JPH05343796A - Surface emission-type semiconductor laser - Google Patents

Surface emission-type semiconductor laser

Info

Publication number
JPH05343796A
JPH05343796A JP14704992A JP14704992A JPH05343796A JP H05343796 A JPH05343796 A JP H05343796A JP 14704992 A JP14704992 A JP 14704992A JP 14704992 A JP14704992 A JP 14704992A JP H05343796 A JPH05343796 A JP H05343796A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
type
compound semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14704992A
Other languages
Japanese (ja)
Inventor
Shigeo Sugao
繁男 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14704992A priority Critical patent/JPH05343796A/en
Publication of JPH05343796A publication Critical patent/JPH05343796A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a low-threshold level surface emission-type semiconductor laser wherein a reflecting plate which helps reducing the thickness of a lamination layer and producing an excellent reflection factor characteristic is used by making the ratio of a reflection factors of reflecting mirror-constituting materials large. CONSTITUTION:In a surface emission-type semiconductor laser, a II-VI compound semiconductor layer which has a smaller band gap wave length than an oscillation wave length and which has a lattice conformity with InP is used for a lower refractive index layer out of two kinds of layers which constitutes multilayer reflection films 11 and 13. Therefore, compared with the case that a III-V compound semiconductor layer is used, a refractive index can be lowered from 3.17 to 2.4 or around. In a 11-cycle lamination structure, a refractive index is 99.1% and the thickness of a lamination layer is 3mum, very much thinner than in the past, and a reflection factor is very large. Since the thickness of the lamination layer can be thinner than in the past and a reflection factor can be larger, an oscillation threshold level can be reduced more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は面出射形半導体レーザに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser.

【0002】[0002]

【従来の技術】面出射形半導体レーザは99.9%以上
の高い反射率を持つ反射鏡を共振器に用いることで、従
来の端面出射形半導体レーザに比べ、低駆動電流化、2
次元アレイ化、高速変調等の改善が期待できる。このよ
うな半導体レーザの従来例がアプライドフィジクスレタ
ーズ誌、1990年、57巻、16号、1605−16
07ページに報告されている。この従来の半導体レーザ
は、半導体基板上にフォトリソグラフィーとドライエッ
チングで光出射方向と平行な方向に形成した円柱部分に
発光層及び2つの多層反射鏡が配置された構造になって
いる。反射鏡には砒化アルミニウム(AlAs)と砒化
ガリウム(GaAs)の四分の一波長板を交互に22〜
28層積層した構造を用いることで、99.9%以上の
高い反射率を実現し低閾値電流を得ている。また、光通
信波長帯の面出射形半導体レーザの高反射率反射鏡の例
がアプライドフィジクスレターズ誌、1991年、59
巻、9号、1011−1012ページに報告されてい
る。この従来例ではInGaAlAs、InAlAsか
らなる四分の一波長板を交互に30周期積層して反射鏡
を形成し、99%以上の高い反射率を得ている。
2. Description of the Related Art A surface emitting semiconductor laser uses a reflecting mirror having a high reflectance of 99.9% or more as a resonator, so that a driving current can be reduced as compared with a conventional edge emitting semiconductor laser.
Improvements in dimensional array, high-speed modulation, etc. can be expected. A conventional example of such a semiconductor laser is applied Physics Letters magazine, 1990, Volume 57, No. 16, 1605-16.
It is reported on page 07. This conventional semiconductor laser has a structure in which a light emitting layer and two multilayer reflecting mirrors are arranged in a cylindrical portion formed on a semiconductor substrate by photolithography and dry etching in a direction parallel to the light emission direction. Alternately, a quarter-wave plate of aluminum arsenide (AlAs) and gallium arsenide (GaAs) is alternately used for the reflecting mirror.
By using a structure in which 28 layers are stacked, a high reflectance of 99.9% or more is realized and a low threshold current is obtained. An example of a high-reflectance mirror for a surface emitting semiconductor laser in the optical communication wavelength band is given in Applied Physics Letters, 1991, 59.
Vol. 9, No. 10, pp. 1011-1012. In this conventional example, quarter-wave plates made of InGaAlAs and InAlAs are alternately laminated for 30 cycles to form a reflecting mirror, and a high reflectance of 99% or more is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
屈折率の異なる半導体の4分の1波長板を多周期積層し
た構造になる反射鏡は高い反射率を得るためには0.9
μm帯の発光波長用で20周期以上、特に通信波長帯用
のInP基板上の面射出形半導体レーザ用では30周期
以上が必要になる。その結果、以下2つの問題点が生じ
る。第1に、積層層厚が2つの反射板で10〜14μm
必要であるために多大の結晶成長時間を要し平坦性に欠
けること、第2に、多層反射板内での荷電担体や不純物
による吸収が無視できなくなり99.9%以上の高い反
射率が得にくいことである。
However, a conventional reflecting mirror having a structure in which quarter-wave plates of semiconductors having different refractive indexes are laminated in multiple cycles is required to obtain a high reflectance of 0.9.
It is necessary to have 20 cycles or more for the emission wavelength in the μm band, and particularly 30 cycles or more for the surface emission type semiconductor laser on the InP substrate for the communication wavelength band. As a result, the following two problems occur. First, the laminated layer thickness is 2 to 10 μm for two reflectors.
It requires a large amount of crystal growth time and lacks flatness. Secondly, absorption by charge carriers and impurities in the multilayer reflector cannot be ignored, and a high reflectance of 99.9% or more is obtained. It's difficult.

