果、平坦かつ低閾値の面出射形半導体レーザ
を得ることができる。
Since the semiconductor laser according to the present invention has a structure capable of increasing the refractive index ratio of the material forming the reflecting plate, excellent reflectance characteristics can be obtained with a smaller laminated layer thickness. It is possible to obtain a flat surface emitting semiconductor laser having a low threshold value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザの一実施例を説明するた
めの摸式図である。
FIG. 1 is a schematic diagram for explaining an embodiment of a semiconductor laser of the present invention.

【図2】図1の半導体レーザの工程を示す図である。FIG. 2 is a diagram showing a process of the semiconductor laser of FIG.

【符号の説明】[Explanation of symbols]

10 基板 11 n形多層反射膜 12 ダブルヘテロ構造 13 p形多層反射膜 14 n形電極 15 p形電極 16 空気層 17 活性層 20 SiO2 マスク10 substrate 11 n-type multilayer reflection film 12 double heterostructure 13 p-type multilayer reflection film 14 n-type electrode 15 p-type electrode 16 air layer 17 active layer 20 SiO 2 mask

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発光層と前記発光層を挟む2つの反射鏡
が基板面と平行に積層された構造を有する面出射形半導
体レーザにおいて、前記反射鏡が出射光の波長より小さ
いバンドギャップ波長を有する半導体層と前記半導体層
で挟まれた空気または真空層との少なくとも1周期の繰
り返しからなる多層反射膜であることを特徴とする半導
体レーザ。
1. A surface emitting semiconductor laser having a structure in which a light emitting layer and two reflecting mirrors sandwiching the light emitting layer are laminated in parallel with a substrate surface, wherein the reflecting mirror has a bandgap wavelength smaller than a wavelength of emitted light. A semiconductor laser, which is a multi-layered reflective film formed by repeating at least one cycle of a semiconductor layer and an air or vacuum layer sandwiched between the semiconductor layers.
JP15283392A 1992-05-20 1992-05-20 Surface emitting type semiconductor laser Withdrawn JPH05327121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15283392A JPH05327121A (en) 1992-05-20 1992-05-20 Surface emitting type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15283392A JPH05327121A (en) 1992-05-20 1992-05-20 Surface emitting type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH05327121A true JPH05327121A (en) 1993-12-10

Family

ID=15549132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15283392A Withdrawn JPH05327121A (en) 1992-05-20 1992-05-20 Surface emitting type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH05327121A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027938A (en) * 1996-07-10 1998-01-27 Fuji Xerox Co Ltd Normal radiation semiconductor laser device and method of fabricating the same
JPH1197796A (en) * 1997-07-24 1999-04-09 Samsung Electron Co Ltd Iii-v compound surface emission laser and fabrication thereof
WO2008075692A1 (en) * 2006-12-20 2008-06-26 International Business Machines Corporation Surface-emitting laser and method for manufacturing the same
US8380937B2 (en) 2005-11-28 2013-02-19 International Business Machines Corporation System for preventing unauthorized acquisition of information and method thereof
JP2013045846A (en) * 2011-08-23 2013-03-04 Sharp Corp Nitride semiconductor light-emitting element, nitride semiconductor light-emitting device and nitride semiconductor light-emitting element manufacturing method
JP2016002382A (en) * 2014-06-18 2016-01-12 キヤノン株式会社 Imaging device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027938A (en) * 1996-07-10 1998-01-27 Fuji Xerox Co Ltd Normal radiation semiconductor laser device and method of fabricating the same
JPH1197796A (en) * 1997-07-24 1999-04-09 Samsung Electron Co Ltd Iii-v compound surface emission laser and fabrication thereof
US8380937B2 (en) 2005-11-28 2013-02-19 International Business Machines Corporation System for preventing unauthorized acquisition of information and method thereof
WO2008075692A1 (en) * 2006-12-20 2008-06-26 International Business Machines Corporation Surface-emitting laser and method for manufacturing the same
US7923275B2 (en) 2006-12-20 2011-04-12 International Business Machines Corporation Surface emitting laser and manufacturing method thereof
JP4870783B2 (en) * 2006-12-20 2012-02-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Surface emitting laser and manufacturing method thereof
JP2013045846A (en) * 2011-08-23 2013-03-04 Sharp Corp Nitride semiconductor light-emitting element, nitride semiconductor light-emitting device and nitride semiconductor light-emitting element manufacturing method
JP2016002382A (en) * 2014-06-18 2016-01-12 キヤノン株式会社 Imaging device
US10188285B2 (en) 2014-06-18 2019-01-29 Canon Kabushiki Kaisha Imaging apparatus

Similar Documents

Publication Publication Date Title
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
US4644378A (en) Semiconductor device for generating electromagnetic radiation
JP3425185B2 (en) Semiconductor element
JPH0418476B2 (en)
JP2874442B2 (en) Surface input / output photoelectric fusion device
JP2751814B2 (en) Fabrication method of wavelength multiplexed surface light emitting device
JPH05327121A (en) Surface emitting type semiconductor laser
US6858519B2 (en) Atomic hydrogen as a surfactant in production of highly strained InGaAs, InGaAsN, InGaAsNSb, and/or GaAsNSb quantum wells
JPH0629612A (en) Manufacture of surface emission-type semiconductor laser and laser obtained by above manufacture
JP4134366B2 (en) Surface emitting laser
JPH08181384A (en) Surface emitting laser and its forming method
JPH06151955A (en) Semiconductor light emitting element
JP2757633B2 (en) Surface emitting semiconductor laser
JPH1027945A (en) Surface light-emitting device
JPH05343796A (en) Surface emission-type semiconductor laser
JP2595779B2 (en) Surface emitting laser and method of manufacturing the same
JPH06326409A (en) Surface emission element
JP2002204027A (en) Surface emitting type semiconductor laser and manufacturing method therefor
JPH0637396A (en) High-output semiconductor laser device and its manufacture
JP3245960B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JPH09181398A (en) Semiconductor light emitting device
JPH0730187A (en) Surface-emitting semiconductor laser
JP3680283B2 (en) Manufacturing method of semiconductor element
JPH0677531A (en) Semiconductor light emitting element and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803