【0004】本発明は以上述べた様な従来の事情に鑑み
てなされたもので、反射鏡を構成する材料の屈折率の比
を大きくできる構造とし、より少ない積層層厚と優れた
反射率特性が期待できる反射板を用いたより平坦な形状
でありかつ低閾値の面出射形半導体レーザを提供するこ
とにある。
The present invention has been made in view of the conventional circumstances as described above, and has a structure in which the ratio of the refractive indexes of the materials forming the reflecting mirror can be increased, and the laminated layer has a smaller thickness and excellent reflectance characteristics. Another object of the present invention is to provide a surface-emitting type semiconductor laser having a flatter shape and a lower threshold value, which uses a reflection plate which can be expected.

【0005】[0005]

【課題を解決するための手段】本発明の半導体レーザ
は、発光層と前記発光層を挟む2つの反射鏡とがInP
基板上に積層された構造を有する面出射形半導体レーザ
において、前記反射鏡のうち少なくとも基板側の反射鏡
が出射光の波長より小さいバンドギャップ波長を有しI
nPに格子整合した組成III−V族化合物半導体層と
II−VI族化合物半導体層との少なくとも1周期の繰
り返しからなる多層反射膜であることを特徴としてい
る。特に前記II−VI族化合物半導体層にInPに格
子整合したII−VI族化合物半導体としてはCdSS
e、ZnTeS、ZnTeSeを用いることを特徴とし
ている。
In the semiconductor laser of the present invention, the light emitting layer and the two reflecting mirrors sandwiching the light emitting layer are made of InP.
In a surface emitting semiconductor laser having a structure laminated on a substrate, at least one of the reflecting mirrors on the substrate side has a bandgap wavelength smaller than the wavelength of emitted light.
The multilayer reflective film is characterized by comprising at least one cycle of a composition III-V group compound semiconductor layer and a II-VI group compound semiconductor layer lattice-matched to nP. Particularly, as the II-VI group compound semiconductor lattice-matched to InP with the II-VI group compound semiconductor layer, CdSS is used.
The feature is that e, ZnTeS, and ZnTeSe are used.

【0006】[0006]

【作用】一般に、4分の1波長の層厚を有する2種類の
誘電体を多周期積層した多層反射膜の反射率は次式で与
えられることが知られている。
In general, it is known that the reflectance of a multilayer reflective film in which two types of dielectrics having a layer thickness of ¼ wavelength are multi-layered is given by the following equation.

【0007】 [0007]

【0008】式中、R、n0 、ns 、n1 、n2 、及び
Nは、多層反射膜の反射率、入射側の媒質の屈折率、基
板の屈折率、第1の誘電体の屈折率、第2の誘電体の屈
折率、及び、積層した周期数をそれぞれ示す。
In the formula, R, n 0 , n s , n 1 , n 2 and N are the reflectance of the multilayer reflective film, the refractive index of the medium on the incident side, the refractive index of the substrate and the first dielectric. The refractive index, the refractive index of the second dielectric material, and the number of stacked periods are shown.

【0009】本発明による面出射形半導体レーザでは、
反射鏡を構成する2種類の層に、発振波長より小さいバ
ンドギャップ波長を有する組成でかつ4分の1波長の層
厚を有するInPに格子整合した組成のIII−V族化
合物半導体層とII−VI族化合物半導体層とを用いて
いる。II−VI族化合物半導体層の屈折率n2 は従来
のIII−V族化合物半導体層(たとえばInP)を用
いた場合に比べ、発振波長1.55μmの場合では3.
17から2.4〜2.6の小さいため、少ない積層周期
数で高い反射率が得られる。たとえば、発振波長1.5
5μmの場合、InPとCdSSeとを用いた反射率9
9,9%の多層反射膜では14周期、計4μmの厚さで
済み、従来にくらべて非常に薄くできる。従って、従来
に比べ集積化が容易な平坦な形状にでき、かつ、反射率
を高くできる為、発振閾値をより低減できる。
In the surface emitting semiconductor laser according to the present invention,
A group III-V compound semiconductor layer and a group II-V compound semiconductor layer having a composition having a bandgap wavelength smaller than the oscillation wavelength and having a layer thickness of a quarter wavelength, lattice-matched to InP, in two types of layers constituting the reflecting mirror, and II- A Group VI compound semiconductor layer is used. The refractive index n 2 of the II-VI group compound semiconductor layer is 3. When the oscillation wavelength is 1.55 μm, as compared with the case where the conventional III-V group compound semiconductor layer (for example, InP) is used.
Since it is as small as 17 to 2.4 to 2.6, a high reflectance can be obtained with a small number of lamination cycles. For example, oscillation wavelength 1.5
In the case of 5 μm, the reflectance using InP and CdSSe is 9
A multilayer reflection film of 9,9% requires a total thickness of 4 μm for 14 periods, which is much thinner than the conventional one. Therefore, a flat shape that is easier to integrate than the conventional one can be formed, and the reflectance can be increased, so that the oscillation threshold value can be further reduced.

【0010】[0010]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の実施例を説明するための断
面模式図である。出射光20は基板10の裏面から基板
面に垂直な方向に出射する。基板10は(100)面の
Sドープn形InP基板を用いた。ダブルヘテロ構造1
2はn形InP層、InGaAs発光層16、及びp形
InP層を順次積層した構造で、発光波長が1.55μ
mとなる発光層厚を有する量子井戸構造である。ダブル
ヘテロ構造12を上下から挟む位置に、n形多層反射膜
11及びp形多層反射膜13を形成した。n形多層反射
膜11は、厚さ112nmのn形InGaAsP層18
(バンドギャップ波長1.45μm)と厚さ164nm
のn形CdSSe層19を交互に11周期積層した構造
である。p形多層反射膜13は厚さ112nmのp形I
nAsP層(バンドギャップ波長1.45μm)と厚さ
164nmのp形CdSSe層を15周期積層した後、
10μm角に整形して発振領域を制限している。電流注
入に関しては、InGaAs発光層16に注入される担
体のうち電子は基板裏面のn形電極14から、基板10
を経て、n形多層反射膜11を通じて注入される。一
方、正孔は多層反射膜13上のp形電極15からp形多
層反射膜13を通じて注入される。電子と正孔の再結合
は主に発光領域17で起き、p形多層反射膜13の部分
でのみ共振器が形成されるため、発振以降の注入電流は
発光領域17にのみ流れることになり、低駆動電流、高
効率の発振が可能になる。
FIG. 1 is a schematic sectional view for explaining an embodiment of the present invention. The emitted light 20 is emitted from the back surface of the substrate 10 in a direction perpendicular to the substrate surface. The substrate 10 was a (100) plane S-doped n-type InP substrate. Double hetero structure 1
Reference numeral 2 is a structure in which an n-type InP layer, an InGaAs light emitting layer 16, and a p-type InP layer are sequentially stacked, and the emission wavelength is 1.55 μm.
It is a quantum well structure having a light emitting layer thickness of m. An n-type multilayer reflective film 11 and a p-type multilayer reflective film 13 were formed at positions sandwiching the double hetero structure 12 from above and below. The n-type multilayer reflective film 11 is an n-type InGaAsP layer 18 having a thickness of 112 nm.
(Bandgap wavelength 1.45 μm) and thickness 164 nm
The n-type CdSSe layers 19 are alternately laminated for 11 periods. The p-type multilayer reflective film 13 is a p-type I having a thickness of 112 nm.
After stacking the nAsP layer (bandgap wavelength 1.45 μm) and the p-type CdSSe layer having a thickness of 164 nm for 15 cycles,
It is shaped into a 10 μm square to limit the oscillation region. Regarding current injection, among the carriers injected into the InGaAs light emitting layer 16, electrons are transferred from the n-type electrode 14 on the back surface of the substrate to the substrate 10.
Then, it is injected through the n-type multilayer reflective film 11. On the other hand, holes are injected from the p-type electrode 15 on the multilayer reflective film 13 through the p-type multilayer reflective film 13. The recombination of electrons and holes mainly occurs in the light emitting region 17, and since the resonator is formed only in the p-type multilayer reflective film 13, the injection current after the oscillation flows only in the light emitting region 17. It enables low drive current and high efficiency oscillation.

【0012】本発明の面出射形半導体レーザは、まず、
(100)面を有するn形InP基板10の上に、In
Pに格子整合した厚さ112nmのn形InGaAsP
層18(バンドギャップ波長1,45μm)と厚さ16
4nmのn形CdSSe層19を交互に11周期積層す
る。積層には、独立したIII−V族化合物半導体用成
長室とII−VI族化合物半導体用成長室が真空搬送室
で結合された構造を持つMBE成長装置を用い、それぞ
れの成長室にInP基板10を往復させて積層する。次
に、n形InP層、InGaAs発光層、及びp形In
P層を順次積層し、発光波長が1.55μmとなる発光
層厚を有するダブルヘテロ構造12を成長する。さら
に、p形多層反射膜13は厚さ112nmのp形InG
aAsP層(バンドギャップ波長1.45μm)と厚さ
164nmのp形CdSSe層を15周期積層する。I
II−V族化合物半導体のMBE成長法では、950℃
に加熱したクラッキングセルを通してアルシン、ホスフ
ィンガスを高真空チャンバーに導入し、In、Ga金属
をそれぞれクヌーセンセルで加熱しシャッターで制御し
てInP基板10に照射して成長させる。II−VI族
化合物半導体のMBE成長法ではKセルを加熱してC
d、S、及びSeをInP基板10に照射して成長させ
る。p形多層反射膜13を積層後、通常のフォトリソグ
ラフィーで形成したレジストをマスクとして、p形多層
反射膜13を10μm角にドライエッチングで整形し、
SiO2 層21、n形電極14及びp形電極15を形成
すると図1の半導体レーザが完成する。
The surface emitting semiconductor laser of the present invention is as follows.
On the n-type InP substrate 10 having a (100) plane, In
112nm thick n-type InGaAsP lattice-matched to P
Layer 18 (bandgap wavelength 1,45 μm) and thickness 16
The n-type CdSSe layers 19 having a thickness of 4 nm are alternately laminated for 11 cycles. For the stacking, an MBE growth apparatus having a structure in which an independent growth chamber for III-V compound semiconductor and a growth chamber for II-VI compound semiconductor are connected by a vacuum transfer chamber is used, and the InP substrate 10 is provided in each growth chamber. And reciprocate to stack. Next, the n-type InP layer, the InGaAs light emitting layer, and the p-type In
The P layers are sequentially stacked to grow the double heterostructure 12 having a light emitting layer thickness with an emission wavelength of 1.55 μm. Further, the p-type multilayer reflective film 13 is a p-type InG film having a thickness of 112 nm.
An aAsP layer (bandgap wavelength 1.45 μm) and a p-type CdSSe layer having a thickness of 164 nm are stacked for 15 periods. I
In the MBE growth method of II-V group compound semiconductor, 950 ° C.
Gases of arsine and phosphine are introduced into the high vacuum chamber through the cracking cell heated above, and In and Ga metals are heated by the Knudsen cell and irradiated with the InP substrate 10 under the control of a shutter to grow the InP substrate 10. In the MBE growth method for II-VI compound semiconductors, the K cell is heated to C
The InP substrate 10 is irradiated with d, S, and Se to grow. After stacking the p-type multilayer reflective film 13, the p-type multilayer reflective film 13 is shaped into a 10 μm square by dry etching using a resist formed by ordinary photolithography as a mask.
When the SiO 2 layer 21, the n-type electrode 14 and the p-type electrode 15 are formed, the semiconductor laser of FIG. 1 is completed.

【0013】本発明の面出射形半導体レーザは多層反射
膜に高屈折率層及び低屈折率層としてInGaAsP
(バンドギャップ波長1.45μm)及びCdSSe
(S組成80%}を用いており、その発振波長における
屈折率はそれぞれ3.466及び2.357と互いの屈
折率差が大きい。そのため、11周期であっても99.
9%の高い反射率が得られる。その結果、n形多層反射
膜11の層厚は3μmと、従来に比べ著しく積層層厚が
低減される。また、99.99%以上の非常に高い屈折
率も15周期の多層反射膜で得られ、発振閾値が低減で
きる。
The surface-emitting type semiconductor laser of the present invention comprises a multi-layered reflective film with InGaAsP as a high refractive index layer and a low refractive index layer.
(Bandgap wavelength 1.45 μm) and CdSSe
(S composition 80%) is used, and the refractive index at the oscillation wavelength is 3.466 and 2.357, respectively, which is a large difference in refractive index from each other.
A high reflectance of 9% is obtained. As a result, the layer thickness of the n-type multilayer reflective film 11 is 3 μm, which is a remarkably reduced layer thickness as compared with the prior art. Also, a very high refractive index of 99.99% or more can be obtained with a multilayer reflective film of 15 periods, and the oscillation threshold can be reduced.

【0014】上記実施例では低屈折率層としてCdSS
eを用いたが、この他にInPに格子整合する組成とし
てZnTeS(Te組成約67%}、ZnTeSe(T
e組成約46%)を用いても良い。
In the above embodiment, CdSS is used as the low refractive index layer.
Although e was used, ZnTeS (Te composition about 67%), ZnTeSe (T
e composition about 46%) may be used.

【0015】上記実施例では上下ともIII−V族化合
物半導体層とII−VI族化合物半導体層とからなる多
層反射膜を用いたが、上記構造の多層反射膜を下側反射
鏡(基板に隣接した反射膜)にのみ用い、上側反射鏡は
誘電体多層反射膜を蒸着等の方法で形成しても良い。特
にII−VI族化合物半導体の高濃度p形またはn形の
一方が結晶の性質上形成しにくい場合、形成し易い導電
形を下側多層反射膜に用いても良い。
In the above-mentioned embodiment, the multilayer reflective film consisting of the III-V group compound semiconductor layer and the II-VI group compound semiconductor layer is used on the upper and lower sides, but the multilayer reflective film of the above structure is used for the lower reflecting mirror (adjacent to the substrate. However, the upper reflecting mirror may be formed of a dielectric multilayer reflective film by vapor deposition or the like. In particular, when it is difficult to form one of the high-concentration p-type and n-type II-VI compound semiconductors due to the nature of the crystal, a conductivity type that is easy to form may be used for the lower multilayer reflective film.

【0016】上記実施例では下側多層反射膜をn形とし
たがp形基板を用いればp形n形を変えても同様の効果
が得られる。
In the above embodiment, the lower multilayer reflective film is of n type, but if a p type substrate is used, the same effect can be obtained even if the p type and n type are changed.

【0017】上記実施例ではエピタキシャル成長法に2
成長室を有するMBE法を用いたが、本発明はこれに限
定されるものではない。
In the above embodiment, the epitaxial growth method is used.
Although the MBE method having a growth chamber was used, the present invention is not limited to this.

【0018】[0018]

【発明の効果】本発明による半導体レーザは、反射鏡を
構成する材料の屈折率の比を大きくできる構造であるた
めに、より少ない積層層厚で優れた反射率特性が得ら
れ、その結果、平坦かつ低閾値の面出射形半導体レーザ
を得ることができる。
Since the semiconductor laser according to the present invention has a structure capable of increasing the refractive index ratio of the material forming the reflecting mirror, excellent reflectance characteristics can be obtained with a smaller laminated layer thickness. It is possible to obtain a flat surface emitting semiconductor laser having a low threshold value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザの一実施例を説明するた
めの断面模式図である。
FIG. 1 is a schematic sectional view for explaining an embodiment of a semiconductor laser of the present invention.

【符号の説明】[Explanation of symbols]

10 基板 11 n形多層反射膜 12 ダブルヘテロ構造 13 p形多層反射膜 14 n形電極 15 p形電極 16 InGaAs発光層 17 発光領域 18 n形InGaAsP層 19 n形CdSSe層 20 出射光 21 SiO2 10 substrate 11 n-type multilayer reflective film 12 double heterostructure 13 p-type multilayer reflective film 14 n-type electrode 15 p-type electrode 16 InGaAs light-emitting layer 17 light-emitting region 18 n-type InGaAsP layer 19 n-type CdSSe layer 20 emitted light 21 SiO 2 layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発光層と、前記発光層を挟む2つの反射
鏡とがInP基板上に積層された構造を有する面出射形
半導体レーザにおいて、前記反射鏡のうち少なくとも基
板側の反射鏡が出射光の波長より小さいバンドギャップ
波長を有しInPに格子整合した組成III−V族化合
物半導体層とII−VI族化合物半導体層との少なくと
も1周期の繰り返しからなる多層反射膜であることを特
徴とする面出射形半導体レーザ。
1. In a surface emitting semiconductor laser having a structure in which a light emitting layer and two reflecting mirrors sandwiching the light emitting layer are laminated on an InP substrate, at least the reflecting mirror on the substrate side of the reflecting mirrors is exposed. A multi-layered reflective film comprising a composition III-V compound semiconductor layer and a II-VI compound semiconductor layer having a bandgap wavelength smaller than the wavelength of emitted light and lattice-matched to InP, and comprising at least one cycle. Surface emitting semiconductor laser.
【請求項2】 前記II−VI族化合物半導体層にIn
Pに格子整合した組成のCdSSeを用いた請求項1記
載の面射出形半導体レーザ。
2. The group II-VI compound semiconductor layer containing In
The surface emitting semiconductor laser according to claim 1, wherein CdSSe having a composition lattice-matched to P is used.
【請求項3】 前記II−VI族化合物半導体層にIn
Pに格子整合した組成のZnTeSを用いた請求項1記
載の面射出形半導体レーザ。
3. The II-VI group compound semiconductor layer is formed of In.
The surface emitting semiconductor laser according to claim 1, wherein ZnTeS having a composition lattice-matched with P is used.
【請求項4】 前記II−VI族化合物半導体層にIn
Pに格子整合した組成のZnTeSeを用いた請求項1
記載の面射出形半導体レーザ。
4. The II-VI compound semiconductor layer is formed of In.
A ZnTeSe having a composition lattice-matched to P is used.
The surface emitting semiconductor laser described.
JP14704992A 1992-06-08 1992-06-08 Surface emission-type semiconductor laser Withdrawn JPH05343796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14704992A JPH05343796A (en) 1992-06-08 1992-06-08 Surface emission-type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14704992A JPH05343796A (en) 1992-06-08 1992-06-08 Surface emission-type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH05343796A true JPH05343796A (en) 1993-12-24

Family

ID=15421348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14704992A Withdrawn JPH05343796A (en) 1992-06-08 1992-06-08 Surface emission-type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH05343796A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503090A (en) * 2004-06-18 2008-01-31 スリーエム イノベイティブ プロパティズ カンパニー II-VI / III-V layered structure on InP substrate
EP1963094A1 (en) * 2005-12-20 2008-09-03 3M Innovative Properties Company Ii-vi/iii-v layered construction on inp substrate
US8385380B2 (en) 2008-09-04 2013-02-26 3M Innovative Properties Company Monochromatic light source
US8488641B2 (en) 2008-09-04 2013-07-16 3M Innovative Properties Company II-VI MQW VSEL on a heat sink optically pumped by a GaN LD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008503090A (en) * 2004-06-18 2008-01-31 スリーエム イノベイティブ プロパティズ カンパニー II-VI / III-V layered structure on InP substrate
EP1963094A1 (en) * 2005-12-20 2008-09-03 3M Innovative Properties Company Ii-vi/iii-v layered construction on inp substrate
JP2009520377A (en) * 2005-12-20 2009-05-21 スリーエム イノベイティブ プロパティズ カンパニー II-VI / III-V layered structure on InP substrate
EP1963094A4 (en) * 2005-12-20 2014-03-19 3M Innovative Properties Co Ii-vi/iii-v layered construction on inp substrate
US8385380B2 (en) 2008-09-04 2013-02-26 3M Innovative Properties Company Monochromatic light source
US8488641B2 (en) 2008-09-04 2013-07-16 3M Innovative Properties Company II-VI MQW VSEL on a heat sink optically pumped by a GaN LD

Similar Documents

Publication Publication Date Title
US4644378A (en) Semiconductor device for generating electromagnetic radiation
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
KR100523484B1 (en) Method for fabricating semiconductor optical devices having current-confined structure
KR910003465B1 (en) Opto-electronic device
JPH03236295A (en) Vertical cavity semiconductor laser device
JPH0418476B2 (en)
JP3143662B2 (en) Opto-electronic semiconductor devices
JP2003513476A (en) Long wavelength pseudomorphic InGaNPAsSb type I and type II active layers for GaAs material systems
EP1045457A2 (en) Quantum well type light-emitting diode
JPH0629612A (en) Manufacture of surface emission-type semiconductor laser and laser obtained by above manufacture
JP5381692B2 (en) Semiconductor light emitting device
US6008067A (en) Fabrication of visible wavelength vertical cavity surface emitting laser
US20040033637A1 (en) Atomic hydrogen as a surfactant in production of highly strained InGaAs, InGaAsN, InGaAsNSb, and/or GaAsNSb quantum wells
JP4134366B2 (en) Surface emitting laser
JPH05343796A (en) Surface emission-type semiconductor laser
JP2699661B2 (en) Semiconductor multilayer reflective film
JP2757633B2 (en) Surface emitting semiconductor laser
JPH05327121A (en) Surface emitting type semiconductor laser
JP2618677B2 (en) Semiconductor light emitting device
JP4245993B2 (en) Semiconductor multilayer mirror and optical semiconductor device including the same
JPH0697598A (en) Semiconductor light-emitting device
JP2001168462A (en) Semiconductor multilayer film reflecting mirror and semiconductor light-emitting element using the same
JPH07249835A (en) Semiconductor optical element
JPH09181398A (en) Semiconductor light emitting device
JP3326833B2 (en) Semiconductor laser and light emitting diode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831